The Efficiency Limits of Spin Exchange Optical Pumping Methods of 129Xe Hyperpolarization: Implications for in Vivo MRI Applications

Total Page:16

File Type:pdf, Size:1020Kb

The Efficiency Limits of Spin Exchange Optical Pumping Methods of 129Xe Hyperpolarization: Implications for in Vivo MRI Applications The Efficiency Limits of Spin Exchange Optical Pumping Methods of 129Xe Hyperpolarization: Implications for in vivo MRI Applications by Matthew S. Freeman Graduate Program in Medical Physics Duke University Date: __________________ Approved: _____________________________ Bastiaan Driehuys, Supervisor _____________________________ James MacFall _____________________________ Chunlei Liu _____________________________ Joseph Lo _____________________________ Warren Warren Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Medical Physics in the Graduate School of Duke University 2015 ABSTRACT The Efficiency Limits of Spin Exchange Optical Pumping Methods of 129Xe Hyperpolarization: Implications for in vivo MRI Applications by Matthew S. Freeman Graduate Program in Medical Physics Duke University Date: __________________ Approved: _____________________________ Bastiaan Driehuys, Supervisor _____________________________ James MacFall _____________________________ Chunlei Liu _____________________________ Joseph Lo _____________________________ Warren Warren Abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Medical Physics in the Graduate School of Duke University 2015 Copyright by Matthew Stouten Freeman 2015 Abstract Since the inception of hyperpolarized 129Xe MRI, the field has yearned for more efficient production of more highly polarized 129Xe. For nearly all polarizers built to date, both peak 129Xe polarization and production rate fall far below theoretical predictions. This thesis sought to develop a fundamental understanding of why the observed performance of large-scale 129Xe hyperpolarization lagged so badly behind theoretical predictions. This is done by thoroughly characterizing a high-volume, continuous-flow polarizer using optical cells having three different internal volumes, and employing two different laser sources. For each of these 6 combinations, 129Xe polarization was carefully measured as a function of production rate across a range of laser absorption levels. The resultant peak polarizations were consistently a factor of 2-3 lower than predicted across a range of absorption levels, and scaling of production rates deviated badly from predictions based on spin exchange efficiency. To bridge this gap, we propose that paramagnetic, activated Rb clusters form during spin exchange optical pumping (SEOP), and depolarize Rb and 129Xe, while unproductively scattering optical pumping light. When a model was built that incorporated the effects of clusters, its predictions matched observations for both polarization and production rate for all 6 systems studied. This permits us to place a limit on cluster number density of <2 × 109 cm-3. iv The work culminates with deploying this framework to identify methods to improve polarization to above 50%, leaving the SEOP cell. Combined with additional methods of preserving polarization, the polarization of a 300-mL batch of 129Xe increased from an average of 9%, before this work began, to a recent value of 34%. We anticipate that these developments will lay the groundwork for continued advancement and scaling up of SEOP-based hyperpolarization methods that may one day permit real-time, on-demand 129Xe MRI to become a reality. v to Happus may our adventure never end vi Contents Abstract ............................................................................................................................... iv List of Tables ...................................................................................................................... ix List of Figures ...................................................................................................................... x Acknowledgements ........................................................................................................... xiii 1. Introduction .....................................................................................................................1 2. Rb-129Xe Spin Exchange Optical Pumping ...................................................................11 3. Characterizing 129Xe SEOP Performance .....................................................................23 3.1 Possible Extensions to the Standard Model of SEOP ....................................34 4. Rb Nanoclusters in the SEOP environment .................................................................38 4.1 Hypothesizing Laser Induced Activation of Rb Clusters in SEOP Cells ......39 4.2 Modeling Activated Rb Clusters .....................................................................43 4.3 Steepest Descent Tuning of Cluster Parameters .............................................47 4.4 Comparison of Individual Clusters Effects .....................................................51 4.4.1 Spin Destruction ...............................................................................53 4.4.2 Broad Photon Scattering ..................................................................55 4.4.3 129Xe Relaxation ................................................................................56 4.5 Possible Presence of Activated Clusters in 3He Cells ......................................57 4.6 Limitations of Modeling Alkali Cluster Formation ........................................58 5. Rb Nanocluster Detection .............................................................................................59 6. Increasing 129Xe Polarization .........................................................................................81 6.1 Avoiding Magnetic Field Zero-Crossings .......................................................85 6.2 Cryogenic Accumulation, Capturing 129Xe and Minimizing Relaxation ........90 6.3 Optical Improvements at the SEOP Cell Interface ........................................96 6.4 Results ..............................................................................................................98 vii 6.5 Future considerations .....................................................................................102 Appendix A: Fundamental Spin Exchange Constants ....................................................106 References ........................................................................................................................107 Biography .........................................................................................................................112 viii List of Tables Table 1: Binary collision spin-destruction coefficients for Rb. .........................................14 Table 2: Coefficients determining the D1-absorption cross-section for Rb vapor. ..........15 Table 3: Characteristics of the optical cells used in this work. ..........................................26 Table 4: Proposed cluster scaling constant, cluster relaxation cross-sections, and scattering cross-section. .....................................................................................................51 ix List of Figures Figure 1: ventilation 129Xe MRI ...........................................................................................3 Figure 2: ADC 129Xe MRI ...................................................................................................4 Figure 3: dissolved 129Xe MRI .............................................................................................5 Figure 4: clinical production schedule .................................................................................5 Figure 5: optical pumping diagram ....................................................................................13 Figure 6: Rb D1-asborption cross-section.........................................................................16 Figure 7: modeled photon absorption................................................................................17 Figure 8: spin-exchange diagram .......................................................................................18 Figure 9: polarizer schematic .............................................................................................19 Figure 10: theoretical performance vs. reality ....................................................................22 Figure 11: flow circuit diagram ..........................................................................................23 Figure 12: research polarizer ..............................................................................................24 Figure 13: sample flow curves ............................................................................................28 Figure 14: standard model polarization .............................................................................29 Figure 15: standard model production...............................................................................31 Figure 16: polarization and cell size ...................................................................................33 Figure 17: cluster model polarization ................................................................................48 Figure 18: cluster model production ..................................................................................50 Figure 19: individual effects polarization ...........................................................................53 x Figure 20: individual effects production ............................................................................55
Recommended publications
  • Optical Pumping of Stored Atomic Ions (*)
    Ann. Phys. Fr. 10 (1985) 737-748 DhCEMBRE 1985, PAGE 131 Optical pumping of stored atomic ions (*) D. J. Wineland, W. M. Itano, J. C. Bergquist, J. J. Bollinger and J. D. Prestage Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80303, U.S.A. Resume. - Ce texte discute les expkriences de pompage optique sur des ions atomiques confints dans des pikges tlectromagnttiques. Du fait de la faible relaxation et des dtplacements d'energie trbs petits des ions confine$ on peut obtenir une trb haute rtsolution et une tres grande prkision dans les exptriences de pompage optique associt a la double rtsonance. Dans la ligne de l'idee de Kastler de (( lumino-rtfrigtration H (1950), l'tnergie cinttique des niveaux des ions confines peut Ctre pompke optiquement. Cette technique, appelee refroidissement laser, rtduit sensiblement les dtplacements de frtquence Doppler dans les spectres. Abstract. - Optical pumping experiments on atomic ions which are stored in ekG tromagnetic (( traps )) are discussed. Weak relaxation and extremely small energy shifts of the stored ions lead to very high resolution and accuracy in optical pumping- double resonance experiments. In the same spirit of Kastler's proposal for (( lumino refrigeration )) (1950), the kinetic energy levels of stored ions can be optically pumped. This technique, which has been called laser cooling significantly reduces Doppler frequency shifts in the spectra. 1. Introduction. For more than thirty years, the technique of optical pumping, as originally proposed by Alfred Kastler [I], has provided information about atomic structure, atom-atom interactions, and the interaction of atoms with external radiation. This technique continues today as one of the primary methods used in atomic physics.
