November 22, 2017 Contents

Total Page:16

File Type:pdf, Size:1020Kb

November 22, 2017 Contents Supplementary information for Common risk variants identified in autism spectrum disorder November 22, 2017 Contents List of Supplementary Tables 2 List of Supplementary Figures 3 1 Sample description and data processing7 1.1 The iPSYCH ASD sample............................................7 1.1.1 The iPSYCH sample..........................................7 1.1.2 The iPSYCH ASD GWAS sample...................................7 1.1.3 Genotyping and calling........................................8 1.1.4 QC and Imputation...........................................8 1.1.5 PCA...................................................9 1.2 The PGC ASD sample.............................................9 1.3 The follow-up samples............................................. 10 1.3.1 deCODE................................................. 10 1.3.2 Finnish autism case-control study.................................. 10 1.3.3 PAGES.................................................. 10 1.3.4 BUPGEN................................................. 11 1.3.5 Follow-up sample summary...................................... 12 2 Methods 13 2.1 GWAS....................................................... 13 2.1.1 SNP-wise analysis........................................... 13 2.1.2 Gene-based association and gene-set analyses........................... 13 2.1.3 MTAG analyses............................................. 13 2.1.4 Mini-reviews.............................................. 14 2.2 SNP heritability................................................. 14 2.3 Genetic correlation and prediction...................................... 15 2.3.1 Polygenic risk scores.......................................... 15 2.4 Hi-C analysis.................................................. 17 3 Supplementary tables 18 3.1 GWAS....................................................... 18 1 2 3.1.1 Look-up tables for tophits in related phenotypes.......................... 28 3.2 Heritability.................................................... 32 3.3 Genetic correlation and prediction...................................... 32 3.4 Hi-C........................................................ 41 4 Supplementary figures 69 4.1 Sample description............................................... 69 4.2 GWAS....................................................... 69 4.2.1 Qq plots................................................. 69 4.2.2 Forest plots............................................... 70 4.2.3 Regional plots.............................................. 76 4.2.4 Gene-based association........................................ 85 4.2.5 MTAG analyses............................................. 99 4.3 Heritability.................................................... 104 4.4 Genetic correlation and prediction...................................... 107 4.5 HiC analysis................................................... 111 Bibliography 112 Supplementary Notes 125 Consortium Membership............................................... 125 Major Depressive Disorder Working Group of the PGC.......................... 125 The 23andMe Research Team......................................... 131 Acknowledgements.................................................. 131 List of Supplementary Tables S1.1.1 Descriptive table..............................................8 S1.3.1 Available data in PAGES.......................................... 11 S1.3.2 Key numbers for follow-up........................................ 12 S2.3.1 Hierarchical ASD subtypes........................................ 16 S2.3.2 Make-up of wave group for internal scoring.............................. 17 S3.1.1 Summary of top 20 ASD associations.................................. 18 S3.1.2 Top 25 genes of MAGMA analysis.................................... 19 S3.1.3 Mini review of top hits........................................... 20 S3.1.4 Gene set analysis of candidate gene sets................................. 28 S3.1.5 Top 25 gene set from analysis from MsigDB............................... 28 S3.1.6 Look-up of top schizophrenia loci in the ASD scan........................... 28 S3.1.7 Look-up of top major depression loci in the ASD scan......................... 30 S3.1.8 Look-up of top educational attainment loci in the ASD scan..................... 31 S3.2.1 Heritability estimates for subtypes and substrata............................ 32 S3.3.1 GCTA based rG between ASD subtypes................................. 33 S3.3.2 Genetic correlation output from LD Hub for ASD........................... 34 S3.4.1 Credible SNPs and Hi-C identified genes................................ 