Geologically Recent Gully–Polygon Relationships on Mars: Insights From

Total Page:16

File Type:pdf, Size:1020Kb

Geologically Recent Gully–Polygon Relationships on Mars: Insights From Icarus 201 (2009) 113–126 Contents lists available at ScienceDirect Icarus www.elsevier.com/locate/icarus Geologically recent gully–polygon relationships on Mars: Insights from the Antarctic Dry Valleys on the roles of permafrost, microclimates, and water sources for surface flow ∗ J.S. Levy a, ,J.W.Heada, D.R. Marchant b,J.L.Dicksona, G.A. Morgan a a Department of Geological Sciences, Brown University, Box 1846, Providence, RI 02912, USA b Department of Earth Science, Boston University, 675 Commonwealth Ave., Boston, MA 02215, USA article info abstract Article history: We describe the morphology and spatial relationships between composite-wedge polygons and Mars- Received 29 May 2008 like gullies (consisting of alcoves, channels, and fans) in the hyper-arid Antarctic Dry Valleys (ADV), Revised 17 October 2008 as a basis for understanding possible origins for martian gullies that also occur in association with Accepted 22 December 2008 polygonally patterned ground. Gullies in the ADV arise in part from the melting of atmospherically- Available online 21 January 2009 derived, wind-blown snow trapped in polygon troughs. Snowmelt that yields surface flow can occur Keywords: during peak southern hemisphere summer daytime insolation conditions. Ice-cemented permafrost Mars surface provides an impermeable substrate over which meltwater flows, but does not significantly contribute Earth to meltwater generation. Relationships between contraction crack polygons and sedimentary fans at the Geological processes distal ends of gullies show deposition of fan material in polygon troughs, and dissection of fans by Ices expanding polygon troughs. These observations suggest the continuous presence of meters-thick ice- Regoliths cemented permafrost beneath ADV gullies. We document strong morphological similarities between gullies and polygons on Mars and those observed in the ADV Inland Mixed microclimate zone. On the basis of this morphological comparison, we propose an analogous, top–down melting model for the initiation and evolution of martian gullies that occur on polygonally-patterned, mantled surfaces. © 2009 Elsevier Inc. All rights reserved. 1. Introduction gullies can form by dry avalanche processes alone (Treiman, 2003; Pelletier et al., 2008). Gullies on Mars are a class of geologically young features, ini- Concurrent with advances in understanding of gully processes tially interpreted to have formed by surficial flow of released on Mars, modeling and observational studies have documented the groundwater (Malin and Edgett, 2000, 2001; Mellon and Phillips, distribution and origin of various types of martian thermal con- 2001), and which may still be active (Malin et al., 2006). Mar- traction crack polygons (Mellon, 1997; Mangold, 2005; Levy et al., tian gullies are geomorphic features composed of a recessed al- 2008a). Despite the observation of polygonally patterned ground cove, one or more sinuous channels, and a depositional fan or in gullied terrains on Mars and Earth (Malin and Edgett, 2000, apron (Malin and Edgett, 2000). Alternative hypotheses for the 2001; Bridges and Lackner, 2006), and an increasing awareness source of gully-carving fluids include obliquity-driven melting of of the importance of polygonally patterned permafrost in the de- near-surface ground ice (Costard et al., 2002), melting of dust-rich velopment of terrestrial polar fluvial systems (Fortier et al., 2007; snow deposits (Christensen, 2003), and melting of atmospherically Levy et al., 2007a; Levy et al., 2008b), there has been little analy- emplaced frost and/or snow (Hecht, 2002; Dickson et al., 2007a; sis of the interactions between thermal contraction crack polygons Head et al., 2007; Dickson and Head, 2008; Williams et al., and gullies on Mars. 2008). Complementing gully formation models, recent GCM re- In this contribution, we explore interactions between gullies sults (Forget et al., 2007) predict the deposition and potential for and polygons in the Mars-like Antarctic Dry Valleys (Marchant and melt of up to 25 mm/yr of water ice at martian northern midlat- ◦ Head, 2007), and then assess similarities and differences with fea- itudes (∼30–50 N) during obliquity conditions modeled to have tures observed on Mars. We first summarize recent research on occurred within the past 10 My (and potentially within the past the spatial distribution, formation, and modification of gullies and <1My;Laskar et al., 2004). Other workers have proposed that polygons in selected regions of the Antarctic Dry Valleys (ADV). In the next section we show how gully development on polygonally * Corresponding author. Fax: +1 401 863 3978. patterned ADV surfaces affects gully morphology and enhances E-mail address: [email protected] (J.S. Levy). water-flow processes. Further, we show how the morphology of 0019-1035/$ – see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.icarus.2008.12.043 114 J.S. Levy et al. / Icarus 201 (2009) 113–126 Fig. 1. Perspective view of a portion of the South Fork study area in upper Wright