A Review on Biological and Chemical Diversity in Berberis (Berberidaceae)

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Biological and Chemical Diversity in Berberis (Berberidaceae) EXCLI Journal 2015;14:247-267 – ISSN 1611-2156 Received: June 03, 2014, accepted: November 10, 2014, published: February 20, 2015 Review article: A REVIEW ON BIOLOGICAL AND CHEMICAL DIVERSITY IN BERBERIS (BERBERIDACEAE) Sharad Srivastava*, Manjoosha Srivastava, Ankita Misra, Garima Pandey, AKS Rawat Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India * Corresponding author: E-mail: [email protected] Phone: +91 522 2297818; Fax: +91 522 2207219 http://dx.doi.org/10.17179/excli2014-399 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). ABSTRACT Berberis is an important genus and well known in the Indian as well as European systems of traditional medi- cine. It is used since ancient times for curing eye disease, fever, jaundice, rheumatism, vomiting during pregnan- cy, kidney and gall balder stones and various other ailments due to the presence of biologically active alkaloid berberine. Action of the root extracts of few species are believed to be as powerful as quinine in the treatment of malarial fever. A plethora of literature pertaining to the taxonomy, biology, chemistry, traditional and ethnic uses of Berberis in different countries and indigenous cultures was collected by both offline (library, journals, textbooks etc.) and online mode (electronic search of available databases). In addition to this, books on traditional medicine and eth- no pharmacological knowledge were also referred to extract ancient uses of Berberis in different traditional med- icine systems. Most of the folklore, traditional and ethno botanical claims about Berberis species were validated by broad spectrum in vitro and vivo pharmacological studies. The present article summarizes its usage in eye and liver disorder, fever, kidney and gall stones along with anticancer activity. This comprehensive review will not only help researchers for further evaluation but also provide substantial in- formation for future exploitation of species to develop novel herbal formulations. Keywords: Berberis, berberine, pharmacology, ethno botany INTRODUCTION incorporated for its successful use in the treatment of oriental sore. The genus Berberis has an important The roots of Berberis species are em- place in various traditional systems of medi- ployed as an anti-periodic, diaphoretic and cine worldwide for their efficacious medici- antipyretic, and its action was believed to be nal properties. The ancient Ayurvedic litera- as powerful as quinine. The bark is used as a ture of India records uses of Rasaut (Ras = tonic and anti-periodic. This plant is also well juice; out = frothing and foaming when boil- proven for cardio vascular, hepato-protective, ing; hence Rasaut means concentrated juice), antimicrobial and anti-cancerous activities. an extract of either stem or root of Berberis Hence, a review of genus Berberis has been sp. The specific uses of Rasaut for curing eye done to put all its activities, ethno botanical diseases and indolent ulcers earned a great claims, pharmacological action along with fame. In the British Pharmacopoeia, the alka- chemistry. The scientific information com- loid berberine- the active principle in several piled in this review is gathered by extensive species of Berberis and Mahonia, has been 247 EXCLI Journal 2015;14:247-267 – ISSN 1611-2156 Received: June 03, 2014, accepted: November 10, 2014, published: February 20, 2015 search of several electronic databases viz. First taxonomic account of the family SCOPUS, Google scholar, NOPR, Pub med, Berberidaceae for the Indian subcontinent Elsevier, ACs, Medline plus, Web of science, (Hooker and Thomson, 1875) included six etc. Additionally, the library search and an- genera and 17 species. A revision of the ge- cient medicinal treatises/text books were also nus Berberis was made by Schneider during referred for gathering information on the tra- 1905 and 1908 and recorded 13 new species ditional uses of Berberis. The review of Ber- and one variety from Indian region. Subse- beris was also done with an end in view of quently (Schneider, 1942) a monograph of identifying the knowledge gaps in traditional section Wallichianae was published in which uses, pharmacological studies, toxicity he recognized 71 species in 8 subsections. profiling, clinical trials and other relevant re- Chatterjee (1953) included 68 species of search in this medicinally important genus. Berberis, 11 species of Mahonia, one species Previous reviews on individual species of of Epimedium and two species of Podophyl- Berberis are available, but a comprehensive lum. In a survey (Ahrendt, 1941/45) the Ber- update on the entire genus is still lacking. beris spp. from Bhutan, Assam, South Tibet, This review will help researchers to identify Upper Burma and Northwest Yunnan and the latent and patent potentials of Berberis later (Ahrendt, 1961) published a detailed re- and explore further studies on the biological vision of Berberis and Mahonia species. He and chemical properties of