2013.1 - Grade a & B Proposals

Total Page:16

File Type:pdf, Size:1020Kb

2013.1 - Grade a & B Proposals 2013.1 - Grade A & B Proposals 2013.1.00001.S Exec Country Institute PI Ivison, Rob EU United Kingdom Edinburgh , University of COI Lewis, Alex EU United Kingdom Edinburgh , University of COI Conley, Alexander NA United States Colorado at Boulder, Univ of COI Oliver, Sebastian EU United Kingdom Sussex, University of COI Bock, James NA United States California Institute of Technology COI Swinbank, Mark EU United Kingdom Durham University COI Omont, Alain EU France Astrophysical Institute Paris COI Valiante, Elisabetta EU United Kingdom Cardiff University COI Bertoldi, Frank EU Germany Bonn University COI Dannerbauer, Helmut EU Austria Vienna, University of COI Biggs, Andy EU Germany European Southern Observatory COI Bremer, Malcolm EU United Kingdom Bristol, University of COI Clements, David EU United Kingdom Imperial College of Science, Technology and Medicine COI Eales, Stephen EU United Kingdom Cardiff University COI Dunne, Loretta OTHER New Zealand University of Canterbury COI Maddox, Steve OTHER New Zealand University of Canterbury COI van Kampen, Eelco EU Germany European Southern Observatory COI Perez-Fournon, Ismael EU Spain Astrophysical Institute of Canarias COI van der Werf, Paul EU Netherlands Leiden University COI Cooray, Asantha NA United States California at Irvine, Univ of COI Ibar, Edo CL Chile Valparaiso, University of COI Smail, Ian EU United Kingdom Durham University COI Bussmann, Robert NA United States Harvard-Smithsonian Center for Astrophysics COI Serjeant, Stephen EU United Kingdom Open University, The COI Michalowski, Michal EU United Kingdom Edinburgh, The University of COI Arumugam, Vinodiran EU United Kingdom Edinburgh, The University of COI Vlahakis, Catherine EU Chile Joint ALMA Observatory COI Vieira, Joaquin NA United States Illinois at Urbana-Champaign, University of COI Massardi, Marcella EU Italy INAF COI Glenn, Jason NA United States Colorado at Boulder, Univ of Page 1 2014-06-27 09:52:31 Title Witnessing the birth of the red sequence: the physical scale and morphology of ultra-red starbursts Abstract We have defined a large sample of galaxies that are both faint (ergo unlensed - in this regime we cannot afford the vagaries of galaxy-galaxy lens model reconstruction) and extremely red (ergo very distant). We then further refined our sample via SCUBA-2 imaging, rejecting z<4 interlopers. The remaining galaxies represent the most intense starbursts in the z>4 Universe - the precursors of massive galaxies on the red sequence. Our goal here is to fully and directly characterise the physical scale and morphology of the dust in the 30 faintest and reddest of these z>4 starbursts - the first time a significant sample of such distant systems has been imaged interferometrically. Is the physical distribution of the dust best modelled as a compact, optically thick disk, as with local ULIRGs, or by a more extended optically thin disk, like local spirals? Is the Schmidt-Kennicutt law different in such young galaxies? What drives these early starbursts - major mergers, or the steady accretion of gas onto a disk, or perhaps something unexpected? Via the relatively simple observations proposed here, ALMA will reveal the manner in which the ancestors of today’s massive galaxies were formed. 2013.1.00008.S Exec Country Institute PI Lee, Chin-Fei EA Taiwan Academia Sinica COI Li, Zhi-Yun NA United States American Astronautical Society COI Ching, Tao-Chung EA Taiwan National Tsing-Hua University COI Lai, Shih-Ping EA Taiwan National Tsing-Hua University Title Toward Resolving the Magnetic Flux Problem in Star Formation: Mapping Poloidal B-field in Edge-on Disks Abstract Poloidal magnetic field is expected in protostellar disks, if magnetic flux is dragged into the disks from star-forming dense cores. Such a poloidal field can play a key role in disk evolution and jet launching. However, direct evidence for its existence has been lacking. Here, we propose to detect and map the poloidal field in the young, edge-on, and resolvable disks in two nearby disk-jet systems, HH 212 and HH 111, using polarization observation of thermal dust emission. If detected, it would mean that some of the core magnetic flux is indeed dragged into the disks and the poloidal field can indeed play a key role in both disk evolution and jet launching. A negative result would cast serious doubt on the poloidal-field driven disk evolution and jet launching. It would also imply that the long-standing ``magnetic flux problem'' is somehow resolved at large distances beyond the disks, so that none of the core magnetic flux is dragged into the disks. To have the best chance of polarization detection, we request 1 Science Goal in TDM in Band 7 at 345 GHz at 0.16" angular resolution. If succeeded, we would produce the first maps of poloidal B-field in young disks. 