Accepted Manuscript

Total Page:16

File Type:pdf, Size:1020Kb

Accepted Manuscript Accepted Manuscript Diversity depends on scale in the forests of the Central Highlands of Vietnam Ha Thi Thanh Do, John C. Grant, Bon Ngoc Trinh, Heidi C. Zimmer, J. Doland Nichols PII: S2287-884X(17)30100-0 DOI: 10.1016/j.japb.2017.08.008 Reference: JAPB 252 To appear in: Journal of Asia-Pacific Biodiversity Received Date: 17 November 2016 Revised Date: 18 August 2017 Accepted Date: 24 August 2017 Please cite this article as: Thanh Do HT, Grant JC, Trinh BN, Zimmer HC, Nichols JD, Diversity depends on scale in the forests of the Central Highlands of Vietnam, Journal of Asia-Pacific Biodiversity (2017), doi: 10.1016/j.japb.2017.08.008. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Diversity depends on scale in the forests of the Central 2 Highlands of Vietnam 3 4 Ha Thi Thanh Do a*,b , John C. Grant a, Bon Ngoc Trinh b, Heidi C. Zimmer a, J. Doland Nichols a 5 6 a Forest Research Centre, Southern Cross University, Lismore NSW Australia 2480. * Corresponding author 7 [email protected] 8 b Silviculture Research Institute, Vietnam Academy of Forest Science, Bac Tu Liem, Ha Noi, Vietnam 9 MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 10 Abstract: Tropical forests are among the most diverse ecosystems on earth. They are also 11 the most threatened. The montane forests in the Central Highlands Region of Vietnam have 12 outstanding biodiversity and suite of unique species, yet we know little about them. This 13 study focuses on characterising natural forest at three sites: Dam Rong, Ha Nung and Yok 14 Don. We identified six discrete communities and their indicator species. One community, 15 Highland Floodplain forest, had tree species richness of up to 22 species/400 m 2 and 70 16 species/ha. In the lowland forests of Yok Don we identified three distinct communities, 17 despite that area having the lowest mean species richness (5 species/400 m 2). This study 18 illustrates the high species richness of the forests of Vietnam, and provides an important 19 record of the tree species (including rare and threatened species) at each of these sites. Our 20 community determinations can be used in future conservation management planning. 21 Moreover, the presence of three distinct tree commuMANUSCRIPTnities at Yok Don, which had the 22 lowest species richness, highlights that biodiversi ty should be assessed at multiple scales. 23 24 Keywords : Annamite mountains, Dam Rong, dipterocarp forest, Ha Nung, montane 25 rainforest, Yok Don 26 ACCEPTED ACCEPTED MANUSCRIPT 27 Introduction 28 29 The diversity of life on earth maintains the ecosystem services on which humans rely 30 (Chapin III et al 2000). Yet recent species losses implicate human actions as the cause of a 31 sixth mass extinction (Chapin III et al 2000). Resources for biodiversity conservation are 32 limited, and it is for this reason we must prioritise which areas are most critical for 33 protection (Mittermeier et al 1998). ‘Biodiversity hotspots’ provide one such prioritisation 34 strategy. Across the world, twenty-five regions have been named biodiversity hotspots. 35 Many of these high biodiversity areas with high levels of animal and plant endemism, are 36 threatened (Myers et al 2000). Tropical forests encapsulate more than half of the world’s 37 plant species and appear in 15 of the 25 biodiversity hotspots. They are also being depleted 38 faster than any other ecosystem (Myers 1988). MANUSCRIPT 39 Primary tropical forests, because of their high spe cies richness, constitute some of the most 40 complex ecosystems on earth (Gibson et al 2011; Wilson et al 2012) and are known for 41 being difficult to sample effectively and efficiently (Phillips et al 2003). Nevertheless, 42 distinct classification of tropical forests, as with all vegetation types, is fundamental to the 43 management, mapping and study of these systems (Biondi and Zuccarello 2004; De 44 Cáceres et al 2015). Classification of the world’s vegetation communities (and development 45 of classification methodology) has been underway for over a century (Mucina 1997). The 46 conceptualisationACCEPTED of discrete communities has been a large challenge (Looijen & van Andel 47 1999; Wilson & Chiarucci 2000), but there continues to be a focus on producing well- ACCEPTED MANUSCRIPT 48 functioning local vegetation classifications (cf. ill-fitting broad ones) that are fit for purpose 49 (e.g. conservation management) (Mucina 1997). 