various species of included 52 species with 43 infra specific this genus. categories under Berberis and 11 species un- der Mahonia from the Indian region. It was TAXONOMIC HISTORY OF BERBERIS again revised by including one new species (B. victoriana) from the Indian region Berberis belongs to the family Berberida- (Chamberlain and Hu, 1985). Jafri (1975) ceae, which was first established by A.L. Jus- while dealing with the Berberidaceae for the sieu in 1789 as ‘Berberides’ and was consid- Flora of West Pakistan included only one ered one of the most primitive families of species of Mahonia and 15 species of Berber- Angiosperms having a high number of dis- is from Kashmir region. In a more recent junction or discontinuous genera. There is a study (Rao and Hajra, 1993) while revising general agreement among botanists (Ku- the family for the Flora of India included 54 mazawa, 1938; Hutchinson, 1959; Airy species of Berberis, one species of Epimedi- Shaw, 1966; Takhtajan, 1969; Meacham, um and 13 species of Mahonia from the pre- 1980; Nowicke and Skvarla; 1981) that the sent political boundaries of India. genera of Berberidaceae are not closely relat- Singh et al. (1974, 1978) discussed the ed but are separable into 4 distinct families, significance of epidermal structure and leaf namely Lardizabalaceae (Decaisnea, architecture in the taxonomy of Berberida- Holboellia, Parvatia), Nandinaceae (Nandi- ceae. They have studied hardly 5-6 species of na), Podophyllaceae (Podophyllum) and Ber- the family. Palynologically only five species beridaceae (Berberis, Mahonia, Epimedium). of Berberis have been studied (Nair, 1965) Berberidaceae was placed in the order and chromosome numbers in only nine spe- Ranales (Bentham and Hooker, 1862). Sever- cies with five infraspecific categories of Ber- al other works (Takhtajan, 1969; Cronquist, beris and three species of Mahonia 1968) placed it in the order Ranunculales, have been while one worker (Hutchinson, 1959) includ- reported (Kumar and Subramaniam, 1986). ed this family under a separate order Ber- Some commercially important Berberis spp. beridales. from Indian region is shown in Figure 1. 248 EXCLI Journal 2015;14:247-267 – ISSN 1611-2156 Received: June 03, 2014, accepted: November 10, 2014, published: February 20, 2015 B. aristata B. asiatica B. lycium B. chitria Figure 1: Some important species of genus Berberis collected from India ETHNOBOTANICAL AND done by Srivastava et al., 2001, 2004, 2006, TRADITIONAL USES 2010; Singh et al., 2009, 2012; Srivastava and Rawat, 2013, 2014. The ethno botanical There has been an increasing interest to- uses of Berberis by different tribal communi- wards the scientific study of human-plant in- ties in India and some other countries are teraction in the natural environment among provided in Table 1. the botanists, social scientists, anthropolo- gists, practitioners of indigenous systems of medicine. Jain (1981) undertook intensive PHARMACOLOGICAL ACTIVITIES field study among tribes of central India and OF BERBERIS SPECIES devised methodology for ethno- botany, par- Berberis has diverse pharmacological po- ticularly in the Indian context. Different spe- tential. Various pharmacological activities of cies of genus Berberis are used ethno botani- the Berberis species make them an important cally and medicinally by various tribes and in part of polyherbal formulations for the treat- different traditional medical systems. A de- ment of several diseases and disorders (Fig- tailed pharmacognostic study of some com- ure 2, Table 2). mon Himalayan Berberis species has been 249 EXCLI Journal 2015;14:247-267 – ISSN 1611-2156 Received: June 03, 2014, accepted: November 10, 2014, published: February 20, 2015 Table 1: Ethno botanical uses of different species of Berberis Species Ethno botanical Information References In Raithal locality of Uttarkashi (Uttaranchal), India, Kirtikar and Basu, 1935; Rasaut- a popular medicine prepared for eye disor- Anonymous, 1948; ders from the roots of B. aristata Hayashi, 1950; Küpeli et al., 2002; Uniyal, 1964 In Kumaon region of India, the decoction of root bark Shah and Joshi, 1971 from B. aristata and B. asiatica is used for curing eye troubles and boils. A sauce is also prepared from its acidic flower buds B. aristata The decoction of the root of B. aristata is used in Chauhan et al., 1978/79 piles, gastric disorders and other allied complaints by Tibetan people and the plant is known there as Kershuen Local inhabitants of DehraDun district of Uttaranchal, Jain and Suri, 1979/80 India use B. aristata as fish poison Used in snake and scorpion bite by the tribal’s in Mittre, 1981 Uttaranchal, India Inhabitants of Assam, India, use root extract with but- Bhattacharjee et al., ter for the treatment of bleeding piles. About 2 ml of 1980 B. asiatica the extract of its root is taken with butter daily for two weeks In Lahul province of HP, India, B. lycium and B. Koetz and Walter, 1979 pachyacantha fruit is used medicinally for stomach- ache. Roots yield a yellow dye for textiles. The twigs are important in ceremonials of Priests and Lamas. In the Burial ceremony, barberry nails are used.
