Al-Horani Et Al. (2007)

Total Page:16

File Type:pdf, Size:1020Kb

Al-Horani Et Al. (2007) Coral Reefs (2007) 26:531–538 DOI 10.1007/s00338-007-0250-x REPORT Dark calciWcation and the daily rhythm of calciWcation in the scleractinian coral, Galaxea fascicularis F. A. Al-Horani · É. Tambutté · D. Allemand Received: 30 January 2007 / Accepted: 8 May 2007 / Published online: 7 June 2007 © Springer-Verlag 2007 Abstract The rate of calciWcation in the scleractinian Keywords Corals · Galaxea fascicularis · CalciWcation coral Galaxea fascicularis was followed during the day- rhythm · Dark calciWcation time using 45Ca tracer. The coral began the day with a low calciWcation rate, which increased over time to a maximum in the afternoon. Since the experiments were carried out Introduction under a Wxed light intensity, these results suggest that an intrinsic rhythm exists in the coral such that the calciWca- There have been extensive studies during the last two tion rate is regulated during the daytime. When corals were decades on coral calciWcation and its interactions at many incubated for an extended period in the dark, the calciWca- levels. CalciWcation is important for reef building and plays tion rate was constant for the Wrst 4 h of incubation and a role in seawater carbonate chemistry, which is inXuenced then declined, until after one day of dark incubation, calci- by the atmospheric CO2 levels (Barnes and Chalker 1990; Wcation ceased, possibly as a result of the depletion of Frankignoulle et al. 1994; Gattuso et al. 1998; Kleypas et al. coral energy reserves. The addition of glucose and Artemia 1999; Gattuso and Buddemeier 2000; Langdon et al. 2000; reduced the dark calciWcation rate for the short duration of Marubini et al. 2001, 2002; Leclercq et al. 2002; Reynaud the experiment, indicating an expenditure of oxygen in res- et al. 2003; Langdon and Atkinson 2005). Most of the infor- piration. ArtiWcial hypoxia reduced the rate of dark calciW- mation gained on coral calciWcation has focused on light cation to about 25% compared to aerated coral samples. It calciWcation while little attention has been given to dark cal- is suggested that G. fascicularis obtains its oxygen needs ciWcation. CalciWcation requires energy and involves vari- from the surrounding seawater during the nighttime, ous enzymes and carriers (Barnes and Taylor 1973; Chalker whereas during the day time the coral exports oxygen to and Taylor 1975; Ip et al. 1991; Goiran et al. 1996; Al- the seawater. Moghrabi et al. 1996; Allemand et al. 1998; Furla et al. 1998; Al-Horani et al. 2003a). It is accepted that corals cal- cify at a faster rate in the light compared with the dark, through a phenomenon usually termed light-enhanced calci- Communicated by Biology Editor M.P. Lesser. Wcation. In the light, photosynthetically produced reduced F. A. Al-Horani (&) carbon compounds are transported to the growing parts of Marine Science Station, PO Box 195, the coral to be used as energy resources and building blocks, Aqaba 77110, Jordan while O2 produced during photosynthesis supports meta- e-mail: [email protected] bolic respiration (Patton et al. 1977; Rinkevich and Loya É. Tambutté · D. Allemand 1983; Falkowski et al. 1984; Fang et al. 1989; Al-Horani Centre ScientiWque de Monaco, et al. 2003b). Carbon dioxide Wxation by photosynthesis av. St Martin, MC 98000, Monaco removes this respiratory product and controls the pH in the coral tissues (Furla et al. 1998; Al-Horani et al. 2003a). This D. Allemand UMR 1112 UNSA-INRA, Parc Valrose, led to the belief that photosynthesis was the driving force BP 71, 06108 Nice Cedex 2, France behind the higher rate of calciWcation in the coral during the 123 532 Coral Reefs (2007) 26:531–538 daytime (Goreau 1959; Pearse and Muscatine 1971; Chalker of the Centre ScientiWque de Monaco using nylon threads and Taylor 1975). In the dark, photosynthesis ceases com- as described by Al-Moghrabi et al. (1993). After about pletely and the coral depends on a self-service mode of 3 months, the polyps developed into small microcolonies, action to sustain growth and calciWcation (Muscatine 1990). which were used in the experiments described in this study. To date, calciWcation in the dark has received little attention The aquarium was supplied with Mediterranean seawater with in coral research. Previous studies of dark calciWcation did low nutrient and chlorophyll a concentrations (Ferrier-Pagès not go beyond an estimation of the ratio between light and et al. 1998) and illuminated with metal halide lamps (HQI, dark calciWcation rates (reviewed by Gattuso et al. 1999). 