50 Historically, Thái (1963; 1999) classified Vietnam’s vegetation into five types and 14 51 subtypes. The first order classification was based on geography (highland or lowland), 52 canopy structure (closed or open), and climate. Vegetation communities were then 53 identified by edaphics, the level of disturbance and floristics, and finally identified by the 54 dominant species (or genera or families) (Thái 1963; 1999). The biodiversity of Southeast 55 Asia, which includes four biodiversity hotspots, has been under assault in recent decades 56 (Sodhi et al 2004). The region has the highest relative rate of deforestation of all major 57 tropical regions. Sodhi et al (2004) emphasised that the extent of this disaster may be far 58 greater than is currently understood, because of the paucity of research data. In addition, 59 biodiversity conservation research in the tropics MANUSCRIPTis chronically underfunded (Balmford and 60 Whitten 2003; Gardner et al 2008; Vieilledent et al 2016). The Indo-Burma biodiversity 61 hotspot (Myers et al 2000), is one of the four South-east Asian hotspots, and it includes all 62 of Vietnam. Most of this biodiversity occurs in Vietnam’s mountains, located in the north- 63 west, north-east and central regions, while the majority of flatlands have been cleared for 64 cultivation and urbanisation (Meyfroidt and Lambin 2008). 65 The Central Highlands region (CHR) in central Vietnam encapsulates most of the 66 remaining forests with high biodiversity value in Vietnam (Meyfroidt and Lambin 2008). 67 The CHR spansACCEPTED five provinces and is topographically dominated by the Annamite 68 Mountains (Day Truong Son). The montane rainforests of the northern and southern 69 Annamite Mountains have been highlighted by the WWF as ‘global ecoregions’ (Olson et ACCEPTED MANUSCRIPT 70 al 2001). The WWF designation indicates that these areas contain geographically unique 71 species, communities and conditions, with globally outstanding biodiversity (Olson et al 72 2001). Most famously, Annamite montane rainforests include regionally significant conifer 73 species richness, and the recently discovered large mammals, saola and giant muntjac 74 (Wikramanayake et al n.d.). In an analysis of biodiversity of ecoregions in the Indo-Pacific, 75 based on combined species richness and endemism, Krupnick and Kress (2003) found that 76 within the Indo-Burma biodiversity hotspot, the Southern Annamites montane rainforest 77 had the highest biodiversity. Biodiversity in the CHR is subject to pressures typical 78 throughout Vietnam, including deforestation as a result of immigration and the 79 development of market crops (Meyfroidt et al 2013), and dams, including Yali Falls dam – 80 the largest dam in the lower Mekong Basin (Polimeni et al 2014). Approximately half 81 (2,864,100 ha) of the CHR is forest, while approximMANUSCRIPTately one third (1,952,800 ha) is 82 devoted to agriculture of paddy rice, coffee, sugarcane and other commercial crops 83 (General Statistical Office of Vietnam 2013). 84 There are few studies of Vietnamese forests that have been published in the international 85 literature. Tran et al (2013) detailed the relationship between biodiversity and biomass of 86 major natural forest types in Vietnam. Blanc et al (2000) described communities and 87 succession of forests in Cat Tien National Park, Dong Nai Province. There are also two 88 studies that report on the spatial distributions (typically aggregated) of trees in the forests of 89 northern VietnamACCEPTED (Hai et al 2014; Nguyen et al 2016) and several studies that focus on the 90 influences of humans on threatened tree species (Dao and Hölscher 2015) and on plant 91 composition in general (Hoang et al 2011). These studies were conducted in northern ACCEPTED MANUSCRIPT 92 Vietnam. Despite outstanding biodiversity, very little has been published in the 93 international scientific literature about the tropical forest communities of Vietnam, and less 94 on attempts to characterise vegetation communities. Studies on the globally significant 95 CHR are particularly lacking. We aim to address this research gap. 96 This study describes the forest tree communities, and their indicator species, at three sites in 97 the little-studied, biologically significant Central Highlands region of Vietnam. 98 Biodiversity indices and species accumulation curves are presented for each community. To 99 support descriptions of these communities we present soil, climate and elevation data. 100 101 Materials and methods 102 Study area MANUSCRIPT 103 The Central Highlands Region (CHR) is located in the southeast of the Indochina Peninsula, 104 between longitude 11°11’ N (Lam Dong) to 15°25’ N (Kon Tum), and across longitude 105 107°12’ E ( Đak Nong) to 109°30’E. This region is at the southern end of Annamite Range, 106 Vietnam (Appendix Fig. 1). The majority of the CHR is from 100 to 800 m, although the 107 region also encompasses high mountains, including Ngoc-Linh (2,598 m). The CHR has 108 three main topographic classes: mountains, plateau and plain/delta (Nguy ễn et al 2000).