42 3 List of Supplementary Figures S1.1.1 Plot of the first two principal components................................9 S4.2.1 Qq plot for the iPSYCH ASD GWAS................................... 69 S4.2.2 Qq plot for iPSYCH-PGC meta analysis................................. 70 S4.2.3 Forest plot for rs910805 for the iPSYCH-PGC meta analysis...................... 70 S4.2.4 Forest plot for rs10099100 for the iPSYCH-PGC meta analysis.................... 70 S4.2.5 Forest plot for rs71190156 for the iPSYCH-PGC meta analysis.................... 71 S4.2.6 Forest plot for rs6047270 for the iPSYCH-PGC meta analysis..................... 71 S4.2.7 Forest plot for rs111931861 for the iPSYCH-PGC meta analysis.................... 71 S4.2.8 Forest plot for rs2391769 for the iPSYCH-PGC meta analysis..................... 71 S4.2.9 Forest plot for rs138867053 for the iPSYCH-PGC meta analysis.................... 72 S4.2.10 Forest plot for rs183563276m for the iPSYCH-PGC meta analysis................... 72 S4.2.11 Forest plot for rs1452075 for the iPSYCH-PGC meta analysis..................... 72 S4.2.12 Forest plot for rs1222063 for the iPSYCH-PGC meta analysis..................... 72 S4.2.13 Forest plot for rs142920272 for the iPSYCH-PGC meta analysis.................... 73 S4.2.14 Forest plot for rs55962189 for the iPSYCH-PGC meta analysis.................... 73 S4.2.15 Forest plot for rs112635299 for the iPSYCH-PGC meta analysis.................... 73 S4.2.16 Forest plot for rs6701243 for the iPSYCH-PGC meta analysis..................... 73 S4.2.17 Forest plot for rs45595836 for the iPSYCH-PGC meta analysis.................... 74 S4.2.18 Forest plot for rs325485 for the iPSYCH-PGC meta analysis...................... 74 S4.2.19 Forest plot for rs201910565 for the iPSYCH-PGC meta analysis.................... 74 S4.2.20 Forest plot for rs210894m for the iPSYCH-PGC meta analysis..................... 74 S4.2.21 Forest plot for rs72934503 for the iPSYCH-PGC meta analysis.................... 75 S4.2.22 Forest plot for rs11185408 for the iPSYCH-PGC meta analysis.................... 75 S4.2.23 Forest plot for rs141455452 for the iPSYCH-PGC meta analysis.................... 75 S4.2.24 Forest plot for rs78827416 for the iPSYCH-PGC meta analysis.................... 75 S4.2.25 Forest plot for rs59566011 for the iPSYCH-PGC meta analysis.................... 76 S4.2.26 Regional plot around rs910805, rs6047270 & rs55962189 for iPSYCH-PGC meta analysis..... 76 S4.2.27 Regional plot around rs10099100 for iPSYCH-PGC meta analysis.................. 77 S4.2.28 Regional plot around rs71190156 for iPSYCH-PGC meta analysis.................. 77 S4.2.29 Regional plot around rs111931861 for iPSYCH-PGC meta analysis.................. 78 4 5 S4.2.30 Regional plot around rs2391769 for iPSYCH-PGC meta analysis................... 78 S4.2.31 Regional plot around rs138867053 for iPSYCH-PGC meta analysis.................. 79 S4.2.32 Regional plot around rs183563276m for iPSYCH-PGC meta analysis................ 79 S4.2.33 Regional plot around rs1452075 for iPSYCH-PGC meta analysis................... 80 S4.2.34 Regional plot around rs1222063 & rs201910565 for iPSYCH-PGC meta analysis.......... 80 S4.2.35 Regional plot around rs142920272 & rs141455452 for iPSYCH-PGC meta analysis......... 81 S4.2.36 Regional plot around rs112635299 for iPSYCH-PGC meta analysis.................. 81 S4.2.37 Regional plot around rs6701243 for iPSYCH-PGC meta analysis................... 82 S4.2.38 Regional plot around rs45595836 for iPSYCH-PGC meta analysis.................. 82 S4.2.39 Regional plot around rs325485 for iPSYCH-PGC meta analysis.................... 83 S4.2.40 Regional plot around rs210894m for iPSYCH-PGC meta analysis.................. 83 S4.2.41 Regional plot around rs72934503 for iPSYCH-PGC meta analysis.................. 84 S4.2.42 Regional plot around rs11185408 for iPSYCH-PGC meta analysis.................. 84 S4.2.43 Regional plot around rs78827416 for iPSYCH-PGC meta analysis.................. 85 S4.2.44 Regional plot around rs59566011 for iPSYCH-PGC meta analysis.................. 85 S4.2.45 Qq plot for gene-based analysis...................................... 86 S4.2.46 Regional plot around XRN2 for gene-based analysis of iPSYCH-PGC meta............. 86 S4.2.47 Regional plot around KCNN2 for gene-based analysis of iPSYCH-PGC meta............ 87 S4.2.48 Regional plot around KIZ for gene-based analysis of iPSYCH-PGC meta.............. 88 S4.2.49 Regional plot around KANSL1 for gene-based analysis of iPSYCH-PGC meta........... 88 S4.2.50 Regional plot around MACROD2 for gene-based analysis of iPSYCH-PGC meta.......... 89 S4.2.51 Regional plot around WNT3 for gene-based analysis of iPSYCH-PGC meta............. 89 S4.2.52 Regional plot around MAPT for gene-based analysis of iPSYCH-PGC meta............ 90 S4.2.53 Regional plot around MFHAS1 for gene-based analysis of iPSYCH-PGC meta........... 90 S4.2.54 Regional