400 W) at a constant irradiance of 200-mol photons m¡2 s¡1 As a result, there is currently a need for further information (12 h:12 h light:dark cycles). Water temperature in the aquar- about the process of dark calciWcation in corals. ium was 27°C while the seawater pH was between 8.1 and Various methods have been employed to study calciWca- 8.2. The seawater had an aragonite saturation state of 3.1–3.7. tion, with the use of radioisotopes being one of the main techniques for work involving both corals and other marine- EZux experiments calcifying organisms. However, measuring 45Ca exchange with 40Ca produces errors because this exchange gives appar- In order to test the eZux of 45Ca from the coral coelenteron, ent calciWcation in the absence of real precipitation (Goreau three microcolonies were incubated in small plastic vials with 1959). The processing of samples also produces additional 25 ml of seawater at 27°C for one hour. The speciWc activity errors. In some cases, dark calciWcation has been confused of the water at the beginning was ca. 23,000 dpm. A 100-l with isotopic exchange (Chalker and Taylor 1975). In other volume of the labeled seawater was used to count the activity cases, coral researchers have assumed that isotopic exchange (mixed with 4 ml scintillation Xuid). Counting was carried out is small compared to true calciWcation occurring in the light for 5 min in a scintillation counter. After the end of the incu- and have used dark calciWcation as a control for experiments bation period, the microcolonies were dipped in nonlabeled involving light calciWcation (reviewed by Barnes and Chal- seawater ten times to remove nonspeciWc bound 45Ca. The ker 1990). Using cultured microcolonies with no skeletons microcolonies were then transferred to 100 ml nonlabeled exposed to the radioisotope-labeled incubation medium, seawater and incubated under the same conditions used in the Tambutté et al. (1995, 1996) reduced the errors associated experiment to determine the eZux rate. A 100-l water sam- with isotopic exchange. Further improvements were made by ple was taken for counting at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, including dead colonies in the incubation experiments to esti- 16, 18, 20, 25, 30, 40, 50, 60, 70, 80, 100 and 120 min. mate the rate of isotopic exchange (Al-Horani et al. 2005). These results showed that dark calciWcation does occur in Processing of coral skeleton corals and that rates were always higher compared with those obtained using isotopic exchange methods. But the question At the end of the incubation period, the microcolonies were of what drives calciWcation in the dark remains. The use of then blotted dry on tissue paper and boiled with ca. 10 ml Ca2+ microsensors has proved to be a valuable tool for study- 2 N NaOH solution for 30 min to hydrolyze the tissue ing the dynamics and Xuxes of Ca2+ at a microscale level in layer. After the tissue hydrolysis was complete, the hydro- corals (De Beer et al. 2000; Al-Horani et al. 2003a). The lysate was decanted and the skeleton was washed with 2+ V application of Ca and pH microsensors in di erent com- 10 ml distilled H2O. The skeleton was then blotted dry on partments of the coral, including the calcifying Xuid between tissue paper and dried overnight at 70°C in oven. The next the skeleton and the tissue layer, has provided many details day, the dried skeletons were weighed and hydrolyzed com- about the mechanism of light calciWcation (Al-Horani et al. pletely by concentrated HCl solution and 250 l of the 2003a). hydrolysate was mixed with 4-ml scintillation Xuid and The present study was carried out to develop our under- counted for 5 min in the scintillation counter. standing of dark calciWcation in the coral Galaxea fascicu- laris, daytime calciWcation, and the driving forces of dark Daytime calciWcation rates calciWcation in this species. In order to measure changes in the rate of coral calciWcation during the day, the calciWcation rate was measured at 09:00, Materials and methods 12:00, 15:00, 18:00 and 20:00 h. Biological samples Dark incubations and measurement of calciWcation rates Single polyps of G. fascicularis from colonies from the Gulf CalciWcation in the dark was measured in triplicate for the of Aqaba (Jordan), were suspended in seawater in the aquaria coral microcolonies after incubating in the dark for 1, 2, 4, 123 Coral Reefs (2007) 26:531–538 533 12, 24, 48 and 72 h. After dark incubation, the corals were Results incubated with 45Ca at 27°C in stirred seawater for 1 h each. The Wrst four measurements were made during the EZux experiments showed that radioactive tracers were night so that the normal light dark cycle of the coral was not washed out after about 10 min of stirring in clean seawater; disturbed. as a result, this time was used in treatment of samples after incubation in radioactive tracers. EVects of addition of external energy sources The calciWcation rate measured in the light was about twice that in the dark (4.07 § 0.15 mol Ca2+/g wt/h Replicates of G.