Recommended publications
  • Mapping Resistance to Stem Rust, Stripe Rust, and Powdery Mildew, and Genotype Screening of Breeding Germplasm for Disease Resistance
    ABSTRACT VANGESSEL, CARL JOSEPH. Disease Resistance in Winter Wheat: Mapping Resistance to Stem Rust, Stripe Rust, and Powdery Mildew, and Genotype Screening of Breeding Germplasm for Disease Resistance. (Under the direction of Dr. David Marshall). Wheat production worldwide faces many challenges including fungal pathogens which can reduce growth, nutrient content, and yield. As the global population continues to increase, it is important to maximize production of wheat which provides a significant proportion of the human diet. Wheat breeders and pathologists are addressing the pathogen threat to wheat by breeding cultivars with improved resistance. However, as pathogen populations mutate and overcome resistance, it is important to identify sources of resistance to new pathogen races and understand the genetics of resistance in commercial cultivars. Stem rust (Puccinia graminis), stripe rust (Puccinia striiformis), and powdery mildew (Blumeria graminis) are among the most common and aggressive pathogens of wheat occurring worldwide. The stem rust resistance gene Sr31 was reliably effective until being overcome in 1999 by the race Ug99. This new race of stem rust has since evolved to include 12 related races and are potentially virulent to a majority of commercially produced wheat globally. The soft red winter wheat (SRWW) line, MD01W28- 08-11, was identified as having adult plant resistance (APR) to Ug99 in Njoro, Kenya. This line was crossed with the susceptible SRWW cultivar Coker 9553 and the subsequent 279 doubled haploid (DH) population used for linkage mapping analysis to better characterize the source of stem rust APR. A linkage map with 3,159 SNPs was produced that identified a significant quantitative trait loci (QTL) on the short arm of chromosome 6D and two QTL on the long arms of chromosomes 2B and 4B.
    [Show full text]
  • Number 35 July-September
    THE BULB NEWSLETTER Number 35 July-September 2001 Amana lives, long live Among! ln the Kew Scientist, Issue 19 (April 2001), Kew's Dr Mike Fay reports on the molecular work that has been carried out on Among. This little tulip«like eastern Asiatic group of Liliaceae that we have long grown and loved as Among (A. edulis, A. latifolla, A. erythroniolde ), but which took a trip into the genus Tulipa, should in fact be treated as a distinct genus. The report notes that "Molecular data have shown this group to be as distinct from Tulipa s.s. [i.e. in the strict sense, excluding Among] as Erythronium, and the three genera should be recognised.” This is good news all round. I need not change the labels on the pots (they still labelled Among), neither will i have to re~|abel all the as Erythronlum species tulips! _ Among edulis is a remarkably persistent little plant. The bulbs of it in the BN garden were acquired in the early 19605 but had been in cultivation well before that, brought back to England by a plant enthusiast participating in the Korean war. Although not as showy as the tulips, they are pleasing little bulbs with starry white flowers striped purplish-brown on the outside. It takes a fair amount of sun to encourage them to open, so in cool temperate gardens where the light intensity is poor in winter and spring, pot cultivation in a glasshouse is the best method of cultivation. With the extra protection and warmth, the flowers will open out almost flat.