Recommended publications
  • The Interactome of KRAB Zinc Finger Proteins Reveals the Evolutionary History of Their Functional Diversification
    Resource The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification Pierre-Yves Helleboid1,†, Moritz Heusel2,†, Julien Duc1, Cécile Piot1, Christian W Thorball1, Andrea Coluccio1, Julien Pontis1, Michaël Imbeault1, Priscilla Turelli1, Ruedi Aebersold2,3,* & Didier Trono1,** Abstract years ago (MYA) (Imbeault et al, 2017). Their products harbor an N-terminal KRAB (Kru¨ppel-associated box) domain related to that of Krüppel-associated box (KRAB)-containing zinc finger proteins Meisetz (a.k.a. PRDM9), a protein that originated prior to the diver- (KZFPs) are encoded in the hundreds by the genomes of higher gence of chordates and echinoderms, and a C-terminal array of zinc vertebrates, and many act with the heterochromatin-inducing fingers (ZNF) with sequence-specific DNA-binding potential (Urru- KAP1 as repressors of transposable elements (TEs) during early tia, 2003; Birtle & Ponting, 2006; Imbeault et al, 2017). KZFP genes embryogenesis. Yet, their widespread expression in adult tissues multiplied by gene and segment duplication to count today more and enrichment at other genetic loci indicate additional roles. than 350 and 700 representatives in the human and mouse Here, we characterized the protein interactome of 101 of the ~350 genomes, respectively (Urrutia, 2003; Kauzlaric et al, 2017). A human KZFPs. Consistent with their targeting of TEs, most KZFPs majority of human KZFPs including all primate-restricted family conserved up to placental mammals essentially recruit KAP1 and members target sequences derived from TEs, that is, DNA trans- associated effectors. In contrast, a subset of more ancient KZFPs posons, ERVs (endogenous retroviruses), LINEs, SINEs (long and rather interacts with factors related to functions such as genome short interspersed nuclear elements, respectively), or SVAs (SINE- architecture or RNA processing.
    [Show full text]
  • Gene Ontology Functional Annotations and Pleiotropy
    Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Cytogenetic and Molecular Characterization of the Macro- And
    University of Ulm Department of Human Genetics Prof. Dr. med. Walther Vogel Cytogenetic and Molecular Characterization of the Macro- and Micro-inversions, which Distinguish the Human and the Chimpanzee Karyotypes - from Speciation to Polymorphism Thesis Applying for the Degree of Doctor of Human Biology (Dr. hum. biol.) Faculty of Medicine University of Ulm Presented by Justyna Monika Szamalek from Wrze śnia in Poland 2006 Amtierender Dekan: Prof. Dr. Klaus-Michael Debatin 1. Berichterstatter: Prof. Dr. med. Horst Hameister 2. Berichterstatter: Prof. Dr. med. Konstanze Döhner Tag der Promotion: 28.07.2006 Content Content 1. Introduction ...................................................................................................................7 1.1. Primate phylogeny........................................................................................................7 1.2. Africa as the place of human origin and the living area of the present-day chimpanzee populations .................................................................9 1.3. Cytogenetic and molecular differences between human and chimpanzee genomes.............................................................................................10 1.4. Cytogenetic and molecular differences between common chimpanzee and bonobo genomes................................................................................17 1.5. Theory of speciation .....................................................................................................18 1.6. Theory of selection
    [Show full text]
  • Biomedical Robots. Application to Translational Medicine
    Biomedical robots. Application to translational medicine. Enrique J. deAndrés-Galiana Supervisors: Prof. Juan Luis Fernández-Martínez & Prof. Oscar Luaces This dissertation is submitted under the PhD program of Mathematics and Statistics May 2016 RESUMEN DEL CONTENIDO DE TESIS DOCTORAL 1.- Título de la Tesis Español/Otro Idioma: Inglés: Diseño de robots biomédicos. Aplicaciones en Biomedical robots. Application to translational medicina traslacional. medicine. 2.