Recommended publications
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • AC29 Doc13.3 A2
    AC29 Doc. 13.3 Annex 2 Selection of species for inclusion in the Review of Significant Trade following CoP17 To comply with Stage 1 a) of Resolution Conf. 12.8 (Rev. CoP17) and the Guidance regarding the selection of species/country combinations outlined in Annex 2 of the Resolution, the UN Environment World Conservation Monitoring Centre (UNEP-WCMC) has produced an extended analysis to assist the Animals Committee with their work in selecting species for inclusion in the Review of Significant Trade following CoP17. A summary output, providing trade in wild, ranched, source unknown and trade without a source specified over the five most recent years (2011-2015), to accompany this analysis is provided in AC29 Doc. 13.3, Annex 1. The methodology for the extended analysis was discussed by the 2nd meeting of the Advisory Working Group (AWG) of the Evaluation of the Review of Significant Trade (Shepherdstown, 2015). The AWG concluded that three criteria should be retained within the methodology (“high volume trade/high volume trade for globally threatened species”, “sharp increase in trade” and “endangered species in trade”), but that two previously used criteria added little value to the prioritisation exercise (“high variability in trade” and “overall increase/overall decrease in trade”). In addition, it was agreed to refine the methodology for “High Volume” trade to ensure that thresholds are set at a fine taxonomic resolution (order level) to ensure representation for all taxonomic orders. It was also agreed to include analysis of “Sharp Increase” in trade at the country level, as well as at the global level.
    [Show full text]
  • Pseudo-Gynodioecious
    Zoological Studies 51(2): 143-149 (2012) Larval Development of Fertilized “Pseudo-Gynodioecious” Eggs Suggests a Sexual Pattern of Gynodioecy in Galaxea fascicularis (Scleractinia: Euphyllidae) Shashank Keshavmurthy1, Chia-Min Hsu1,2, Chao-Yang Kuo1, Vianney Denis1, Julia Ka-Lai Leung1,3, Silvia Fontana1,4, Hernyi Justin Hsieh5, Wan-Sen Tsai5, Wei-Cheng Su5, and Chaolun Allen Chen1,2,6,7,* 1Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan 2Institute of Oceanography, National Taiwan Univ., Taipei 106, Taiwan 3Institute of Life Sciences, National Taiwan Normal Univ., Taipei 106, Taiwan 4Univ. of Milan-Bicocca, Piazza della Scienza 2, Milan 20126, Italy 5Penghu Marine Biological Research Center, Makong 880, Taiwan 6Institute of Life Science, National Taitung Univ., Taitung 950, Taiwan 7Taiwan International Graduate Program (TIGP)- Biodiversity, Academia Sinica, Nangang, Taipei 115, Tawian (Accepted September 22, 2011) Shashank Keshavmurthy, Chia-Ming Hsu, Chao-Yang Kuo, Vianney Denis, Julia Ka-Lai Leung, Silvia Fontana, Hernyi Justin Hsieh, Wan-Sen Tsai, Wei-Cheng Su, and Chaolun Allen Chen (2012) Larval development of fertilized “pseudo-gynodioecious” eggs suggests a sexual pattern of gynodioecy in Galaxea fascicularis (Scleractinia: Euphyllidae). Zoological Studies 51(2): 143-149. Galaxea fascicularis possesses a unique sexual pattern, namely “pseudo-gynodioecy”, among scleractinian corals. Galaxea fascicularis populations on the Great Barrier Reef, Australia are composed of female colonies that produce red eggs and hermaphroditic colonies that produce sperm and white eggs. However, white eggs of hermaphroditic colonies are incapable of being fertilized or undergoing embryogenesis. In this study, the reproductive ecology and fertilization of G. fascicularis were examined in Chinwan Inner Bay, Penghu, Taiwan in Apr.-June 2011 to determine the geographic variation of sexual patterns in G.
