This is a preprint of an article accepted for publication in Proteins, © copyright 2005. Functional Evolution within a Protein Superfamily Research Article Zhengping Yi, ‡,# Olga Vitek, @ M. A. Qasim, ‡ Stephen M. Lu, ‡,& Wuyuan Lu, ‡, § Michael Ranjbar, ‡ Jiangtian Li,~ Michael C. Laskowski,% Chris Bailey-Kellogg, ^,* and Michael Laskowski, Jr. ‡ Departments of ‡ Chemistry, @ Statistics, ~ Industrial Engineering, and ^ Computer Sciences, Purdue University, West Lafayette, IN 47907-2038 % Department of Mathematics, University of Maryland Current Addresses: #School of Life Sciences, Mail Code 4501, Arizona State University, University Drive and Mill Avenue, Tempe, AZ 85287.
[email protected]; & Ventria Bioscience, 4110 N. Freeway Blvd., Sacramento, CA 95834; § Institute of Human Virology, University of Maryland, Baltimore, MD 21201 * To whom correspondence should be addressed: Chris Bailey-Kellogg, 6211 Sudikoff Laboratory, Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA. Phone: 603-646-3385. Fax: 603-646-1672. Email:
[email protected]. Key words: functional evolution, protein superfamilies, functional conservation, sequence hypervariability, specificity, protein-protein interactions Running head: Functional Evolution within a Protein Superfamily Abbreviations used: CHYM bovine chymotrypsin A PPE porcine pancreatic elastase CARL subtilisin Carlsberg HLE human leukocyte elastase SGPA Streptomyces griseus proteinase A SGPB Streptomyces griseus proteinase B SRA Sequence to Reactivity Algorithm OM1 avian ovomucoid