- Autor Nombre: Enrique Juan de Andrés Galiana DNI/Pasaporte/NIE: Programa de Doctorado: Matemáticas y Estadística. Órgano responsable: Departamento de Matemáticas. RESUMEN (en español) Esta tesis trata sobre el análisis y diseño de robots biomédicos y su aplicación a la medicina traslacional. Se define un robot biomédico como el conjunto de técnicas provenientes de la matemática aplicada, estadística y ciencias de la computación capaces de analizar datos biomédicos de alta dimensionalidad, aprender dinámicamente de dichos datos, extraer nuevo BIS - conocimiento e hipótesis de trabajo, y finalmente realizar predicciones con su incertidumbre asociada, cara a la toma de decisiones biomédicas. Se diseñan y analizan diferentes algorit- 010 - mos de aprendizaje, de reducción de la dimensión y selección de atributos, así como técnicas de optimización global, técnicas de agrupamiento no supervisado, clasificación y análisis de VOA incertidumbre. Dichas metodologías se aplican a datos a pie de hospital y de expresión génica - en predicción de fenotipos para optimización del diagnóstico, pronóstico, tratamiento y análisis de toxicidades. MAT - Se muestra que es posible establecer de modo sencillo el poder discriminatorio de las variables FOR pronóstico, y que dichos problemas de clasificación se aproximan a un comportamiento linealmente separable cuando se reduce la dimensión al conjunto de variables principales que definen el alfabeto del problema biomédico y están por tanto relacionadas con su génesis.
    [Show full text]
  • Systems Vaccinology for a Live Attenuated Tularemia Vaccine Reveals Unique Transcriptional Signatures That Predict Humoral and Cellular Immune Responses"’ Version 1.0
    Supplementary Text Manuscript Appendix "‘Systems vaccinology for a live attenuated tularemia vaccine reveals unique transcriptional signatures that predict humoral and cellular immune responses"’ Version 1.0 December 23, 2019 Table of Contents 1 Introduction 8 2 Supplemental methods 8 2.1 Study Design . 8 2.2 Microarray experiment . 8 2.3 Cell mediated immunity experiments . 9 2.4 Microarray data preprocessing . 10 2.5 Differential gene analysis . 11 2.6 Determination of robust gene clusters . 11 2.7 Gene set enrichment analysis . 11 2.8 Regularized logistic regression analysis . 12 2.9 Regularized canonical correlation analysis . 13 2.10 Comparisons with viral vaccine microarray studies . 14 2.11 Cell mediated immunity analysis . 15 3 Supplemental results 15 4 References 84 1 List of Tables Table 1 Descriptive summary statistics of percent monocyte cells of live PBMCs fold change from baseline by treatment. 16 Table 2 Descriptive summary statistics of percent monocyte cells (CD16+) of live PBMCs fold change from baseline by treatment. 16 Table 3 Descriptive summary statistics of percent monocyte cells (CD16-) of live PBMCs fold change from baseline by treatment. 16 Table 4 Descriptive summary statistics of percent T-cells of live PBMCs fold change from baseline by treatment. 16 Table 5 Descriptive summary statistics of percent T-cells (CD4+) of live PBMCs fold change from baseline by treatment. 16 Table 6 Descriptive summary statistics of percent T-cells (CD4-) of live PBMCs fold change from baseline by treatment. 17 Table 7 Descriptive summary statistics of percent natural killer cells (CD56 bright) of live PBMCs fold change from baseline by treatment.
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • DNA Methylation in Amyotrophic Lateral Sclerosis
    DNA Methylation in Amyotrophic Lateral Sclerosis Charlie Samantha Appleby-Mallinder BSc Department of Neuroscience (SITraN) Supervisors: Dr Robin Highley and Dr Paul Heath Submitted for the degree of Doctor of Philosophy (PhD) Submitted September 2019 Acknowledgements I would first like to thank my supervisors Robin and Paul for their unwavering support at both an academic and personal level. Paul – without you taking a chance on me when I was a blue haired undergraduate, and setting me loose in the lab, I would not be submitting this PhD. Your guidance, wisdom and advice have kept both the project and myself moving forward, while still understanding the importance of having a life outside the lab. Robin – our meetings that turned into talking about rubbish helped me keep what is left of my sanity! Thank you for teaching me everything I know about neuropathology, and mentoring me through what has been a tough three years. A nod also to Dr Julie Simpson and Dr Janine Kirby who have offered fantastic moral support throughout. Thanks also go to our wonderful tech team. In particular, Matt Wyles, Catherine Gelsthorpe, Lynne Baxter and Dan Fillingham. It has been a delight to be in the lab with you all, be that to figure out why something on my project isn’t working (this happened on many occasions), or just generally putting the world to rights. Without you all, my project would not have come to fruition. Thanks also go to my fellow PhD students and Dr Rachel Waller for taking me on regular coffee trips during the write up phase.