    [Show full text]
  • Distribution and Frequency of Wheat Stem Rust Races (Puccinia Graminis F
    ©2018 Scienceweb Publishing Journal of Agricultural and Crop Research Vol. 6(5), pp. 88-96, November 2018 ISSN: 2384-731X Research Paper Distribution and frequency of wheat stem rust races (Puccinia graminis f. sp. tritici) in Ethiopia Netsanet Bacha Hei1* • Tsegaab Tesfaye1 • Getaneh Woldeab1 • Endale Hailu1 • Bekele Hundie2 • Daniel Kassa2 • Fikirte Yirga2 • Fufa Anbessa3 • Wubishet Alemu4 • Teklay Abebe5 • Miruts Legesse5 • Alemar Seid6 • Tesfaye Gebrekirstos7 1Ethiopian Institute of Agricultural Research, Ambo Plant Protection Research Center, Ambo, Ethiopia. 2Ethiopian Institute of Agricultural Research, Kulumsa Agricultural Research Center, Assela, Ethiopia. 3Oromia Agricultural Research Institute, Bore Agricultural Research Center, Bore, Ethiopia. 4Oromia Agricultural Research Institute, Sinana Agricultural Research Center, Bale Robe, Ethiopia. 5Tigray Agricultural Research Institute, Alamata Agricultural Research Center, Alamata, Ethiopia. 6Southern Agricultural Research Institute, Areka Agricultural Research Center, Ethiopia. 7Tigray Agricultural Research Institute, Mekele Agricultural Research Center, Mekele, Ethiopia. *Corresponding author. E-mail: [email protected]. Accepted 6th July, 2018 Abstract. Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is one of the most important diseases of wheat in Ethiopia. The stem rust pathogen is capable to rapidly develop new virulence to resistance genes owing to mutation and genetic recombination. Ethiopian highlands are known hot spots for the rapid evolution and spread of new rust races. The present study was conducted to investigate the virulence diversity and spatial distribution of races of Pgt in the major wheat growing areas of Ethiopia. The physiologic races of the rust fungus were determined on seedlings of the standard wheat stem rust differentials following the international system of nomenclature. Three hundred and forty- seven samples were analyzed in 2014 and 2015 cropping seasons from Oromia, Amhara, Tigray and Southern Nations and Nationalities Peoples’ regions.
    [Show full text]
  • Wet-Mesic Flatwoods Communitywet-Mesic Flatwoods, Abstract Page 1
    Wet-mesic Flatwoods CommunityWet-mesic Flatwoods, Abstract Page 1 Historical Range Prevalent or likely prevalent Infrequent or likely infrequent Absent or likely absent Photo by Suzan L. Campbell Overview: Wet-mesic flatwoods is a somewhat Rank Justification: The acreage of wet-mesic poorly drained to poorly drained forest on mineral flatwoods present in Michigan circa 1800 is difficult soils dominated by a mixture of lowland and upland to determine because the community type has hardwoods. The community occurs exclusively on characteristics that overlap those of several of the glacial lakeplain in southeastern Lower Michigan, forest types mapped based on General Land Office where an impermeable clay layer in the soil profile (GLO) survey notes, primarily hardwood swamp and contributes to poor internal drainage. Seasonal beech-sugar maple forest (Comer et al. 1995a, Kost hydrologic fluctuations and windthrow are important et al. 2007). Analysis of GLO survey notes reveals natural disturbances that influence community structure, that lowland forest dominated by hardwoods covered species composition, and successional trajectory of wet- approximately 570,000 ha (1,400,000 ac) of southern mesic flatwoods. Lower Michigan circa 1800 (Comer et al. 1995a). These stands were characterized by mixed hardwoods Global and State Rank: G2G3/S2 (490,000 ha or 1,200,000 ac), black ash (77,000 ha or 190,000 ac), elm (5,300 ha or 13,000 ac), and silver Range: Flatwoods communities characterized by maple-red maple (4,000 ha or 10,000 ac). The majority relatively flat topography, slowly permeable to of lowland forest acreage in southern Lower Michigan impermeable subsurface soil layers, and seasonal was associated with stream and river floodplains, hydrologic fluctuation occur scattered throughout the and is classified as floodplain forest (Tepley et al.