Valley, Antarctica. Black arrows indicate channels on the southern wall of the valley and white arrows indicate large alcoves present in the dolerite bedrock, approximately 1000 m above the valley floor. The dark, tongue-shaped lobe of dolerite boulders at center is approximately 300 m wide. Inset. Boxed region showing a small concavity present in the colluvium slope. White arrow indicates the center of the depression. Channels enter into and emanate from the concavity. polygons is altered by proximity to developing gullies. We describe are termed equilibrium landforms (Marchant and Head, 2007). Gul- such reciprocal modification relationships as “gully–polygon sys- lies and polygons are the two dominant equilibrium landforms on tems.” inland-mixed zone valley walls. We then analyze HiRISE images that document the interplay between polygonally patterned ground, ice-cemented permafrost, 2.1. Gully–polygon systems in the ADV and gullies on Mars. If strong morphological similarities exist be- tween gullies and polygons observed on Mars and those docu- In the inland mixed zone of the ADV, gullies are character- mented in the ADV, then this evidence would suggest that, to ized by a recessed alcove, sinuous channels with seasonally moist a first order, some martian gullies formed and were modified hyporheic zones (McKnight et al., 1999; Gooseff et al., 2002; by processes analogous to those occurring in ADV gully–polygon Levy et al., 2008b), and one or more distal fans (Figs. 1 and 2). The systems. Such morphological comparisons can help constrain the hyporheic zone is the area marginal to and beneath a stream that physical and hydrological properties of gully flow. We address exchanges water with the stream channel. Within and adjacent to concerns over equifinality (similar morphologies produced by dif- most gullies, dry, ice-free sediment overlies sediment that is ce- ferent processes) by focusing our analysis on morphological rela- mented by pore ice. The lower depth of this pore ice is unknown, tionships that illustrate specific spatial and stratigraphic relation- but its surface, called the “ice-cement table,” is fairly uniform and ships. occurs on average at about 15–20 cm depth (Bockheim et al., 2007; Levy et al., 2007b). Typically, the ice-cement table deepens with increasing distance from isolated snow banks and gully chan- 2. The Antarctic Dry Valleys (ADV) nels. In ADV areas with extensive pore ice, the ground commonly The Antarctic Dry Valleys are a suitable laboratory for under- shows well-developed thermal contraction crack polygons (Berg standing the geomorphological effects of water moving through and Black, 1966). All gullies save one observed in the Wright Valley temperature-dependent phase transitions (freezing, melting, sub- study site are present on polygonally-patterned slopes (Levy et al., limation, evaporation). On the basis of summertime air tempera- 2008b; Morgan et al., 2008). Across the ADV, active and recently ture, relative humidity, soil temperature, and soil moisture con- active gullies are typically present in association with contraction- ditions, the ADV region is divided into three microclimate zones. crack polygons; relict gullies in the coldest and driest portion of The three zones include a coastal thaw zone, an inland mixed the ADV that have been inactive for up to 10 My (Lewis et al., zone, and a stable upland zone (Marchant and Denton, 1996; 2007) typically lack polygons characteristic of the Wright Valley Marchant and Head, 2007). In the inland mixed zone, melting, site. The most common polygons present in the South Fork area are evaporation, and sublimation occur, whereas in the stable up- composite-wedge polygons (Levy et al., 2008b). Composite-wedge land zone, sublimation is the dominant phase transition (Ragotzkie polygons are those in which alternating layers of sand and ice fill and Likens, 1964; Marchant et al., 2002; Kowalewski et al., 2006; thermal contraction cracks (Berg and Black, 1966). Importantly, ar- Marchant and Head, 2007). The stable upland zone is interpreted eas in the Dry Valleys that lack pore ice within the upper ∼1m to be closely analogous to Mars under current, average climate of soils tend to lack all varieties of thermal contraction crack poly- conditions, whereas the inland mixed zone may be a good analog gons (Marchant and Head, 2007). for more clement martian conditions produced by orbitally-driven climate change (Marchant and Head, 2007) or for short duration 2.1.1. ADV gully water sources peak temperature and insolation conditions. Landforms that are Soil-temperature measurements indicate that melting along the produced in equilibrium with microclimate conditions in each zone ice-cement table in the inland mixed zone is uncommon, and Geologically recent gully–polygon systems on Mars and Earth 115 Fig. 2. Summary of key observations from gully–polygon systems in the South Fork of upper Wright Valley, Antarctica. (a) Polygon troughs accumulate wind-blown snowbanks that contribute meltwater to gully flow. (b) Trough excavated through dry colluvium across a downslope-oriented polygon trough. The ice-cement table is depressed along polygon troughs, channelizing flow over the ice-cement table.