    [Show full text]
  • Arxiv:0801.0028V1 [Physics.Atom-Ph] 29 Dec 2007 § ‡ † (People’S China Metrology, Of) of Lic Institute Canada National Council, Zhang, Research Z
    CODATA Recommended Values of the Fundamental Physical Constants: 2006∗ Peter J. Mohr†, Barry N. Taylor‡, and David B. Newell§, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA (Dated: March 29, 2012) This paper gives the 2006 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2006 adjustment takes into account the data considered in the 2002 adjustment as well as the data that became available between 31 December 2002, the closing date of that adjustment, and 31 December 2006, the closing date of the new adjustment. The new data have led to a significant reduction in the uncertainties of many recommended values. The 2006 set replaces the previously recommended 2002 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants. Contents 3. Cyclotron resonance measurement of the electron relative atomic mass Ar(e) 8 Glossary 2 4. Atomic transition frequencies 8 1. Introduction 4 1. Hydrogen and deuterium transition frequencies, the 1. Background 4 Rydberg constant R∞, and the proton and deuteron charge radii R , R 8 2. Time variation of the constants 5 p d 1. Theory relevant to the Rydberg constant 9 3. Outline of paper 5 2. Experiments on hydrogen and deuterium 16 3.
    [Show full text]
  • Conventioral Standards?* JESSE W
    156 IRE TRANSACTIONS ON INSTRUMENTATION December Present Status of Precise Information on the Universal Physical Constants. Has the Time Arrived for Their Adoption to Replace Our Present Arbitrary Conventioral Standards?* JESSE W. M. DuMONDt INTRODUCTION this subject that the experimentally measured data r HREE years ago Dr. E. R. Cohen and I prepared often do not give the desired unknowns directly but and published our latest (1955) least-squares ad- instead give functions of the unknowns. justment of all the most reliable data then avail- Seven different functions of these above four un- able bearing on the universal constants of physics and knowns have been measured by experimental methods chemistry. Since then new data and information have which we feel are sufficiently precise and reliable to been accumulating so that a year or two from now the qualify them as input data in a least-squares adjust- time may perhaps be propitious for us to prepare a new ment. These seven experimentally determined numeri- adjustment taking the newly-gained knowledge into cal values are not only functions of the unknowns,ae, account. At present it is too early to attempt such a e, N, and A, but also of the above-mentioned experi re-evaluation since many of the investigations and re- mentally determined auxiliary constants, of which five determinations now under way are still far from com- different kinds are listed in Table I. Another of these pleted. I shall be obliged, therefore, to content myself auxiliary constants I find it expedient to recall to your in this talk with a description of the sources of informa- attention at the very beginning to avoid any possibility tion upon which our 1955 evaluation was based, men- of confusion.
    [Show full text]
  • The Discovery of Thermodynamics
    Philosophical Magazine ISSN: 1478-6435 (Print) 1478-6443 (Online) Journal homepage: https://www.tandfonline.com/loi/tphm20 The discovery of thermodynamics Peter Weinberger To cite this article: Peter Weinberger (2013) The discovery of thermodynamics, Philosophical Magazine, 93:20, 2576-2612, DOI: 10.1080/14786435.2013.784402 To link to this article: https://doi.org/10.1080/14786435.2013.784402 Published online: 09 Apr 2013. Submit your article to this journal Article views: 658 Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tphm20 Philosophical Magazine, 2013 Vol. 93, No. 20, 2576–2612, http://dx.doi.org/10.1080/14786435.2013.784402 COMMENTARY The discovery of thermodynamics Peter Weinberger∗ Center for Computational Nanoscience, Seilerstätte 10/21, A1010 Vienna, Austria (Received 21 December 2012; final version received 6 March 2013) Based on the idea that a scientific journal is also an “agora” (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clau- sius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like “heat”, to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities.