    [Show full text]
  • Species Accounts
    Species accounts The list of species that follows is a synthesis of all the botanical knowledge currently available on the Nyika Plateau flora. It does not claim to be the final word in taxonomic opinion for every plant group, but will provide a sound basis for future work by botanists, phytogeographers, and reserve managers. It should also serve as a comprehensive plant guide for interested visitors to the two Nyika National Parks. By far the largest body of information was obtained from the following nine publications: • Flora zambesiaca (current ed. G. Pope, 1960 to present) • Flora of Tropical East Africa (current ed. H. Beentje, 1952 to present) • Plants collected by the Vernay Nyasaland Expedition of 1946 (Brenan & collaborators 1953, 1954) • Wye College 1972 Malawi Project Final Report (Brummitt 1973) • Resource inventory and management plan for the Nyika National Park (Mill 1979) • The forest vegetation of the Nyika Plateau: ecological and phenological studies (Dowsett-Lemaire 1985) • Biosearch Nyika Expedition 1997 report (Patel 1999) • Biosearch Nyika Expedition 2001 report (Patel & Overton 2002) • Evergreen forest flora of Malawi (White, Dowsett-Lemaire & Chapman 2001) We also consulted numerous papers dealing with specific families or genera and, finally, included the collections made during the SABONET Nyika Expedition. In addition, botanists from K and PRE provided valuable input in particular plant groups. Much of the descriptive material is taken directly from one or more of the works listed above, including information regarding habitat and distribution. A single illustration accompanies each genus; two illustrations are sometimes included in large genera with a wide morphological variance (for example, Lobelia).
    [Show full text]
  • Cytogenetics of Four Species of Genus Berberis L
    © 2014 The Japan Mendel Society Cytologia 79(1): 111–117 Cytogenetics of Four Species of Genus Berberis L. (Berberidaceae Juss.) from the Western Himalayas Syed M. Jeelani1*, Sanjeev Kumar2, Savita Rani3, Santosh Kumari2, and Raghbir C. Gupta2 1 Division of Floriculture, Medicinal and Aromatic Plants (FMAP), Shere-e- Kashmir University of Agricultural Sciences and Technology of Kashmir, (SKUAST-K), Shalimar, Srinagar (Jammu & Kashmir) 190025 2 Department of Botany, Punjabi University, Patiala, Punjab 147 002, India 3 Department of Agricultural Biotechnology CSK HPKV Palampur-176062 Received August 8, 2013; accepted January 12, 2014 Summary The genus Berberis belongs to the family Berberidaceae and includes mostly wild, important medicinal plants. Meiotic studies have been carried out for analyzing the genetic diversity in 11 populations covering four species from different selected parts of the Western Himalayas, such as Kashmir (Jammu and Kashmir) and the districts of Kangra and Sirmaur (Himachal Pradesh). The species being cytologically worked out for the first time worldwide include B. ceratophylla (2n = 28). Similarly, B. vulgaris (2n = 28), although worked out earlier from other countries, is being reported cytologically for the first time from India. The meiotic course in most of these populations has been observed to be normal except for a single population each of B. asiatica, B. ceratophylla and B. vulgaris marked with abnormal meiosis. Out of these three species, two (B. asiatica and B. vulgaris) are marked with cytomixis. These meiotic abnormalities lead to the production of heterogenous-sized fertile pollen grains and reduced pollen fertility. Key words Berberis, Chromosome number, Meiotic abnormality, Western Himalayas. Berberis is popularly known as barberry and is the largest genus of the family containing about 500 species native to the temperate and subtropical regions of Europe, Asia, Africa, and North and South America (Ahrendt 1961).