Recommended publications
  • Formation of Gullies on Mars: Link to Recent Climate History and Insolation Microenvironments Implicate Surface Water Flow Origin
    Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin James W. Head*†, David R. Marchant‡, and Mikhail A. Kreslavsky*§ *Department of Geological Sciences, Brown University, Providence, RI 02912; ‡Department of Earth Sciences, Boston University, Boston, MA 02215; and §Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 Edited by John Imbrie, Brown University, Providence, RI, and approved July 18, 2008 (received for review April 17, 2008) Features seen in portions of a typical midlatitude Martian impact provide a context and framework of information in which their crater show that gully formation follows a geologically recent origin might be better understood. Assessment of the stratigraphic period of midlatitude glaciation. Geological evidence indicates relationships in a crater interior typical of many gully occurrences that, in the relatively recent past, sufficient snow and ice accumu- provides evidence that gully formation is linked to glaciation and to lated on the pole-facing crater wall to cause glacial flow and filling geologically recent climate change that provided conditions for of the crater floor with debris-covered glaciers. As glaciation snow/ice accumulation and top-down melting. waned, debris-covered glaciers ceased flowing, accumulation The distribution of gullies shows a latitudinal dependence on zones lost ice, and newly exposed wall alcoves continued as the Mars, exclusively poleward of 30° in each hemisphere (2, 14) with location for limited snow/frost deposition, entrapment, and pres- a distinct concentration in the 30–50° latitude bands (e.g., 2, 7, ervation. Analysis of the insolation geometry of this pole-facing 8, 14, 18).
    [Show full text]
  • Review of the MEPAG Report on Mars Special Regions
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/21816 SHARE Review of the MEPAG Report on Mars Special Regions DETAILS 80 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-37904-5 | DOI 10.17226/21816 CONTRIBUTORS GET THIS BOOK Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; FIND RELATED TITLES European Science Foundation Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Committee to Review the MEPAG Report on Mars Special Regions Space Studies Board Division on Engineering and Physical Sciences European Space Sciences Committee European Science Foundation Strasbourg, France Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by the Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency.
    [Show full text]
  • NASA Mars Exploration Strategy: “Follow the Water”
    Gullies on Mars -- Water or Not? Allan H. Treiman NASA Mars Exploration Strategy: “Follow the Water” Life W Climate A T Geology E Resources R Evidence of Water on Mars Distant Past Crater Degradation and Valley Networks ‘River’ Channels Flat Northern Lowlands Meteorites Carbonate in ALH84001 Clay in nakhlites MER Rover Sites Discoveries Hydrous minerals: jarosite! Fe2O3 from water (blueberries etc.) Silica & sulfate & phosphate deposits Recent Past (Any liquid?) Clouds & Polar Ice Ground Ice Valley Networks and Degraded Craters 1250 km River Channels - Giant Floods! 225 km 10 km craters River Channels - ‘Normal’ Flows 14 km 1 km River Channels from Rain? 700 km Science, July 2, 2004 19 km Ancient Martian Meteorite ALH84001 MER Opportunity - Heatshield and parachute. Jarosite - A Water-bearing Mineral Formed in Groundwater 3+ KFe3 (SO4)2(OH)6 2 Jarosite = K2SO4 + 3 Fe2O3 + 3 H2SO4 Hematite is in “Blueberries,” which still suggest water. Stone Mountain MER Spirit: Columbia Hills H2O Now: Clouds & Polar Caps Ground Ice – Mars Orbiter GRS Water abundances within a few meters depth of the Martian surface. Wm. Feldman. AAAS talk & Los Alamos Nat’l. Lab. Press Release, 15 Feb. 2003. (SPACE.com report, 16 Feb. 2003) So, Water on Mars !! So? Apparently, Mars has/had lots of water. Lots of evidence for ancient liquid water (> ~2 billion years ago), both surface and underground. Martian Gullies - Liquid Water or Not? Material flows down steep slopes, most commonly interpreted as water-bearing debris flows [Malin and Edgett (2000) Science 288, 2330]. Liquid water is difficult to produce and maintain near Mars’ surface, now.