2013.1.00014.S Exec Country Institute PI Elitzur, Moshe NA United States Kentucky, University of COI Maiolino, Roberto EU United Kingdom Cambridge, University of COI Marconi, Alessandro EU Italy Florence, University of COI Gallimore, Jack NA United States Bucknell University COI O'Dea, Christopher NA United States Rochester Institute of Technology COI Baum, Stefi NA United States Rochester Institute of Technology COI Davies, Richard EU Germany Max-Planck-Institute for Extraterrestrial Physics Page 2 2014-06-27 09:52:31 COI Lutz, Dieter EU Germany Max-Planck-Institute for Extraterrestrial Physics COI Tacconi, Linda EU Germany Max-Planck-Institute for Extraterrestrial Physics COI Sani, Eleonora EU Italy INAF COI Kimball, Amy NA Australia Australia Telescope National Facility Title How big is the AGN obscuring torus? Abstract Unification of active galactic nuclei (AGN) is based on toroidal obscuration of the nuclear activity, which is powered by accretion onto a supermassive black hole. Understanding of the nature and origin of the obscuring torus requires reliable measurements of its size to determine whether it is within the gravitational sphere of influence of the black hole or of the galactic bulge. Thanks to its high spatial resolution and sensitivity to the thermal dust emission, only ALMA is capable of determining the torus end point. Here we propose observations of the archetypal Seyfert 2 galaxy NGC1068 in ALMA bands 7 and 9 to measure the radius of the obscuring torus and determine the radial profile of the toroidal cloud distribution. According to our radiative transfer calculations, these ALMA bands are within the wavelength range where the differences between continuous and clumpy torus models are maximized. Indeed, detailed simulations of the proposed observations show that by measuring the extent of continuum emission we will be able to assess the torus structure and distinguish between proposed models for the AGN torus. 2013.1.00018.S Exec Country Institute PI Schmalzl, Markus EU Netherlands Leiden University COI Klaassen, Pamela EU Netherlands Leiden University COI Mottram, Joseph EU Netherlands Leiden University COI Kristensen, Lars NA United States Harvard-Smithsonian Center for Astrophysics Title Understanding the Origins and Dynamics of the Multiple Outflows Around IRAS 16293-2422 Abstract Jets and outflows are the most obvious signposts of ongoing star formation, when the accretion during the Class 0 phase powers bipolar ejections perpendicular to the forming disk. Many nearby star-forming regions show multiple bipolar outflows coming from a single protostellar core, which is a sign for the formation of multiple protostars. This proposal aims at getting the first complete picture of the interaction, morphology and kinematics of outflows within such a protostellar system. We target IRAS 16293-2422, one of the best-studied Class 0 systems. It consists of a protobinary (Source A and B), separated by 600AU. Source A is also a binary system with a separation of 36AU. Our aim is to fully resolve all known sources and their outflows in both the velocity and spatial domain to understand the interplay between the outflows, the ambient medium and the forming stars. To pursue that goal we target CO(3-2) and 13CO(3-2) - to get the full dynamics of the outflow - CS(7-6) and C34S(7-6) - to get the infall motions towards the sources, and the dynamics of the dense gas in the disk - and SiO(8-7) - a shock tracer to understand the interaction of the outflows with the quiescent gas. 2013.1.00020.S Exec Country Institute PI Muller, Sebastien EU Sweden Chalmers University of Technology COI Black, John EU Sweden Chalmers University of Technology COI Combes, Francoise EU France Paris Observatory Page 3 2014-06-27 09:52:31 COI Falgarone, Edith EU France Paris Observatory COI Gerin, Maryvonne EU France Paris Observatory COI GUELIN, Michel EU France Institute of Millimetric Radioastronomy (IRAM) COI Henkel, Christian EU Germany Max-Planck-Institute for Radio Astronomy COI Menten, Karl EU Germany Max-Planck-Institute for Radio Astronomy COI Aalto, Susanne EU Sweden Chalmers University of Technology COI Beelen, Alexandre EU France Paris-Sud University COI Curran, Stephen OTHER Australia Sydney, University of COI Martin, Sergio EU France Institute of Millimetric Radioastronomy (IRAM) COI Monje, Raquel NA United States California Institute of Technology COI Müller, Holger EU Germany Cologne, University of COI Schilke, Peter EU Germany Cologne, University of COI Wiklind, Tommy EU Chile Joint ALMA Observatory COI Zwaan, Martin EU Germany European Southern Observatory Title Hydrides as diagnostic tools for the z=0.89 absorption toward PKS 1830-211 Abstract The z=0.89 molecular absorber toward the quasar PKS 1830-211 is the best known source for obtaining very detailed information on the physical and chemical state of the molecular gas in the disk of a galaxy with a look-back time of more than half the age of the Universe. In ALMA Cycle 0, we observed strong absorption lines of most common interstellar molecules, revealing the absorption along the two lines of sight with unprecedented detail.