    [Show full text]
  • Conservation of Reef Corals in the South China Sea Based on Species and Evolutionary Diversity
    Biodivers Conserv DOI 10.1007/s10531-016-1052-7 ORIGINAL PAPER Conservation of reef corals in the South China Sea based on species and evolutionary diversity 1 2 3 Danwei Huang • Bert W. Hoeksema • Yang Amri Affendi • 4 5,6 7,8 Put O. Ang • Chaolun A. Chen • Hui Huang • 9 10 David J. W. Lane • Wilfredo Y. Licuanan • 11 12 13 Ouk Vibol • Si Tuan Vo • Thamasak Yeemin • Loke Ming Chou1 Received: 7 August 2015 / Revised: 18 January 2016 / Accepted: 21 January 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic Communicated by Dirk Sven Schmeller. Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1052-7) contains supplementary material, which is available to authorized users. & Danwei Huang [email protected] 1 Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 3 Institute of Biological Sciences, Faculty of
    [Show full text]
  • Transcriptome Profiling of Galaxea Fascicularis and Its Endosymbiont Symbiodinium Reveals Chronic Eutrophication Tolerance Pathw
    www.nature.com/scientificreports OPEN Transcriptome profiling ofGalaxea fascicularis and its endosymbiont Symbiodinium reveals chronic Received: 23 September 2016 Accepted: 06 January 2017 eutrophication tolerance pathways Published: 09 February 2017 and metabolic mutualism between partners Zhenyue Lin1,2,*, Mingliang Chen2,*, Xu Dong3, Xinqing Zheng4, Haining Huang3, Xun Xu1,2 & Jianming Chen1,2 In the South China Sea, coastal eutrophication in the Beibu Gulf has seriously threatened reef habitats by subjecting corals to chronic physiological stress. To determine how coral holobionts may tolerate such conditions, we examined the transcriptomes of healthy colonies of the galaxy coral Galaxea fascicularis and its endosymbiont Symbiodinium from two reef sites experiencing pristine or eutrophied nutrient regimes. We identified 236 and 205 genes that were differentially expressed in eutrophied hosts and symbionts, respectively. Both gene sets included pathways related to stress responses and metabolic interactions. An analysis of genes originating from each partner revealed striking metabolic integration with respect to vitamins, cofactors, amino acids, fatty acids, and secondary metabolite biosynthesis. The expression levels of these genes supported the existence of a continuum of mutualism in this coral-algal symbiosis. Additionally, large sets of transcription factors, cell signal transduction molecules, biomineralization components, and galaxin-related proteins were expanded in G. fascicularis relative to other coral species. Due to the high risk of land-based sources of pollution, the most biodiverse coral reefs in Southeast Asia have so far been neglected1. Beibu Gulf is a semi-enclosed gulf located in the northwest of the South China Sea, which is surrounded by Vietnam, Guangxi, Leizhou Peninsula and Hainan Island.
    [Show full text]
  • Coral Reefs in the Anthropocene: the Effects of Stress on Coral Metabolism and Symbiont Composition Suzanne Faxneld
    Coral reefs in the Anthropocene: The effects of stress on coral metabolism and symbiont composition Suzanne Faxneld Coral reefs in the Anthropocene The effects of stress on coral metabolism and symbiont composition Suzanne Faxneld ©Suzanne Faxneld, Stockholm 2011 ISBN 978-91-7447-383-4 Printed in Sweden by US-AB, Stockholm 2011 Distributor: Department of Systems Ecology, Stockholm University Front cover: Tove Lund Jörgensen 2011 To my daughter Cornelia, who always makes me smile List of papers This thesis is based on the following four papers, which are referred to in the text by their roman numerals: Paper I Faxneld S., Jörgensen TL., Tedengren M. (2010) Effects of elevated water temperature, reduced salinity and nutrient enrichment on the metabolism of the coral Turbinaria mesenterina. Estuarine, Coastal and Shelf Science 88:482-487 Paper II Faxneld S., Jörgensen TL., Nguyen DN., Nyström M., Tedengren M. (2011) Differences in physiological response to increased seawater temperature in nearshore and offshore corals in northern Vietnam. Marine Environmental Research 71:225-233 Paper III Faxneld S., Hellström M., Tedengren M. Symbiodinium spp. composition in nearshore and offshore Porites lutea and Galaxea fascicularis in northern Vietnam. (Manuscript) Paper IV Hellström M., Gross S., Faxneld S., Hedberg N., The CC., Nguyen DN., Lan HL., Grahn M., Benzie JAH., Tedengren M. Symbiodinium spp. diversity in a single host species, Galaxea fascicularis, Vietnam; impact of environmental fac- tors, host traits and diversity hot spots. (Manuscript) All papers are reprinted with the kind permission of the publishers (!Elsevier). My contributions to the papers: (I) – Experimental design, laboratory work, statistical analysis, main writer of the paper.