    [Show full text]
  • Fundamental Physical Constants — Extensive Listing Relative Std
    2018 CODATA adjustment From: http://physics.nist.gov/constants Fundamental Physical Constants — Extensive Listing Relative std. Quantity Symbol Value Unit uncert. ur UNIVERSAL speed of light in vacuum c 299 792 458 m s−1 exact 2 −6 −2 −10 vacuum magnetic permeability 4pα¯h=e c µ0 1:256 637 062 12(19) × 10 NA 1:5 × 10 −7 −2 −10 µ0=(4p × 10 ) 1:000 000 000 55(15) NA 1:5 × 10 2 −12 −1 −10 vacuum electric permittivity 1/µ0c 0 8:854 187 8128(13) × 10 F m 1:5 × 10 −10 characteristic impedance of vacuum µ0c Z0 376:730 313 668(57) Ω 1:5 × 10 Newtonian constant of gravitation G 6:674 30(15) × 10−11 m3 kg−1 s−2 2:2 × 10−5 G=¯hc 6:708 83(15) × 10−39 (GeV=c2)−2 2:2 × 10−5 Planck constant∗ h 6:626 070 15 × 10−34 J Hz−1 exact 4:135 667 696 ::: × 10−15 eV Hz−1 exact ¯h 1:054 571 817 ::: × 10−34 J s exact 6:582 119 569 ::: × 10−16 eV s exact ¯hc 197:326 980 4 ::: MeV fm exact 1=2 −8 −5 Planck mass (¯hc=G) mP 2:176 434(24) × 10 kg 1:1 × 10 2 19 −5 energy equivalent mPc 1:220 890(14) × 10 GeV 1:1 × 10 5 1=2 32 −5 Planck temperature (¯hc =G) =k TP 1:416 784(16) × 10 K 1:1 × 10 3 1=2 −35 −5 Planck length ¯h=mPc = (¯hG=c ) lP 1:616 255(18) × 10 m 1:1 × 10 5 1=2 −44 −5 Planck time lP=c = (¯hG=c ) tP 5:391 247(60) × 10 s 1:1 × 10 ELECTROMAGNETIC elementary charge e 1:602 176 634 × 10−19 C exact e=¯h 1:519 267 447 ::: × 1015 AJ−1 exact −15 magnetic flux quantum 2p¯h=(2e) Φ0 2:067 833 848 ::: × 10 Wb exact 2 −5 conductance quantum 2e =2p¯h G0 7:748 091 729 ::: × 10 S exact −1 inverse of conductance quantum G0 12 906:403 72 ::: Ω exact 9 −1 Josephson constant 2e=h
    [Show full text]
  • Optical Pumping: a Possible Approach Towards a Sige Quantum Cascade Laser
    Institut de Physique de l’ Universit´ede Neuchˆatel Optical Pumping: A Possible Approach towards a SiGe Quantum Cascade Laser E3 40 30 E2 E1 20 10 Lasing Signal (meV) 0 210 215 220 Energy (meV) THESE pr´esent´ee`ala Facult´edes Sciences de l’Universit´ede Neuchˆatel pour obtenir le grade de docteur `essciences par Maxi Scheinert Soutenue le 8 octobre 2007 En pr´esence du directeur de th`ese Prof. J´erˆome Faist et des rapporteurs Prof. Detlev Gr¨utzmacher , Prof. Peter Hamm, Prof. Philipp Aebi, Dr. Hans Sigg and Dr. Soichiro Tsujino Keywords • Semiconductor heterostructures • Intersubband Transitions • Quantum cascade laser • Si - SiGe • Optical pumping Mots-Cl´es • H´et´erostructures semiconductrices • Transitions intersousbande • Laser `acascade quantique • Si - SiGe • Pompage optique i Abstract Since the first Quantum Cascade Laser (QCL) was realized in 1994 in the AlInAs/InGaAs material system, it has attracted a wide interest as infrared light source. Main applications can be found in spectroscopy for gas-sensing, in the data transmission and telecommuni- cation as free space optical data link as well as for infrared monitoring. This type of light source differs in fundamental ways from semiconductor diode laser, because the radiative transition is based on intersubband transitions which take place between confined states in quantum wells. As the lasing transition is independent from the nature of the band gap, it opens the possibility to a tuneable, infrared light source based on silicon and silicon compatible materials such as germanium. As silicon is the material of choice for electronic components, a SiGe based QCL would allow to extend the functionality of silicon into optoelectronics.