Recommended publications
  • Colona Rivularis (Malvaceae), a New Species from Thailand
    THAI FOREST BULL., BOT. 48(1): 77–81. 2020. DOI https://doi.org/10.20531/tfb.2020.48.1.13 Colona rivularis (Malvaceae), a new species from Thailand SOMRAN SUDDEE1,*, SUKID RUEANGRUEA1, MANOP POOPATH1, PREECHA KARAKET1, WITTAWAT KIEWBANG2 & DAVID J. MIDDLETON3 ABSTRACT Colona rivularis, a new species from North-Eastern and Eastern Thailand is described and illustrated. KEYWORDS: Eastern Thailand, floodplain, Grewioideae, North-Eastern Thailand, Tiliaceae. Accepted for publication: 11 June 2020. Published online: 25 June 2020 INTRODUCTION After a careful examination of the relevant literature and herbarium collections, the Colona species from This new woody climber was discovered during North-Eastern and Eastern Thailand does not match plant collecting trips to North-Eastern and Eastern any of the other known species in the genus and is Thailand between June 2013 and September 2018. described and illustrated here as a species new to The plants were found along streams, riverbanks science. and floodplain areas. Colona Cav. (Malvaceae), first described by DESCRIPTION Cavanilles (1797), is a genus of shrubs, trees and occasionally woody climbers. It belongs to the Colona rivularis Suddee, Poopath & Rueangr., sp. subfamily Grewioideae and is distributed in southern nov. China through Malaysia and the Philippine Islands Differs from the otherColona species by the to New Guinea and the eastern Pacific Islands (Bayer climbing habit when fully grown, the symmetrical & Kubitzki, 2003). Two species were recognised in leaf bases, and the fruits with narrow wings which the Flora of British India (Masters, 1874), two in are less than 3 mm wide. Type: Thailand. Bueng Kan, the Forest Flora of British Burma (Kurz, 1877), five Seka District, Chet Si waterfall, 219 m alt., 13 June in Flore Générale de l’Indo-Chine (Gagnepain, 2013, fl.,Suddee, Trisarasri, Puudjaa, Rueangruea, 1910), and four in the Flora of the Malay Peninsula Kiewbang, Hemrat & Pansamrong 4502 (holotype (Ridley, 1922).