    [Show full text]
  • Active Gullies and Mass Wasting on Equatorial Mars
    EPSC Abstracts Vol. 12, EPSC2018-457-1, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Active Gullies and Mass Wasting on Equatorial Mars Alfred S. McEwen (1), Melissa F. Thomas (1), Colin M. Dundas (2) (1) LPL, University of Arizona, Tucson, Arizona, USA, (2) USGS, Flagstaff, Arizona, USA Abstract Previously-reported equatorial topographic changes include slumps on the colluvial fans below active Mid- to high-latitude gully activity has been directly RSL sites in Garni Crater [5] and in Juventae Chasma observed at hundreds of locations on Mars [1]. Here [7]. These slumps all occurred near the coldest time we describe equatorial locations (25 latitude) with of year for these locations, Ls 0-120, which is gully-like or other topographic changes in before- opposite to the seasonality of RSL. and-after images from HiRISE. This activity is concentrated in sulfate-rich sedimentary units, which We are in the process of searching HiKER pairs over places constraints on the age and mechanical steep equatorial slopes, as well as acquiring new properties of these deposits. Hydrated sulfates may HiKER images. From the effort to date we have found that equatorial changes are most common in be the largest equatorial reservoir of H2O on Mars, and their friability makes them more attractive for in- sedimentary layers that may be rich is sulfates situ resource utilization (ISRU). according to mapping by orbital spectrometers [8], and have concentrated our search in these regions. 1. Introduction The most impressive changes we have found are on Mid- to high-latitude gully activity can be explained bright layered mounds in Ganges Chasma.
    [Show full text]
  • Water and Martian Habitability Results of an Integrative Study Of
    Planetary and Space Science 98 (2014) 128–145 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Water and Martian habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance “Planetary Evolution and Life” R. Jaumann a,b,n, D. Tirsch a, E. Hauber a, G. Erkeling c, H. Hiesinger c, L. Le Deit a,d, M. Sowe b, S. Adeli a, A. Petau a, D. Reiss c a DLR, Institute of Planetary Research, Berlin, Germany b Freie Universität Berlin, Institute of Geosciences, Berlin, Germany c Institut für Planetologie, Westfälische Wilhelms-Universität, Münster, Germany d Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Nantes, France article info abstract Article history: A study in context with the Helmholtz Alliance ‘Planetary Evolution and Life’ focused on the (temporary) Received 11 March 2013 existence of liquid water, and the likelihood that Mars has been or even is a habitable planet. Both Received in revised form geomorphological and mineralogical evidence point to the episodic availability of liquid water at the 10 February 2014 surface of Mars, and physical modeling and small-scale observations suggest that this is also true for Accepted 21 February 2014 more recent periods. Habitable conditions, however, were not uniform over space and time. Several key Available online 5 March 2014 properties, such as the availability of standing bodies of water, surface runoff and the transportation of Keywords: nutrients, were not constant, resulting in an inhomogeneous nature of the parameter space that needs to Mars be considered in any habitability assessment.
    [Show full text]
  • Mars Reconnaissance Orbiter's High Resolution Imaging Science
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E05S02, doi:10.1029/2005JE002605, 2007 Click Here for Full Article Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) Alfred S. McEwen,1 Eric M. Eliason,1 James W. Bergstrom,2 Nathan T. Bridges,3 Candice J. Hansen,3 W. Alan Delamere,4 John A. Grant,5 Virginia C. Gulick,6 Kenneth E. Herkenhoff,7 Laszlo Keszthelyi,7 Randolph L. Kirk,7 Michael T. Mellon,8 Steven W. Squyres,9 Nicolas Thomas,10 and Catherine M. Weitz,11 Received 9 October 2005; revised 22 May 2006; accepted 5 June 2006; published 17 May 2007. [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering 1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire 1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines.