    [Show full text]
  • Fundamental Constants
    Appendix A Fundamental Constants Table A.1 Fundamental constants Quantity & symbol CGS MKS (SI) Speed of light in vacuum c 2.997925 1010 cm sec−1 108 ms−1 −7 −6 −1 Magnetic constant μ0 = 4π × 10 1.25664 10 Hm (permeability of free space) 2 −12 −1 Electric constant 0 = 1/μ0c 8.8541853 10 Fm (permittivity of free space) Electron charge e 1.60219 10−19 C 4.80324 10−10 esu Electron volt eV 1.60219 10−12 erg eV−1 10−19 JeV−1 −28 −31 Electron rest mass m0 9.10956 10 gm 10 kg Planck’s constant h 6.626196 10−27 erg sec 10−34 Js Planck’s constant = h/2π 1.05459 10−27 erg sec 10−34 Js 2 2 −8 −10 Bohr radius a0 = 4π0 /m0e 0.529177 10 cm 10 m = 2 2 Rydberg constant Ry /2m0a0 13.6058 eV eV Fine structure constant 7.297351 10−3 10−3 2 α = e /20hc 23 −1 23 −1 Avogadro’s constant L,NA 6.022169 10 mol 10 mol 25 −3 Loschmidt’s constant NL 2.68719 10 m −16 −1 −23 −1 Boltzmann’s constant kB = R/L 1.380622 10 erg K 10 JK Faraday constant F = Le 9.64867 104 Cmol−1 7 −1 −1 −1 −1 Universal gas constant R = LkB 8.31435 10 erg K mol JK mol Mechanical equivalent of heat 4.184 107 erg cal−1 J cal−1 −21 −1 −24 −1 Bohr magneton μB = e/2m0c 9.2741 10 erg G 10 JT −24 −27 Proton rest mass mp 1.67251 10 gm 10 kg −24 −1 −27 −1 Nuclear magneton μN = e/2mpc 5.0508 10 erg G 10 JT −24 −27 Neutron rest mass mn 1.67492 10 gm 10 kg Stefan-Boltzmann constant 5.6697 10−8 Wm−2 K−4 = 5 4 3 2 σ 2π kB /15h c Y.
    [Show full text]
  • Optical Pumping
    Optical Pumping MIT Department of Physics (Dated: February 17, 2011) Measurement of the Zeeman splittings of the ground state of the natural rubidium isotopes; measurement of the relaxation time of the magnetization of rubidium vapor; and measurement of the local geomagnetic field by the rubidium magnetometer. Rubidium vapor in a weak (∼.01- 10 gauss) magnetic field controlled with Helmholtz coils is pumped with circularly polarized D1 light from a rubidium rf discharge lamp. The degree of magnetization of the vapor is inferred from a differential measurement of its opacity to the pumping radiation. In the first part of the experiment the energy separation between the magnetic substates of the ground-state hyperfine levels is determined as a function of the magnetic field from measurements of the frequencies of rf photons that cause depolarization and consequent greater opacity of the vapor. The magnetic moments of the ground states of the 85Rb and 87Rb isotopes are derived from the data and compared with the vector model for addition of electronic and nuclear angular momenta. In the second part of the experiment the direction of magnetization is alternated between nearly parallel and nearly antiparallel to the optic axis, and the effects of the speed of reversal on the amplitude of the opacity signal are observed and compared with a computer model. The time constant of the pumping action is measured as a function of the intensity of the pumping light, and the results are compared with a theory of competing rate processes - pumping versus collisional depolarization. I. PREPARATORY PROBLEMS II. INTRODUCTION 1. With reference to Figure 1 of this guide, estimate A.