Recommended publications
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • A Multimessenger View of Galaxies and Quasars from Now to Mid-Century M
    A multimessenger view of galaxies and quasars from now to mid-century M. D’Onofrio 1;∗, P. Marziani 2;∗ 1 Department of Physics & Astronomy, University of Padova, Padova, Italia 2 National Institute for Astrophysics (INAF), Padua Astronomical Observatory, Italy Correspondence*: Mauro D’Onofrio [email protected] ABSTRACT In the next 30 years, a new generation of space and ground-based telescopes will permit to obtain multi-frequency observations of faint sources and, for the first time in human history, to achieve a deep, almost synoptical monitoring of the whole sky. Gravitational wave observatories will detect a Universe of unseen black holes in the merging process over a broad spectrum of mass. Computing facilities will permit new high-resolution simulations with a deeper physical analysis of the main phenomena occurring at different scales. Given these development lines, we first sketch a panorama of the main instrumental developments expected in the next thirty years, dealing not only with electromagnetic radiation, but also from a multi-messenger perspective that includes gravitational waves, neutrinos, and cosmic rays. We then present how the new instrumentation will make it possible to foster advances in our present understanding of galaxies and quasars. We focus on selected scientific themes that are hotly debated today, in some cases advancing conjectures on the solution of major problems that may become solved in the next 30 years. Keywords: galaxy evolution – quasars – cosmology – supermassive black holes – black hole physics 1 INTRODUCTION: TOWARD MULTIMESSENGER ASTRONOMY The development of astronomy in the second half of the XXth century followed two major lines of improvement: the increase in light gathering power (i.e., the ability to detect fainter objects), and the extension of the frequency domain in the electromagnetic spectrum beyond the traditional optical domain.
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • Cinemática Estelar, Modelos Dinâmicos E Determinaç˜Ao De
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE POS´ GRADUA¸CAO~ EM F´ISICA Cinem´atica Estelar, Modelos Din^amicos e Determina¸c~ao de Massas de Buracos Negros Supermassivos Daniel Alf Drehmer Tese realizada sob orienta¸c~aoda Professora Dra. Thaisa Storchi Bergmann e apresen- tada ao Programa de P´os-Gradua¸c~aoem F´ısica do Instituto de F´ısica da UFRGS em preenchimento parcial dos requisitos para a obten¸c~aodo t´ıtulo de Doutor em Ci^encias. Porto Alegre Mar¸co, 2015 Agradecimentos Gostaria de agradecer a todas as pessoas que de alguma forma contribu´ıram para a realiza¸c~ao deste trabalho e em especial agrade¸co: • A` Profa. Dra. Thaisa Storchi-Bergmann pela competente orienta¸c~ao. • Aos professores Dr. Fabr´ıcio Ferrari da Universidade Federal do Rio Grande, Dr. Rogemar Riffel da Universidade Federal de Santa Maria e ao Dr. Michele Cappellari da Universidade de Oxford cujas colabora¸c~oes foram fundamentais para a realiza¸c~ao deste trabalho. • A todos os professores do Departamento de Astronomia do Instituto de F´ısica da Universidade Federal do Rio Grande do Sul que contribu´ıram para minha forma¸c~ao. • Ao CNPq pelo financiamento desse trabalho. • Aos meus pais Ingon e Selia e meus irm~aos Neimar e Carla pelo apoio. Daniel Alf Drehmer Universidade Federal do Rio Grande do Sul Mar¸co2015 i Resumo O foco deste trabalho ´eestudar a influ^encia de buracos negros supermassivos (BNSs) nucleares na din^amica e na cinem´atica estelar da regi~ao central das gal´axias e determinar a massa destes BNSs.