    [Show full text]
  • Review of Species Selected on the Basis of the Analysis of 2015 CITES Export Quotas
    UNEP-WCMC technical report Review of species selected on the basis of the Analysis of 2015 CITES export quotas (Version edited for public release) Review of species selected on the basis of the Analysis of 2015 CITES export quotas Prepared for The European Commission, Directorate General Environment, Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements, Brussels, Belgium Prepared November 2015 Copyright European Commission 2015 Citation UNEP-WCMC. 2015. Review of species selected on the basis of the Analysis of 2015 CITES export quotas. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operation for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision-makers recognize the value of biodiversity and apply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in appropriate forms for national and international level decision-makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners where needed, so that they can provide the same services at national and regional scales. The contents of this report do not necessarily reflect the views or policies of UNEP, contributory organisations or editors. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP, the European Commission or contributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Oxygen and Heterotrophy Affect Calcification of the Scleractinian Coral Galaxea Fascicularis
    Oxygen and Heterotrophy Affect Calcification of the Scleractinian Coral Galaxea fascicularis Tim Wijgerde*, Saskia Jurriaans, Marleen Hoofd, Johan A. J. Verreth, Ronald Osinga Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, Wageningen University and Research Centre, Wageningen, The Netherlands Abstract Heterotrophy is known to stimulate calcification of scleractinian corals, possibly through enhanced organic matrix synthesis and photosynthesis, and increased supply of metabolic DIC. In contrast to the positive long-term effects of heterotrophy, inhibition of calcification has been observed during feeding, which may be explained by a temporal oxygen limitation in coral tissue. To test this hypothesis, we measured the short-term effects of zooplankton feeding on light and dark calcification rates of the scleractinian coral Galaxea fascicularis (n = 4) at oxygen saturation levels ranging from 13 to 280%. Significant main and interactive effects of oxygen, heterotrophy and light on calcification rates were found (three-way factorial repeated measures ANOVA, p,0.05). Light and dark calcification rates of unfed corals were severely affected by hypoxia and hyperoxia, with optimal rates at 110% saturation. Light calcification rates of fed corals exhibited a similar trend, with highest rates at 150% saturation. In contrast, dark calcification rates of fed corals were close to zero under all oxygen saturations. We conclude that oxygen exerts a strong control over light and dark calcification rates of corals, and propose that in situ calcification rates are highly dynamic. Nevertheless, the inhibitory effect of heterotrophy on dark calcification appears to be oxygen-independent. We hypothesize that dark calcification is impaired during zooplankton feeding by a temporal decrease of the pH and aragonite saturation state of the calcifying medium, caused by increased respiration rates.