    [Show full text]
  • Optical Pumping 1
    Optical Pumping 1 OPTICAL PUMPING OF RUBIDIUM VAPOR Introduction The process of optical pumping is a beautiful example of the interaction between light and matter. In the Advanced Lab experiment, you use circularly polarized light to pump a particular level in rubidium vapor. Then, using magnetic fields and radio-frequency excitations, you manipulate the population of the pumped state in a manner similar to that used in the Spin Echo experiment. You will determine the energy separation between the magnetic substates (Zeeman levels) in rubidium as well as determine the Bohr magneton and observe two-photon transitions. Although the experiment is relatively simple to perform, you will need to understand a fair amount of atomic physics and experimental technique to appreciate the signals you witness. A simple example of optical pumping Let’s imagine a nearly trivial atom: no nuclear spin and only one electron. For concreteness, you can think of the 4He+ ion, which is similar to a Hydrogen atom, but without the nuclear spin of the proton. Its ground state is 1S1=2 (n = 1,S = 1=2,L = 0, J = 1=2). Photon absorption can excite it to the 2P1=2 (n = 2,S = 1=2,L = 1, J = 1=2) state. If you place it in a magnetic field, the energy levels become split as indicated in Figure 1. In effect, each original level really consists of two levels with the same energy; when you apply a field, the “spin up” state becomes higher in energy, the “spin down” lower. The spin energy splitting is exaggerated on the figure.
    [Show full text]
  • Spin Coherence and Optical Properties of Alkali-Metal Atoms in Solid Parahydrogen
    Spin coherence and optical properties of alkali-metal atoms in solid parahydrogen Sunil Upadhyay,1 Ugne Dargyte,1 Vsevolod D. Dergachev,2 Robert P. Prater,1 Sergey A. Varganov,2 Timur V. Tscherbul,1 David Patterson,3 and Jonathan D. Weinstein1, ∗ 1Department of Physics, University of Nevada, Reno NV 89557, USA 2Department of Chemistry, University of Nevada, Reno NV 89557, USA 3Broida Hall, University of California, Santa Barbara, Santa Barbara, California 93106, USA We present a joint experimental and theoretical study of spin coherence properties of 39K, 85Rb, 87Rb, and 133Cs atoms trapped in a solid parahydrogen matrix. We use optical pumping to prepare the spin states of the implanted atoms and circular dichroism to measure their spin states. Optical pumping signals show order-of-magnitude differences depending on both matrix growth conditions ∗ and atomic species. We measure the ensemble transverse relaxation times (T2) of the spin states ∗ of the alkali-metal atoms. Different alkali species exhibit dramatically different T2 times, ranging 87 2 39 from sub-microsecond coherence times for high mF states of Rb, to ∼ 10 microseconds for K. ∗ These are the longest ensemble T2 times reported for an electron spin system at high densities 16 −3 (n & 10 cm ). To interpret these observations, we develop a theory of inhomogenous broadening of hyperfine transitions of 2S atoms in weakly-interacting solid matrices. Our calculated ensemble transverse relaxation times agree well with experiment, and suggest ways to longer coherence times in future work. I. INTRODUCTION In this work, we compare the optical pumping prop- ∗ erties and ensemble transverse spin relaxation time (T2) Addressable solid-state electron spin systems are of in- for potassium, rubidium, and cesium in solid H2.