    [Show full text]
  • Vegetative Propagation of Berberis Aristata DC. an Endangered Himalayan Shrub
    Journal of Medicinal Plants Research Vol. 2(12), pp. 374-377, December, 2008 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875© 2008 Academic Journals Full Length Research Paper Vegetative propagation of Berberis aristata DC. An endangered Himalayan shrub Majid Ali1, A. R. Malik2* and K. Rai Sharma1 1Department of Forest product, Collage of Forestry, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni- 173230, Solan, (Himachal Pradesh), India. 2G B Pant Institute of Himalayan Environment and Development (MOE&F, GOI) Kosi Katarmal Almora-263643 (Uttarakhand) India. Accepted 9 December 2008 Berberis aristata DC. is critically endangered species of Indian Himalaya due to it’s extensively collection of roots for its Berberine alkaloid. The objective of this research was to explore the possibility of propagating the species vegetatively to maintain its genetic identity and population. Therefore, an experiment was conducted by taking different cutting portions viz., apical, sub-apical and basal which were treated with various IBA concentrations viz., control, 2500, 5000 and 7500 ppm. Results shown that apical cuttings when treated with 5000 ppm IBA concentration performed significantly better in sprouting (85%) and rooting percentage (50%) in comparison to other treatments. While as control treatment had shown no rooting in all types of cutting portions. Key words: Berberis aristata, vegetative propagation, IBA. INTRODUCTION The Himalaya, as a whole is botanically rich in plant 5 - 7.5 mm, bright yellow with coarse reticulate fibres. wealth with a high degree of endemism (Maithani et al., Leaves 3.8 - 10 x 1.5 - 3.3 cm, obovate or elliptic, entire or 1986).
    [Show full text]
  • Their Uses and Degrees of Risk of Extinc
    Saudi Journal of Biological Sciences 28 (2021) 3076–3093 Contents lists available at ScienceDirect Saudi Journal of Biological Sciences journal homepage: www.sciencedirect.com Original article Medicinal plants resources of Western Himalayan Palas Valley, Indus Kohistan, Pakistan: Their uses and degrees of risk of extinction ⇑ Mohammad Islam a, , Inamullah a, Israr Ahmad b, Naveed Akhtar c, Jan Alam d, Abdul Razzaq c, Khushi Mohammad a, Tariq Mahmood e, Fahim Ullah Khan e, Wisal Muhammad Khan c, Ishtiaq Ahmad c, ⇑ Irfan Ullah a, Nosheen Shafaqat e, Samina Qamar f, a Department of Genetics, Hazara University, Mansehra 21300, KP, Pakistan b Department of Botany, Women University, AJK, Pakistan c Department of Botany, Islamia College University, 25120 KP, Peshawar, Pakistan d Department of Botany, Hazara University, Mansehra 21300, KP, Pakistan e Department of Agriculture, Hazara University, Mansehra, KP, Pakistan f Department of Zoology, Govt. College University, Faisalabad, Pakistan article info abstract Article history: Present study was intended with the aim to document the pre-existence traditional knowledge and eth- Received 29 December 2020 nomedicinal uses of plant species in the Palas valley. Data were collected during 2015–2016 to explore Revised 10 February 2021 plants resource, their utilization and documentation of the indigenous knowledge. The current study Accepted 14 February 2021 reported a total of 65 medicinal plant species of 57 genera belonging to 40 families. Among 65 species, Available online 22 February 2021 the leading parts were leaves (15) followed by fruits (12), stem (6) and berries (1), medicinally significant while, 13 plant species are medicinally important for rhizome, 4 for root, 4 for seed, 4 for bark and 1 each Keywords: for resin.
    [Show full text]
  • Century-Old Mystery of Puccinia Striiformis Life History Solved with the Identification of Berberis As an Alternate Host
    Mycology Century-Old Mystery of Puccinia striiformis Life History Solved with the Identification of Berberis as an Alternate Host Yue Jin, Les J. Szabo, and Martin Carson U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul 55108. Accepted for publication 7 January 2010. ABSTRACT Jin, Y., Szabo, L. J., and Carson, M. 2010. Century-old mystery of and B. vulgaris after inoculation using germinating telia of P. striiformis Puccinia striiformis life history solved with the identification of Berberis f. sp. tritici. Wheat inoculated with aeciospores from B. chinensis resulted an an alternate host. Phytopathology 100:432-435. in uredinia, which demonstrated that Berberis spp. also serve as alternate hosts for the wheat stripe rust pathogen. The elucidation of the complete The life history of Puccinia striiformis remains a mystery because the life history for P. striiformis f. sp. tritici will provide a powerful tool to alternate host has never been identified. Inoculation of grasses using rapidly advance our knowledge of the genetics of this rust fungus, and aeciospores from naturally infected Berberis chinensis and B. koreana will lead to the development of improved strategies for a better control of resulted in infection on Poa pratensis, producing uredinia typical of stripe stripe rust. rust caused by P. striiformis. Analyses using real-time polymerase chain reaction and DNA sequence confirmed the rust fungus as P. striiformis. Additional keywords: aecial host, life cycle. Pycnia and aecia were produced on B. chinensis, B. holstii, B. koreana, Life histories (or life cycles) of most rust fungi attacking cereal MATERIALS AND METHODS crops and grasses have been well understood for more than a century.