    [Show full text]
  • Name in Thesis
    ปัจจัยที่มีผลต่อการกระจายของขนาด การงอก และความอยู่รอดของต้นกล้า และไม้หนุ่มของพืชวงศ์โปโดคาร์เปชีอี ณ อุทยานแห่งชาติเขาใหญ่ ประเทศไทย นางสาวเจมิกา อัครเศรษฐนนท์ วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาชีววิทยาสิ่งแวดล้อม มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2557 FACTORS AFFECTING SIZE DISTRIBUTION, SEED GERMINATION, AND SEEDLING AND SAPLING SURVIVAL OF PODOCARPACEAE AT KHAO YAI NATIONAL PARK, THAILAND Jemika Akkarasadthanon A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Biology Suranaree University of Technology Academic Year 2014 ACKNOWLEDGMENTS The grateful thanks and appreciation is given to my advisor, Dr. Paul J. Grote, for his consistent supervision, advice, encouragement, valuable suggestions, and support throughout my project. Special thanks are also extended to Assoc. Prof. Dr. Nooduan Muangsan, Asst. Prof. Dr. Pongthep Suwanwaree, and Asst. Prof. Dr. Adcharaporn Pagdee for valuable suggestions and guidance given as thesis co- advisors. I would like to thank all my thesis committee members for their suggestions and criticisms. I am also grateful to all the faculty and staff members of the School of Biology and colleagues of the Center for Scientific and Technological Equipment Building 1, 2 and 3, Suranaree University of Technology for their help and support throughout the period of this research work. I wish to thank Mr. Kunchit Srinopawan, and staff from Khao Yai National Park for their kind suggestions and helping for data collection according to the permit note number 0907.4/5923 on 31 March 2014 by the Department of National Parks Wildlife and Plant Conservation cited the National Research Council of Thailand 0002/1131 on 4 December 2013. I am grateful to Colin T. Strine and staff from Sakaerat Environmental Research Station for their helping me on data analysis.
    [Show full text]
  • Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
    SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof.
    [Show full text]
  • Fl. China 11: 121–124. 2008. 11. AGLAIA Loureiro, Fl. Cochinch. 1
    Fl. China 11: 121–124. 2008. 11. AGLAIA Loureiro, Fl. Cochinch. 1: 98, 173. 1790, nom. cons., not F. Allamand (1770). 米仔兰属 mi zi lan shu Peng Hua (彭华); Caroline M. Pannell Trees or shrubs, dioecious, young parts usually lepidote or stellately pubescent. Leaves alternate to subopposite, odd-pinnate, 3- foliolate, or rarely simple; leaflet blade margins entire. Flowers in axillary thyrses, small, usually globose. Calyx slightly or deeply 3– 5-lobed. Petals 3–5, short, concave, quincuncial or imbricate in bud, distinct or rarely basally connate and adnate to staminal tube. Stamens as many as or more than petals; staminal tube usually subglobose, obovoid, or cup-shaped with apex incurved, apical margin entire, crenate, or shallowly lobed; anthers 5 or 6(–12), included, slightly exserted, or rarely semiexserted. Disk absent. Ovary 1–3(or 4)-locular, with 1 or 2 ovules per locule; style short or absent; stigma ovoid or shortly cylindric. Fruit with fibrous pericarp, indehiscent with 1 or 2 locules or loculicidally dehiscent with 3 locules; locules without seeds or each containing 1 seed; pericarp often containing latex. Seeds usually surrounded by a colloidal and fleshy aril; endosperm absent. About 120 species: tropical and subtropical Asia, tropical Australia, Pacific islands; eight species in China. Aglaia is the only source of the group of about 50 known representatives of compounds that bear a unique cyclopenta[b]tetrahydrobenzofuran skeleton. These compounds are more commonly called rocaglate or rocaglamide derivatives, or flavaglines, and have been found to have anticancer and pesticidal properties. Since the first representative in this group was only discovered in 1982, this is one of the few recent examples of a completely new class of plant secondary metabolites of biological promise (see B.
    [Show full text]
  • Vegetation, Floristic Composition and Species Diversity in a Tropical Mountain Nature Reserve in Southern Yunnan, SW China, with Implications for Conservation
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.8 (2): 528-546, 2015 Research Article Vegetation, floristic composition and species diversity in a tropical mountain nature reserve in southern Yunnan, SW China, with implications for conservation Hua Zhu*, Chai Yong, Shisun Zhou, Hong Wang and Lichun Yan Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xue-Fu Road 88, Kunming, Yunnan 650223, P. R. China Tel.: 0086-871-65171169; Fax: 0086-871-65160916 *Corresponding author: H. Zhu, e-mail [email protected]; Fax no.: 86-871-5160916 Abstract Complete floristic and vegetation surveys were done in a newly established nature reserve on a tropical mountain in southern Yunnan. Three vegetation types in three altitudinal zones were recognized: a tropical seasonal rain forest below 1,100 m; a lower montane evergreen broad- leaved forest at 1,100-1,600 m; and a montane rain forest above 1,600 m. A total of 1,657 species of seed plants in 758 genera and 146 families were recorded from the nature reserve. Tropical families (61%) and genera (81%) comprise the majority of the flora, and tropical Asian genera make up the highest percentage, showing the close affinity of the flora with the tropical Asian (Indo-Malaysia) flora, despite the high latitude (22N). Floristic changes with altitude are conspicuous. The transition from lowland tropical seasonal rain forest dominated by mixed tropical families to lower montane forest dominated by Fagaceae and Lauraceae occurs at 1,100-1,150 m. Although the middle montane forests above 1,600 m have ‘oak-laurel’ assemblage characteristics, the temperate families Magnoliaceae and Cornaceae become dominant.