    [Show full text]
  • Astronomical Evidence for an Alternative to Dark Matter?
    Astronomical Evidence for an Alternative to Dark Matter? by Alphonsus J. Fagan St. John's NL, Canada Abstract Unexplained gravitational potentials in deep space have been generally attributed to dark matter. This paper explores an alternative that unites the concepts of dark matter and dark energy, and is rooted in the idea that space is a tangible ‘substance’ that is being created at different rates at different locations. The concept of congenital gravitational structure ('structural gravity') is introduced and the possibility that antimatter experiences anti-gravity is discussed. Among other things, the conjectures predict the phenomenon of 'inverse gravitational lensing' and possible examples are identified — in particular as associated with the peculiar galaxy known as Hoag's Object. The conjectures also offer possible explanations for a number of poorly understood phenomena, including: the antimatter cloud; dark matter halos; the vacuum catastrophe; counter-rotating galaxies; the Hubble radius; and, large scale cosmic features. Although the ideas are mainly discussed at a conceptual level, the proposed model also makes a number of testable predictions. Keywords: cosmology; modified gravity; time; dark energy; dark matter; antimatter; diffuse x-ray background; ring galaxies; Hoag's Object; vacuum catastrophe; cosmic horizon Author’s Note: The ideas presented herein are a condensed form of a larger model presented in a (2020) book “Mind Openers 2.0: A Conceptual Reinterpretation of Modern Physics”: currently available at Mind Openers 2.0 on Amazon 1. Introduction 1.1 Unexplained Gravity As first pointed out by Fritz Zwicky in the 1930s, and later confirmed by Vera Rubin and Kent Ford in the 1960s and 70s, the amount of ordinary matter in galaxies and intergalactic gas and dust, does not provide sufficient gravitational potential to account for galactic rotation curves, or the velocities of galaxies within clusters.
    [Show full text]
  • Chapter 2 Spatially Resolved Spitzer Spectroscopy of the Starburst Nucleus in NGC 5253
    Interstellar medium conditions in starburst galaxies Beirão, M.P.L. Citation Beirão, M. P. L. (2010, January 13). Interstellar medium conditions in starburst galaxies. Retrieved from https://hdl.handle.net/1887/14559 Version: Not Applicable (or Unknown) License: Leiden University Non-exclusive license Downloaded from: https://hdl.handle.net/1887/14559 Note: To cite this publication please use the final published version (if applicable). Chapter 2 Spatially Resolved Spitzer Spectroscopy of the Starburst Nucleus in NGC 5253 Chapter enhanced from P. Beir˜ao, B. R. Brandl, D. Devost, J. D. Smith, L. Hao & J. R. Houck, Astrophysical Journal Letters, 643, L1 (2006) We present new Spitzer Space Telescope data on the nearby, low-metallicity star- burst galaxy NGC 5253, from the Infrared Array Camera IRAC and the Infrared Spectrograph IRS1. The mid-IR luminosity profile of NGC 5253 is clearly domi- nated by an unresolved cluster near the center, which outshines the rest of the galaxy at longer wavelengths. We find that the [NeIII]/[NeII] ratio decreases from ∼ 8.5 at the center to ∼ 2.5 at a distance of ∼ 250 pc. The [S IV]/[S III] fol- lows the [Ne III]/[Ne II] ratio remarkably well, being about 4 − 5 times lower at all distances. Our spectra reveal for the first time PAH emission features at 11.3µm; their equivalent widths increase significantly with distance from the center. The good anti-correlation between the PAH strength and the product between hard- ness and luminosity of the UV radiation field suggests photo-destruction of the PAH molecules in the central region.