    [Show full text]
  • Fundamental Physical Constants — Complete Listing Relative Std
    From: http://physics.nist.gov/constants Fundamental Physical Constants — Complete Listing Relative std. Quantity Symbol Value Unit uncert. ur UNIVERSAL 1 speed of light in vacuum c; c0 299 792 458 m s− (exact) 7 2 magnetic constant µ0 4π 10− NA− × 7 2 = 12:566 370 614::: 10− NA− (exact) 2 × 12 1 electric constant 1/µ0c "0 8:854 187 817::: 10− F m− (exact) characteristic impedance × of vacuum µ / = µ c Z 376:730 313 461::: Ω (exact) p 0 0 0 0 Newtonian constant 11 3 1 2 3 of gravitation G 6:673(10) 10− m kg− s− 1:5 10− × 39 2 2 × 3 G=¯hc 6:707(10) 10− (GeV=c )− 1:5 10− × 34 × 8 Planck constant h 6:626 068 76(52) 10− J s 7:8 10− × 15 × 8 in eV s 4:135 667 27(16) 10− eV s 3:9 10− × 34 × 8 h=2π ¯h 1:054 571 596(82) 10− J s 7:8 10− × 16 × 8 in eV s 6:582 118 89(26) 10− eV s 3:9 10− × × 1=2 8 4 Planck mass (¯hc=G) mP 2:1767(16) 10− kg 7:5 10− 3 1=2 × 35 × 4 Planck length ¯h=mPc = (¯hG=c ) lP 1:6160(12) 10− m 7:5 10− 5 1=2 × 44 × 4 Planck time lP=c = (¯hG=c ) tP 5:3906(40) 10− s 7:5 10− × × ELECTROMAGNETIC 19 8 elementary charge e 1:602 176 462(63) 10− C 3:9 10− × 14 1 × 8 e=h 2:417 989 491(95) 10 AJ− 3:9 10− × × 15 8 magnetic flux quantum h=2e Φ0 2:067 833 636(81) 10− Wb 3:9 10− 2 × 5 × 9 conductance quantum 2e =h G0 7:748 091 696(28) 10− S 3:7 10− 1 × × 9 inverse of conductance quantum G0− 12 906:403 786(47) Ω 3:7 10− a 9 1 × 8 Josephson constant 2e=h KJ 483 597:898(19) 10 Hz V− 3:9 10− von Klitzing constantb × × 2 9 h=e = µ0c=2α RK 25 812:807 572(95) Ω 3:7 10− × 26 1 8 Bohr magneton e¯h=2me µB 927:400 899(37) 10− JT− 4:0 10− 1 × 5 1 × 9 in
    [Show full text]
  • Optical Pumping and the Hyperfine Structure of Rubidium 87
    Optical Pumping and the Hyperfine Structure of Rubidium 87 Laboratory Manual for Physics 3081 Thomas Dumitrescu∗, Solomon Endlich† May 2007 Abstract In this experiment you will learn about the powerful experimental technique of optical pumping, and apply it to investigate the hyperfine structure of Rubidium in an applied external magnetic field. The main goal of the experiment is to measure the hyperfine splitting of the ground state of Rubidium 87 at zero external magnetic field. Note: In this lab manual, Gaussian units are used throughout. See [4] for the relation between Gaussian and SI units. ∗email: [email protected] †email: [email protected] 1 1 Hyperfine Structure of Rubidium In this experiment you will study the optical pumping of Rubidium in an external magnetic field to determine its hyperfine structure. In the following, we give a brief outline of the hyperfine structure of Rubidium and its Zeeman splitting in an external magnetic field. The main goal of this section is to motivate the Breit-Rabi formula, which gives the Zeeman splitting of the Hyperfine levels. For a thorough and enlightening discussion of these topics we refer to the excellent article by Benumof [1]. The ground state of alkali atoms - of which Rubidium is one - consists of a number of closed shells and one s-state valence electron in the next shell. Recall that the total angular momentum of a closed atomic shell is zero, so the total angular momentum of the Rubidium atom is the sum of three angular momenta: the orbital and spin angular momenta L and S of the valence electron, and the nuclear angular momentum I.
    [Show full text]