    [Show full text]
  • Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
    EENY-214 Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo2 Introduction Because of its wide distribution over the world, its ability to tolerate cooler climates better than most other species of The Mediterranean fruit fly, Ceratitis capitata (Wiede- tropical fruit flies, and its wide range of hosts, it is ranked mann), is one of the world’s most destructive fruit pests. first among economically important fruit fly species. Its The species originated in sub-Saharan Africa and is not larvae feed and develop on many deciduous, subtropical, known to be established in the continental United States. and tropical fruits and some vegetables. Although it may be When it has been detected in Florida, California, and Texas, a major pest of citrus, often it is a more serious pest of some especially in recent years, each infestation necessitated deciduous fruits, such as peach, pear, and apple. The larvae intensive and massive eradication and detection procedures feed upon the pulp of host fruits, sometimes tunneling so that the pest did not become established. through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, only the earlier varieties of citrus are grown, because the flies develop so rapidly that late-season fruits are too heav- ily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly.
    [Show full text]
  • Ontogenetic Studies on the Determination of the Apical Meristem In
    Ontogenetic studies on the determination of the apical meristem in racemose inflorescences D i s s e r t a t i o n Zur Erlangung des Grades Doktor der Naturwissenschaften Am Fachbereich Biologie Der Johannes Gutenberg-Universität Mainz Kester Bull-Hereñu geb. am 19.07.1979 in Santiago Mainz, 2010 CONTENTS SUMMARY OF THE THESIS............................................................................................ 1 ZUSAMMENFASSUNG.................................................................................................. 2 1 GENERAL INTRODUCTION......................................................................................... 3 1.1 Historical treatment of the terminal flower production in inflorescences....... 3 1.2 Structural understanding of the TF................................................................... 4 1.3 Parallel evolution of the character states referring the TF............................... 5 1.4 Matter of the thesis.......................................................................................... 6 2 DEVELOPMENTAL CONDITIONS FOR TERMINAL FLOWER PRODUCTION IN APIOID UMBELLETS...................................................................................................... 7 2.1 Introduction...................................................................................................... 7 2.2 Materials and Methods..................................................................................... 9 2.2.1 Plant material....................................................................................
    [Show full text]
  • Redalyc.Identification of Isoquinoline Alkaloids from Berberis Microphylla
    Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MANOSALVA, Loreto; MUTIS, Ana; DÍAZ, Juan; URZÚA, Alejandro; FAJARDO, Víctor; QUIROZ, Andrés Identification of isoquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 13, núm. 4, 2014, pp. 324-335 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85631435002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2014 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 13 (4): 324 - 335 ISSN 0717 7917 www.blacpma.usach.cl Artículo Original | Original Article In memorian Professor Luis Astudillo, Universidad de Talca, Chile Identification of isoquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS [Identificación de alcaloides isoquinolínicos en Berberis microphylla G. Forst mediante CLAE IES-MS/MS] Loreto MANOSALVA1, Ana MUTIS2, Juan DÍAZ3, Alejandro URZÚA4, Víctor FAJARDO5 & Andrés QUIROZ2 1Doctorado en Ciencias de Recursos Naturales; 2Laboratorio de Ecología Química, Departamento de Ciencias Químicas y Recursos Naturales; 3Laboratory of Mass Spectrometry, Scientific and Technological Bioresource Nucleus (Bioren), Universidad de La Frontera, Temuco, Chile 4Laboratory of Chemical Ecology, Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile 5Chile Laboratorio de Productos Naturales, Universidad de Magallanes, Punta Arenas, Chile Contactos | Contacts: Andrés QUIROZ - E-mail address: [email protected] Abstract: Berberis microphylla (G.
    [Show full text]