    [Show full text]
  • Exploring Coral Microbiome Assemblages in the South China
    www.nature.com/scientificreports OPEN Exploring coral microbiome assemblages in the South China Sea Lin Cai1, Ren-Mao Tian1, Guowei Zhou1,2, Haoya Tong1, Yue Him Wong1, Weipeng Zhang1, Apple Pui Yi Chui3, James Y. Xie4, Jian-Wen Qiu 4, Put O. Ang3, Sheng Liu2, Hui Huang2 & 1 Received: 21 July 2017 Pei-Yuan Qian Accepted: 18 January 2018 Coral reefs are signifcant ecosystems. The ecological success of coral reefs relies on not only coral-algal Published: xx xx xxxx symbiosis but also coral-microbial partnership. However, microbiome assemblages in the South China Sea corals remain largely unexplored. Here, we compared the microbiome assemblages of reef-building corals Galaxea (G. fascicularis) and Montipora (M. venosa, M. peltiformis, M. monasteriata) collected from fve diferent locations in the South China Sea using massively-parallel sequencing of 16S rRNA gene and multivariate analysis. The results indicated that microbiome assemblages for each coral species were unique regardless of location and were diferent from the corresponding seawater. Host type appeared to drive the coral microbiome assemblages rather than location and seawater. Network analysis was employed to explore coral microbiome co-occurrence patterns, which revealed 61 and 80 co-occurring microbial species assembling the Galaxea and Montipora microbiomes, respectively. Most of these co-occurring microbial species were commonly found in corals and were inferred to play potential roles in host nutrient metabolism; carbon, nitrogen, sulfur cycles; host detoxifcation; and climate change. These fndings suggest that the co-occurring microbial species explored might be essential to maintain the critical coral-microbial partnership. The present study provides new insights into coral microbiome assemblages in the South China Sea.
    [Show full text]
  • Species Richness and Relative Abundance of Reef-Building Corals in the Indo-West Pacific
    diversity Article Species Richness and Relative Abundance of Reef-Building Corals in the Indo-West Pacific Lyndon DeVantier * and Emre Turak Coral Reef Research, 10 Benalla Rd., Oak Valley, Townsville 4810, QLD, Australia; [email protected] * Correspondence: [email protected] Received: 5 May 2017; Accepted: 27 June 2017; Published: 29 June 2017 Abstract: Scleractinian corals, the main framework builders of coral reefs, are in serious global decline, although there remains significant uncertainty as to the consequences for individual species and particular regions. We assessed coral species richness and ranked relative abundance across 3075 depth-stratified survey sites, each < 0.5 ha in area, using a standardized rapid assessment method, in 31 Indo-West Pacific (IWP) coral ecoregions (ERs), from 1994 to 2016. The ecoregions cover a significant proportion of the ranges of most IWP reef coral species, including main centres of diversity, providing a baseline (albeit a shifted one) of species abundance over a large area of highly endangered reef systems, facilitating study of future change. In all, 672 species were recorded. The richest sites and ERs were all located in the Coral Triangle. Local (site) richness peaked at 224 species in Halmahera ER (IWP mean 71 species Standard Deviation 38 species). Nineteen species occurred in more than half of all sites, all but one occurring in more than 90% of ERs. Representing 13 genera, these widespread species exhibit a broad range of life histories, indicating that no particular strategy, or taxonomic affiliation, conferred particular ecological advantage. For most other species, occurrence and abundance varied markedly among different ERs, some having pronounced “centres of abundance”.
    [Show full text]
  • A Tentacle for Every Occasion: Comparing the Hunting Tentacles and Sweeper Tentacles, Used for Territorial Competition, in the Coral Galaxea Fascicularis
    A tentacle for every occasion: comparing the hunting tentacles and sweeper tentacles, used for territorial competition, in the coral Galaxea fascicularis Oshra Yosef University of Haifa Yotam Popovits University of Haifa Assaf Malik University of Haifa Maya Ofek-Lalzer University of Haifa Tali Mass ( [email protected] ) University of Haifa https://orcid.org/0000-0002-7298-290X Daniel Sher University of Haifa Research article Keywords: coral, territorial aggression, tentacle, venom, histology, transcriptome Posted Date: April 20th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-21863/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on August 8th, 2020. See the published version at https://doi.org/10.1186/s12864-020-06952-w. Page 1/27 Abstract Background: Coral reefs are among the most diverse, complex and densely populated marine ecosystems. To survive, morphologically simple and sessile cnidarians have developed mechanisms to catch prey, deter predators and compete with adjacent corals for space, yet the mechanisms underlying these functions are largely unknown. Here, we characterize the histology, toxic activity and gene expression patterns in two different types of tentacles from the scleractinian coral Galaxea fascilcularis – catch tentacles (CTs), used to catch prey and deter predators, and sweeper tentacles (STs), specialized tentacles used for territorial aggression. Results: STs exhibit more mucocytes and higher expression of mucin genes than CTs, and lack the ectodermal cilia used to deliver food to the mouth and remove debris. STs and CTs also express different sensory g- protein coupled receptors, suggesting they may employ different sensory pathways.
    [Show full text]