    [Show full text]
  • Formation of Recent Martian Gullies Through Melting of Extensive Water
    letters to nature .............................................................. on cold, pole-facing slopes, can have features suggestive of flow (Fig. 2), are ,1–10 m thick, have a distinct, rounded edge marking Formation of recent martian gullies the upslope boundary (Fig. 2), and can occur in hollows at several through melting of extensive heights on the same knob (Fig. 1). These characteristics suggest a volatile-rich layer that was once more extensive but which has been water-rich snow deposits removed from all but the cold, pole-facing slopes2,14. The position of the upslope boundary is significant to this model, and probably Philip R. Christensen represents the highest point on the pole-facing slope where ice-rich material is stable under solar illumination. Department of Geological Sciences, Campus Box 876305, Arizona State Figure 3 illustrates the association of gullies with this volatile-rich University, Tempe, Arizona 85287-6305, USA mantling unit. Patches of smooth mantle remain on the pole-facing ............................................................................................................................................................................. (north) interior wall, but gullies incised into the western crater wall The observation of gullies on Mars indicates the presence of are observed where the mantle has been removed. Gullies also occur liquid water near the surface in recent times1,2, which is difficult in the mantle at several locations. The sequence of gully evolution is to reconcile with the current cold climate. Gullies have been present in this crater, beginning with a shallow depression in proposed to form through surface runoff from subsurface aqui- the mantle (northwest wall), progressing to gullies incised into fers1,3 or through melting of near-surface ice under warmer the mantle (north wall), and concluding with gullies incised into the conditions4.
    [Show full text]
  • Sulfur on Mars from the Atmosphere to the Core Heather B
    Sulfur on Mars from the Atmosphere to the Core Heather B. Franz1, Penelope L. King2, and Fabrice Gaillard3 1NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 2Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia 3CNRS-Université d’Orléans, ISTO, la rue de la Ferollerie, 45071 Orléans, France Abstract Observations of the martian surface from orbiting spacecraft and in situ landers and rovers, as well as analyses of martian meteorites in terrestrial laboratories, have consistently indicated that Mars is a sulfur-rich planet. The global inventory of sulfur, from the atmosphere to the core, carries widespread implications of potential geophysical, geochemical, climatological, and astrobiological significance. For example, the sulfur content of the core carries implications for core density; the speciation of igneous sulfur minerals reflects the oxidation state of the magma from which they formed; sulfur-bearing gases may have exerted control on the temperatures at the surface of early Mars; and the widespread availability of sulfur on Mars would have provided an abundant source for energy and nutrients to fuel sulfur-metabolizing microbes, such as those that arose during the emergence of primitive life on Earth. Here we provide an overview of martian sulfur and its relevance to these areas of interest, including a discussion of analytical techniques and results acquired by space missions and meteorite analyses to date. We review current studies modeling the potential effects of sulfur-bearing gases on the past martian climate and possible constraints on atmospheric composition implied by sulfur isotopic data. We also explore the importance of sulfur to the search for extinct or extant life on Mars.
    [Show full text]
  • Observations of Martian Gullies and Constraints on Potential Formation Mechanisms II
    Icarus 188 (2007) 324–344 www.elsevier.com/locate/icarus Observations of martian gullies and constraints on potential formation mechanisms II. The northern hemisphere Jennifer L. Heldmann a,∗, Ella Carlsson b,c, Henrik Johansson b, Michael T. Mellon d, Owen B. Toon e a NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA b Division of Physics, Luleå University of Technology, SE-97187 Luleå, Sweden c Swedish Institute of Space Physics, Box 812, SE-98128 Kiruna, Sweden d University of Colorado, Laboratory for Atmospheric and Space Physics, Boulder, CO 80309, USA e University of Colorado, Laboratory for Atmospheric and Space Physics, Program in Atmospheric and Oceanic Sciences, Boulder, CO 80309, USA Received 12 May 2006; revised 9 November 2006 Available online 3 January 2007 Abstract The formation process(es) responsible for creating the observed geologically recent gully features on Mars has remained the subject of intense debate since their discovery. We present new data and analysis of northern hemisphere gullies from Mars Global Surveyor data which is used to test the various proposed mechanisms of gully formation. We located 137 Mars Orbiter Camera (MOC) images in the northern hemisphere that contain clear evidence of gully landforms and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. Northern hemisphere gullies are clustered in Arcadia Planitia, Tempe Terra, Acidalia Planitia, and Utopia Planitia.