    [Show full text]
  • Vegetation Analysis of Oak Forests of Fambong Lho Wildlife Sanctuary in Sikkim Himalayas
    International Journal of Basic and Applied Biology p-ISSN: 2394-5820, e-ISSN: 2349-5839, Volume 6, Issue 3; July-September, 2019, pp. 192-197 © Krishi Sanskriti Publications http://www.krishisanskriti.org/Publication.html Vegetation analysis of Oak Forests of Fambong lho Wildlife Sanctuary in Sikkim Himalayas Subhankar Gurung1 and Arun Chettri2 1Research Scholar, Department of Botany, Sikkim University 2Assistant Professor, Department of Botany, Sikkim University E-mail: [email protected], [email protected] Abstract—A total of 4683 plants belonging to 62 families, 92 genera were enumerated from the study site. The topmost canopy was formed by Quercus lineata, Lithocarpus pachyphyllus, Quercus lamellosa, Castanopsis tribuloides while the second layer was formed by Symplocos lucida, Caruga pinnata. The highest adult tree species were recorded of Elaeocarpus sikkimensis (119 ind/ha) followed by Daphne sp. (56 ind/ha) and Eurya acuminata (46 ind/ha). The IVI for adult tree were highest of Elaeocarpus sikkimensis (19.4) followed by Eurya acuminata was highest for herbs (1.66), trees (1.54) and shrubs (1.19). Raunkiaer’s life (׳and Castanopsis hystrix (13.1). The species diversity (H (17.1) form assessment showed phanerophytes as the largest life forms (44.85%) followed by Chamaephytes (32.35%) and Geophytes (14.70%) indicating the prevalence of a phanerophytic phytoclimate in Fambong lho wildlife sanctuary (WS). The poor regeneration of oak as compared to Eurya acuminata (50.9 ind/ha), Symplocos lucida (30.9 ind/ha) indicates a high chances of change in species compositon and vegetation structure in the future. 1. Introduction Sikkim is a small state in the north-eastern part of India which is a repository of rich floral and faunal diversity [16].
    [Show full text]
  • Proceedings No
    FRIM Proceedings No. 14 PROCEEDINGS Seminar on Reclamation, Rehabilitation and Restoration of Disturbed Sites: Planting of National and IUCN Red List Species 15 – 17 August 2017 Kuala Lumpur Organised by: Forest Research Institute Malaysia Supported by: Korea Forest Service Asia Pacific Association of Forestry Research Institutions PROCEEDINGS SEMINAR ON RECLAMATION, REHABILITATION AND RESTORATION OF DISTURBED SITES: PLANTING OF NATIONAL AND IUCN RED LIST SPECIES 15 – 17 August 2017, Kuala Lumpur Editors WM Ho V Jeyanny HS Sik CT Lee 2017 © Forest Research Institute Malaysia 2017 All enquiries should be forwarded to: Director General Forest Research Institute Malaysia 52109 Kepong Selangor Darul Ehsan Malaysia Tel: 603-6279 7000 Fax: 603-6273 1314 http://www.frim.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data SEMINAR ON RECLAMATION, REHABILITATION AND RESTORATION OF DISTURBED SITES: PLANTING OF NATIONAL AND IUCN RED LIST SPECIES (2017 : Kuala Lumpur) PROCEEDINGS SEMINAR ON RECLAMATION, REHABILITATION AND RESTORATION OF DISTURBED SITES: PLANTING OF NATIONAL AND IUCN RED LIST SPECIES, 15-17 August 2017, Kuala Lumpur / Editors WM Ho, V Jeyanny, HS Sik, CT Lee. (FRIM PROCEEDINGS NO. 14) ISBN 978-967-2149-08-8 1. Forest restoration--Congresses. 2. Forest and forestry--Congresses. 3. Government publications--Malaysia. I. Ho, WM. II. V Jeyanny. III. Sik, HS. IV. Lee, CT. V. Institut Penyelidikan Perhutanan Malaysia. VI. Title. 634.9095 MS ISO 9001:2015 Certified CONTENTS Page KEYNOTE ADDRESSES Principle of Restoring Tropical
    [Show full text]
  • Vietnamese Conifers and Some Problems of Their Sustainable Utilization Ke Loc Et Al