    [Show full text]
  • Gene Expression Profiling Reveals a Signaling Role of Glutathione in Redox Regulation
    Gene expression profiling reveals a signaling role of glutathione in redox regulation Maddalena Fratelli*, Leslie O. Goodwin†, Ulf Andersson Ørom*‡, Sarah Lombardi†, Rossella Tonelli*, Manuela Mengozzi*, and Pietro Ghezzi*§ *Laboratory of Neuroimmunology ‘‘Mario Negri,’’ Institute for Pharmacological Research, 20157 Milan, Italy; and †North Shore–Long Island Jewish Research Institute, Manhasset, NY 11030 Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and approved July 22, 2005 (received for review May 27, 2005) Proteins can form reversible mixed disulfides with glutathione reversible oxidations to form disulfides and glutathionylated (GSH). It has been hypothesized that protein glutathionylation may proteins (2–5). The reversibility of protein glutathionylation, represent a mechanism of redox regulation, in a fashion similar to catalyzed by glutaredoxin and, to a lesser extent, thioredoxin (6), that mediated by protein phosphorylation. We investigated makes this posttranslational modification a likely molecular whether GSH has a signaling role in the response of HL60 cells to mechanism by which GSH could act as a redox-dependent hydrogen peroxide (H2O2), in addition to its obvious antioxidant signaling molecule, in analogy with protein phosphorylation. role. We identified early changes in gene expression induced at However, despite the identification of several proteins under- different times by H2O2 treatment, under conditions that increase going glutathionylation (5, 7), in our opinion a signaling role of protein glutathionylation and minimal toxicity. We then investi- glutathionylation is far from being established. gated the effect of prior GSH depletion by buthionine sulfoximine Because glutathionylation is a redox-dependent modification, and diethylmaleate on this response. The analysis revealed 2,016 we reasoned that it might participate in signaling the exposure genes regulated by H2O2.
    [Show full text]
  • 556 Positive Significant Genes Computed Quantities Input
    Significant Genes List Input Parameters Imputation Engine Data Type Data in log scale? Number of Permutations Blocked Permutation? RNG Seed (Delta, Fold Change) (Upper Cutoff, Lower Cutoff) Computed Quantities Computed Exchangeability Factor S0 S0 percentile False Significant Number (Median, 90 percentile) False Discovery Rate (Median, 90 percentile) Pi0Hat 556 Positive Significant Genes Row Gene Name 5288 AGI_HUM1_OLIGO_A_23_P170096 6496 AGI_HUM1_OLIGO_A_23_P210021 9658 AGI_HUM1_OLIGO_A_23_P43444 9730 AGI_HUM1_OLIGO_A_23_P44466 12489 AGI_HUM1_OLIGO_A_23_P81507 666 AGI_HUM1_OLIGO_A_23_P108599 2085 AGI_HUM1_OLIGO_A_23_P127727 8831 AGI_HUM1_OLIGO_A_23_P32499 2483 AGI_HUM1_OLIGO_A_23_P132736 5424 AGI_HUM1_OLIGO_A_23_P17808 11383 AGI_HUM1_OLIGO_A_23_P66543 8456 AGI_HUM1_OLIGO_A_23_P2762 5455 AGI_HUM1_OLIGO_A_23_P1823 11724 AGI_HUM1_OLIGO_A_23_P71067 692 AGI_HUM1_OLIGO_A_23_P108932 4216 AGI_HUM1_OLIGO_A_23_P155504 13553 AGI_HUM1_OLIGO_A_23_P96529 5370 AGI_HUM1_OLIGO_A_23_P171284 10443 AGI_HUM1_OLIGO_A_23_P53946 5573 AGI_HUM1_OLIGO_A_23_P1981 3624 AGI_HUM1_OLIGO_A_23_P147869 9215 AGI_HUM1_OLIGO_A_23_P3766 10396 AGI_HUM1_OLIGO_A_23_P53257 9179 AGI_HUM1_OLIGO_A_23_P37251 8146 AGI_HUM1_OLIGO_A_23_P257762 6728 AGI_HUM1_OLIGO_A_23_P212720 6322 AGI_HUM1_OLIGO_A_23_P208059 6707 AGI_HUM1_OLIGO_A_23_P212499 12483 AGI_HUM1_OLIGO_A_23_P8142 7995 AGI_HUM1_OLIGO_A_23_P255925 6898 AGI_HUM1_OLIGO_A_23_P214681 8593 AGI_HUM1_OLIGO_A_23_P29472 8259 AGI_HUM1_OLIGO_A_23_P259192 13318 AGI_HUM1_OLIGO_A_23_P93015 10290 AGI_HUM1_OLIGO_A_23_P51861 9965 AGI_HUM1_OLIGO_A_23_P47709