    [Show full text]
  • Examination of Gully Sites on Mars with the Shallow Radar Daniel Cahn Nunes,1 Suzanne E
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E10004, doi:10.1029/2009JE003509, 2010 Examination of gully sites on Mars with the shallow radar Daniel Cahn Nunes,1 Suzanne E. Smrekar,2 Ali Safaeinili,2,3 John Holt,4 Roger J. Phillips,5 Roberto Seu,6 and Bruce Campbell7 Received 17 September 2009; revised 21 January 2010; accepted 22 February 2010; published 12 October 2010. [1] Martian gullies, found on steep slopes along broad mid‐latitudinal bands, have morphologies resembling those of water‐carved gullies on Earth and have been dated to <10 Ma. As such, one of the leading hypotheses, though not unique, is that martian gullies formed by the flow of liquid water in the very recent geologic past. Since the permittivity of liquid water is about one order of magnitude higher than that of most silicates, it is plausible that subsurface geologic interfaces involving liquid water may be detected via ground penetrating radar. We have surveyed a substantive portion of the martian gully population with data from the Shallow Radar (SHARAD) instrument, on board the Mars Reconnaissance Orbiter (MRO), in search of strong subsurface radar reflections indicative of the presence of liquid water reservoirs, which would serve as sources to the flows occurring within gullies. No such reflections are found at most of the locations surveyed, suggesting that either liquid water is not likely present in detectable amounts or that the shallow martian subsurface is unusually electrically conductive (i.e., lossy) at all of the locations examined. Strong subsurface reflections occur in the vicinity of gullies at two locations in the northern lowlands: Arcadia and southeastern Utopia Planitiae.
    [Show full text]
  • Modern Mars' Geomorphological Activity
    Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity Serina Diniega, Ali Bramson, Bonnie Buratti, Peter Buhler, Devon Burr, Matthew Chojnacki, Susan Conway, Colin Dundas, Candice Hansen, Alfred Mcewen, et al. To cite this version: Serina Diniega, Ali Bramson, Bonnie Buratti, Peter Buhler, Devon Burr, et al.. Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity. Geomorphology, Elsevier, 2021, 380, pp.107627. 10.1016/j.geomorph.2021.107627. hal-03186543 HAL Id: hal-03186543 https://hal.archives-ouvertes.fr/hal-03186543 Submitted on 31 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity 2 3 Authors: Serina Diniega1,*, Ali M. Bramson2, Bonnie Buratti1, Peter Buhler3, Devon M. Burr4, 4 Matthew Chojnacki3, Susan J. Conway5, Colin M. Dundas6, Candice J. Hansen3, Alfred S. 5 McEwen7, Mathieu G. A. Lapôtre8, Joseph Levy9, Lauren Mc Keown10, Sylvain Piqueux1, 6 Ganna Portyankina11, Christy Swann12, Timothy N. Titus6,
    [Show full text]
  • Phyllosilicates and Sulfates on Mars
    Phyllosilicates and Sulfates on Mars Case Studies from Terra Cimmeria and Valles Marineris Inauguraldissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften am Fachbereich Geowissenschaften der Freien Universität Berlin Vorgelegt von Lorenz Wendt Berlin, 2012 I Ersttgutachter: Prof. Dr. Ralf Jaumann Fachbereich Geowissenschaften Institut für Geologische Wissenschaften Fachrichtung Planetologie und Fernerkundung und Deutsches Zentrum für Luft- und Raumfahrt DLR Institut für Planetenforschung, Abteilung Planetologie Zweitgutachter: Prof. Dr. Stephan van Gasselt Freie Universität Berlin Fachbereich Geowissenschaften Institut für Geologische Wissenschaften Fachrichtung Planetologie und Fernerkundung Datum der Disputation: 13. Juli 2012 III Eidesstattliche Erklärung Hiermit erkläre ich, die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel erstellt zu haben. Lorenz Wendt V Danksagung Ich möchte zuallererst Herrn Prof. Neukum meinen Dank aussprechen. Seine High Resolution Stereo Camera (HRSC), die er mit viel Durchhaltevermögen nach dem Absturz der Mars 96 Mission auf Mars Express auf die Reise schickte, gab mir überhaupt erst die Möglichkeit, mich an der Freien Universität Berlin mit der Geologie des Mars zu beschäftigen. Herr Prof. Neukum hat mir damit die Tür zur Planetenforschung geöffnet, und mir auch in vielerlei anderer Hinsicht Möglichkeiten zur wissenschaftlichen Weiterentwicklung eröffnet. Herrn Prof. van Gasselt danke ich für die Begutachtung der vorliegenden Arbeit, die fachlichen Diskussionen und die kritische Durchsicht meiner Manuskripte, sowie die menschliche Unterstützung an manch einem schwierigen Punkt, der sich im Lauf der Arbeit an dieser Dissertation ergab. Und natürlich danke ich ihm für die viele Mühe im Hintergrund, die er sich mit der Betreuung der wissenschaftlichen Anträge gemacht hat, aus denen viele meiner Kollegen und auch ich ihren Lebensunterhalt bestritten haben.
    [Show full text]