    [Show full text]
  • An Outline of Stellar Astrophysics with Problems and Solutions
    An Outline of Stellar Astrophysics with Problems and Solutions Using Maple R and Mathematica R Robert Roseberry 2016 1 Contents 1 Introduction 5 2 Electromagnetic Radiation 7 2.1 Specific intensity, luminosity and flux density ............7 Problem 1: luminous flux (**) . .8 Problem 2: galaxy fluxes (*) . .8 Problem 3: radiative pressure (**) . .9 2.2 Magnitude ...................................9 Problem 4: magnitude (**) . 10 2.3 Colour ..................................... 11 Problem 5: Planck{Stefan-Boltzmann{Wien{colour (***) . 13 Problem 6: Planck graph (**) . 13 Problem 7: radio and visual luminosity and brightness (***) . 14 Problem 8: Sirius (*) . 15 2.4 Emission Mechanisms: Continuum Emission ............. 15 Problem 9: Orion (***) . 17 Problem 10: synchrotron (***) . 18 Problem 11: Crab (**) . 18 2.5 Emission Mechanisms: Line Emission ................. 19 Problem 12: line spectrum (*) . 20 2.6 Interference: Line Broadening, Scattering, and Zeeman splitting 21 Problem 13: natural broadening (**) . 21 Problem 14: Doppler broadening (*) . 22 Problem 15: Thomson Cross Section (**) . 23 Problem 16: Inverse Compton scattering (***) . 24 Problem 17: normal Zeeman splitting (**) . 25 3 Measuring Distance 26 3.1 Parallax .................................... 27 Problem 18: parallax (*) . 27 3.2 Doppler shifting ............................... 27 Problem 19: supernova distance (***) . 28 3.3 Spectroscopic parallax and Main Sequence fitting .......... 28 Problem 20: Main Sequence fitting (**) . 29 3.4 Standard candles ............................... 30 Video: supernova light curve . 30 Problem 21: Cepheid distance (*) . 30 3.5 Tully-Fisher relation ............................ 31 3.6 Lyman-break galaxies and the Hubble flow .............. 33 4 Transparent Gas: Interstellar Gas Clouds and the Atmospheres and Photospheres of Stars 35 2 4.1 Transfer equation and optical depth .................. 36 Problem 22: optical depth (**) . 37 4.2 Plane-parallel atmosphere, Eddington's approximation, and limb darkening ..................................
    [Show full text]
  • Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond
    Publications of the Astronomical Society of Australia (PASA) doi: 10.1017/pas.2018.xxx. Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond E. Egami1, S. Gallerani2, R. Schneider3, A. Pallottini2,4,5,6, L. Vallini7, E. Sobacchi2, A. Ferrara2, S. Bianchi8, M. Bocchio8, S. Marassi9, L. Armus10, L. Spinoglio11, A. W. Blain12, M. Bradford13, D. L. Clements14, H. Dannerbauer15,16, J. A. Fernández-Ontiveros11,15,16, E. González-Alfonso17, M. J. Griffin18, C. Gruppioni19, H. Kaneda20, K. Kohno21, S. C. Madden22, H. Matsuhara23, P. Najarro24, T. Nakagawa23, S. Oliver25, K. Omukai26, T. Onaka27, C. Pearson28, I. Perez- Fournon15,16, P. G. Pérez-González29, D. Schaerer30, D. Scott31, S. Serjeant32, J. D. Smith33, F. F. S. van der Tak34,35, T. Wada24, and H. Yajima36 1Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA 2Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy 3Dipartimento di Fisica “G. Marconi”, Sapienza Universitá di Roma, P.le A. Moro 2, 00185 Roma, Italy 4Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 5Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK 6Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, Roma, 00184, Italy 7Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands 8INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 9INAF, Osservatorio
    [Show full text]
  • Highlights and Discoveries from the Chandra X-Ray Observatory1
    Highlights and Discoveries from the Chandra X-ray Observatory1 H Tananbaum1, M C Weisskopf2, W Tucker1, B Wilkes1 and P Edmonds1 1Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138. 2 NASA/Marshall Space Flight Center, ZP12, 320 Sparkman Drive, Huntsville, AL 35805. Abstract. Within 40 years of the detection of the first extrasolar X-ray source in 1962, NASA’s Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08<E<10 keV, locating X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]