    [Show full text]
  • The Diversity of Zinc-Finger Genes on Human Chromosome 19 Provides
    Cell Death and Differentiation (2014) 21, 381–387 OPEN & 2014 Macmillan Publishers Limited All rights reserved 1350-9047/14 www.nature.com/cdd The diversity of zinc-finger genes on human chromosome 19 provides an evolutionary mechanism for defense against inherited endogenous retroviruses S Lukic*1, J-C Nicolas1 and AJ Levine1 Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of the germ line that can remain capable of replication within the host genome. In the soma, DNA methylation and repressive chromatin keep the majority of this parasitic DNA transcriptionally silent. However, it is unclear how the host organism adapts to recognize and silence novel invading retroviruses that enter the germ line. Krueppel-Associated Box (KRAB)-associated protein 1 (KAP1) is a transcriptional regulatory factor that drives the epigenetic repression of many different loci in mammalian genomes. Here, we use published experimental data to provide evidence that human KAP1 is recruited to endogenous retroviral DNA by KRAB-containing zinc-finger transcription factors (TFs). Many of these zinc-finger genes exist in clusters associated with human chromosome 19. We demonstrate that these clusters are located at hotspots for copy number variation (CNV), generating a large and continuing diversity of zinc-finger TFs with new generations. These zinc-finger genes possess a wide variety of DNA binding affinities, but their role as transcriptional repressors is conserved. We also perform a computational study of the different ERVs that invaded the human genome during primate evolution. We find candidate zinc-finger repressors that arise in the genome for each ERV family that enters the genomes of primates.
    [Show full text]
  • Identification of Common Genetic Risk Variants for Autism Spectrum Disorder
    SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41588-019-0344-8 In the format provided by the authors and unedited. Identification of common genetic risk variants for autism spectrum disorder Jakob Grove 1,2,3,4, Stephan Ripke5,6,7, Thomas D. Als 1,2,3, Manuel Mattheisen1,2,3,8,9, Raymond K. Walters 5,6, Hyejung Won 10,11, Jonatan Pallesen1,2,3, Esben Agerbo 1,12,13, Ole A. Andreassen 14,15, Richard Anney16, Swapnil Awashti7, Rich Belliveau6, Francesco Bettella14,15, Joseph D. Buxbaum17,18,19,20, Jonas Bybjerg-Grauholm 1,21, Marie Bækvad-Hansen1,21, Felecia Cerrato6, Kimberly Chambert6, Jane H. Christensen 1,2,3, Claire Churchhouse5,6,22, Karin Dellenvall23, Ditte Demontis 1,2,3, Silvia De Rubeis17,18, Bernie Devlin24, Srdjan Djurovic 14,25, Ashley L. Dumont6, Jacqueline I. Goldstein5,6,22, Christine S. Hansen 1,21,26, Mads Engel Hauberg1,2,3, Mads V. Hollegaard1,21, Sigrun Hope14,27, Daniel P. Howrigan 5,6, Hailiang Huang5,6, Christina M. Hultman23, Lambertus Klei24, Julian Maller6,28,29, Joanna Martin6,16,23, Alicia R. Martin5,6,22, Jennifer L. Moran6, Mette Nyegaard 1,2,3, Terje Nærland 14,30, Duncan S. Palmer5,6, Aarno Palotie5,6,22,31, Carsten Bøcker Pedersen 1,12,13, Marianne Giørtz Pedersen1,12,13, Timothy dPoterba5,6,22, Jesper Buchhave Poulsen1,21, Beate St Pourcain 32,33,34, Per Qvist 1,2,3, Karola Rehnström35, Abraham Reichenberg17,18,19, Jennifer Reichert17,18, Elise B. Robinson5,6,36, Kathryn Roeder37,38, Panos Roussos18,39,40,41, Evald Saemundsen 42, Sven Sandin17,18,23, F.
    [Show full text]