    Vietnamese conifers and some problems of their sustainable utilization Ke Loc et al. Vietnamese conifers and some problems of their sustainable utilization Phan Ke Loc 1, 2, Nguyen Tien Hiep 2, Nguyen Duc To Luu 3, Philip Ian Thomas 4, Aljos Farjon 5, L.V. Averyanov 6, J.C. Regalado, Jr. 7, Nguyen Sinh Khang 2, Georgina Magin 8, Paul Mathew 8, Sara Oldfield 9, Sheelagh O’Reilly 8, Thomas Osborn 10, Steven Swan 8 and To Van Thao 2 1 University of Natural Science, Vietnam National University, Hanoi; 2 Institute of Ecology and Biological Resources; 3 Vietnam Central Forest Seed Company; 4 Royal Botanic Garden Edinburgh; 5 Royal Botanic Gardens, Kew; 6 Komarov Botanical Institute; 7 Missouri Botanical Garden; 8 Fauna & Flora International; 9 Global Trees Campaign; 10 Independent Consultant Introduction Vietnam is now recognized as one of the top ten global conifer conservation ‘hotspots’, as defined by the Conifer Specialist Group of the World Conservation Union (IUCN). Vietnam’s conifer flora has approximately 34 species that are indigenous to the country, making up about 5% of conifers known worldwide. Although conifers represent only less than 0.3% of the total number of higher vascular plant species of Vietnam, they are of great ecological, cultural and economic importance. Most conifer wood is prized for its high value in house construction, furniture making, etc. The decline of conifer populations in Vietnam has caused serious concern among scientists. Threats to conifer species are substantial and varied, ranging from logging (both commercial and subsistence), land clearing for agriculture, and forest fire. Over the past twelve years (1995-2006), Vietnam Botanical Conservation Program (VBCP), a scientific cooperation between the Missouri Botanical Garden in Saint Louis and the Institute of Ecology and Biological Resources in Hanoi, has conducted various studies on this important group of plants in order to gather baseline information necessary to make sound recommendations for their conservation and sustainable use.
    [Show full text]
  • An Update on Ethnomedicines, Phytochemicals, Pharmacology, and Toxicity of the Myristicaceae Species
    Received: 30 October 2020 Revised: 6 March 2021 Accepted: 9 March 2021 DOI: 10.1002/ptr.7098 REVIEW Nutmegs and wild nutmegs: An update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species Rubi Barman1,2 | Pranjit Kumar Bora1,2 | Jadumoni Saikia1 | Phirose Kemprai1,2 | Siddhartha Proteem Saikia1,2 | Saikat Haldar1,2 | Dipanwita Banik1,2 1Agrotechnology and Rural Development Division, CSIR-North East Institute of Prized medicinal spice true nutmeg is obtained from Myristica fragrans Houtt. Rest spe- Science & Technology, Jorhat, 785006, Assam, cies of the family Myristicaceae are known as wild nutmegs. Nutmegs and wild nutmegs India 2Academy of Scientific and Innovative are a rich reservoir of bioactive molecules and used in traditional medicines of Europe, Research (AcSIR), Ghaziabad, 201002, Uttar Asia, Africa, America against madness, convulsion, cancer, skin infection, malaria, diar- Pradesh, India rhea, rheumatism, asthma, cough, cold, as stimulant, tonics, and psychotomimetic Correspondence agents. Nutmegs are cultivated around the tropics for high-value commercial spice, Dipanwita Banik, Agrotechnology and Rural Development Division, CSIR-North East used in global cuisine. A thorough literature survey of peer-reviewed publications, sci- Institute of Science & Technology, Jorhat, entific online databases, authentic webpages, and regulatory guidelines found major 785006, Assam, India. Email: [email protected] and phytochemicals namely, terpenes, fatty acids, phenylpropanoids, alkanes, lignans, flavo- [email protected] noids, coumarins, and indole alkaloids. Scientific names, synonyms were verified with Funding information www.theplantlist.org. Pharmacological evaluation of extracts and isolated biomarkers Council of Scientific and Industrial Research, showed cholinesterase inhibitory, anxiolytic, neuroprotective, anti-inflammatory, immu- Ministry of Science & Technology, Govt.
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 08:53:11AM Via Free Access 130 IAWA Journal, Vol
    IAWA Journal, Vol. 27 (2), 2006: 129–136 WOOD ANATOMY OF CRAIGIA (MALVALES) FROM SOUTHEASTERN YUNNAN, CHINA Steven R. Manchester1, Zhiduan Chen2 and Zhekun Zhou3 SUMMARY Wood anatomy of Craigia W.W. Sm. & W.E. Evans (Malvaceae s.l.), a tree endemic to China and Vietnam, is described in order to provide new characters for assessing its affinities relative to other malvalean genera. Craigia has very low-density wood, with abundant diffuse-in-aggre- gate axial parenchyma and tile cells of the Pterospermum type in the multiseriate rays. Although Craigia is distinct from Tilia by the pres- ence of tile cells, they share the feature of helically thickened vessels – supportive of the sister group status suggested for these two genera by other morphological characters and preliminary molecular data. Although Craigia is well represented in the fossil record based on fruits, we were unable to locate fossil woods corresponding in anatomy to that of the extant genus. Key words: Craigia, Tilia, Malvaceae, wood anatomy, tile cells. INTRODUCTION The genus Craigia is endemic to eastern Asia today, with two species in southern China, one of which also extends into northern Vietnam and southeastern Tibet. The genus was initially placed in Sterculiaceae (Smith & Evans 1921; Hsue 1975), then Tiliaceae (Ren 1989; Ying et al. 1993), and more recently in the broadly circumscribed Malvaceae s.l. (including Sterculiaceae, Tiliaceae, and Bombacaceae) (Judd & Manchester 1997; Alverson et al. 1999; Kubitzki & Bayer 2003). Similarities in pollen morphology and staminodes (Judd & Manchester 1997), and chloroplast gene sequence data (Alverson et al. 1999) have suggested a sister relationship to Tilia.
    [Show full text]
  • What Trees to Plant?
    What Trees to Plant? Selecting Tree Species for Climate-resilient Forest Restoration and Management in the Chitwan-Annapurna Landscape, Nepal Hariyo Ban Program © WWF 2016 All rights reserved Any reproduction of this publication in full or in part must mention the title and credit WWF. Published by WWF Nepal PO Box: 7660 Baluwatar, Kathmandu, Nepal T: +977 1 4434820, F: +977 1 4438458 [email protected], www.wwfnepal.org/hariyobanprogram Authors Summary and recommendations: Eric Wikramanayake, Deepa Shree Rawal and Judy Oglethorpe Modeling study: Eric Wikramanayake, Gokarna Thapa and Keshav Khanal Germination and establishment study: Deepa Shree Rawal, Insight Engineering Consult P. Ltd. Editing Judy Oglethorpe Cover photo © WWF Nepal, Hariyo Ban Program/Eric Wikramanayake Citation Please cite this report as: WWF Nepal. 2016. What Trees to Plant? Selecting Tree Species for Climate-resilient Forest Restoration and Management in the Chitwan-Annapurna Landscape, Nepal. WWF Nepal, Hariyo Ban Program, Kathmandu, Nepal. Disclaimer This report is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of WWF and do not necessarily reflect the views of USAID or the United States Government. Contents Acronyms and Abbreviations ........................................................................................................................ ii Preface ........................................................................................................................................................
    [Show full text]
  • Nazrin Full Phd Thesis (150246576
    Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities.
    [Show full text]