Belsomra: a First Look Sleep Medicine’S Newest Addition Has a Novel Mechanism and an Undecided Future

Total Page:16

File Type:pdf, Size:1020Kb

Belsomra: a First Look Sleep Medicine’S Newest Addition Has a Novel Mechanism and an Undecided Future COVER FOCUS Belsomra: A First Look Sleep medicine’s newest addition has a novel mechanism and an undecided future. BY ZAC HAUGHN, SENIOR ASSOCIATE EDITOR n the early 2000s, investment analysts anticipated a boom THE LITERATURE in the insomnia drug market.1 Indiplon and ramelt- The FDA considered Belsomra effective after it was eon (Rozerem) were on the verge of release, and Serpacor studied in three clinical trials involving more than 500 par- was testing eszopiclone, a nonbenzodiazepine hypnotic ticipants. In the studies, patients taking the drug fell asleep Iagent that a glowing “luna moth” would introduce to the faster and spent less time awake during the remainder of public as Lunesta in one of the most memorable pharma- the night compared to people taking placebo.4 The Agency ceutical ad campaigns in recent history. noted Belsomra was not compared to other drugs approved Despite Lunesta’s success and Rozerem’s approval, the to treat insomnia, so it is unknown if there are differences in anticipated boom was barely audible. Indiplon fizzled out safety or effectiveness between Belsomra and other insom- and the FDA made more sleep medicine headlines for rolling nia medications. back dosing than rolling out approvals. All of which makes The trials included two similarly designed, three-month, their recent approval of suvorexant (Belsomra) more intrigu- randomized, double-blind, placebo-controlled, parallel- ing: the oral drug is a substantially different product. group studies. Researchers examined Belsomra 20 and 40mg New to pharmacy shelves in early 2015, Belsomra is indi- in patients in non-elderly adults (age < 65 years) and 15 and cated for the treatment of insomnia characterized by dif- 30mg in elderly patients (age ≥ 65 years).2 Belsomra was ficulties with sleep onset and/or sleep maintenance in four superior to placebo for sleep latency as assessed both objec- different strengths: 5, 10, 15, and 20 milligrams; it is contra- tively by polysomnography and subjectively by patient-esti- indicated in patients with narcolepsy. Its novel mechanism is mated sleep latency; it was also superior to placebo for sleep clear, but where it fits in is less so. maintenance, as assessed both objectively by polysomnogra- phy and subjectively by patient-estimated total sleep time.5 THE MECHANISM In the third study, a one-month crossover, Belsomra 10mg Belsomra is an orexin receptor antagonist, making it the and 20mg were superior to placebo for sleep latency and first approved drug of its type. Pharmacological approaches to sleep maintenance in non-elderly adults, as assessed objec- the treatment of insomnia have previously included GABA-A tively by polysomnography. receptor agonists (for example, the benzodiazepine temazepam In clinical trials of patients with insomnia treated with and the non-benzodiazepine zolpidem), melatonin receptor Belsomra 15mg or 20mg, the most common adverse reac- agonists (ramelteon), and histamine H1 receptor antagonists tion (reported in 5 percent or more of patients treated with (doxepin).2 The discovery that orexin was involved with sleep Belsomra and at least twice the placebo rate) was somno- was prompted by studies of narcolepsy; it is estimated 90 per- lence (Belsomra 7 percent; placebo 3 percent).5 cent of people with narcolepsy are orexin-deficient.3 At doses of 15 or 20mg, the incidence of somnolence was The orexin peptides A and B bind selectively to the orexin higher in females (8 percent) than in males (3 percent). Data 1 receptor (OX1R) and orexin 2 receptor (OX2R), and drugs from two studies showed several adverse reactions occurred that bind to both OX1R and OX2R are referred to as dual in women at an incidence of at least twice that in men: orexin receptor antagonists (DORAs).2 headache, abnormal dreams, dry mouth, cough, and upper “It works like nothing before it, by antagonizing the hypo- respiratory tract infection. Further, there is evidence of a cretin neurotransmitter system, which has the function of dose relationship for many of the adverse reactions, particu- promoting altertness,” said Erik K. St. Louis, MD, Head of larly for certain CNS reactions. Sleep Neurology at the Mayo Clinic and Foundation and Associate Professor of Neurology at the Mayo Clinic College A CAUTIOUS FDA of Medicine. “Belsomra therefore works against alertness so Many in the sleep community expected Belsomra to it promotes sleep by that novel mechanism. No previously receive FDA approval in the summer of 2013, and perhaps, marketed drug has done this.” at a different dose. 16 PRACTICAL NEUROLOGY MARCH 2015 COVER FOCUS The final rule, of course, is with the FDA: officials at an BELSOMRA (SUVOREXANT) QUICK NOTES advisory committee meeting in May 2013 said there was lit- • The recommended dose for Belsomra is 10mg, taken tle evidence to show Belsomra was more effective at higher no more than once per night and within 30 minutes of doses and considerable evidence to show it was less safe.8 going to bed, with at least seven hours remaining before the planned time of awakening. If the 10mg dose is well- WHERE IT FITS tolerated but not effective, the dose can be increased. At a presentation at the Barclays Global Healthcare The FDA’s maximum recommended dose is 20mg once Conference, CFO Rob Davis said Belsomra has surpassed daily. 1,000 weekly prescriptions since its Feb. 5 launch in the US. The product is currently rolling out in Japan, which puts • When combined with other CNS depressant drugs, dos- Belsomra’s potential market at some 2 billion doses per year, age adjustment of Belsomra and/or the other drug(s) combined. “Obviously,” noted Tracy Staton from Fierce may be necessary because of potentially additive effects. PharmaMarketing, “Belsomra has a long way to go.”9 • The recommended dose of Belsomra is 5mg when used “Its mechanism is probably the most intriguing point,” Dr. with moderate CYP3A inhibitors, and the dose generally St. Louis said. “I will be interested to determine if it may be a should not exceed 10mg in these patients. It is not rec- drug of choice for patients who have previously experienced ommended for use with strong CYP3A inhibitors. amnestic NREM parasomnias, i.e., sleep walking or sleep • Belsomra falls under controlled substance schedule IV, the eating,” he said. “On the other hand, in some patients who same class as Ambien (zolpidem) and others. also have hypersomnia symptoms, there may be a concern of possible adverse effect/reaction of precipitating cataplexy if the patient has previously undiagnosed narcolepsy, so Merck’s initial proposal to market up to 40mg was there is a note of caution to perhaps be cautious with its use scuttled over concerns of next-day somnolence, including in that subset of patients—i.e., insomnia with concurrent how those effects impacted driving ability. Studies showed hypersomnia.” impaired ability on next-morning driving performance 9 Although the studies do show it promotes sleep, Dr. Bazil hours after dosing, and patients using the 20mg strength said he is taking a wait-and-see approach because of the lack should be cautioned against next-day driving or activities of head-to-head studies against existing drugs like Ambien. requiring full mental alertness.5 “I suspect it will initially be used where existing treatments The issues also came during a time the Agency heightened don’t work or have problems; as we get more real world their focus on the next morning impairment of the so-called experience it may become more popular.” “z drugs” (Ambien, Sonata, etc.) and lowered dosing recom- Merck noted in a presentation that 30 percent of patients mendations. Data from clinical trials and driving simulation thus far are “continuous treaters” who were seeking new studies prompted the FDA “to better characterize the risk of alternatives.10 Indeed, Dr. St. Louis believes it could possibly driving impairment caused by specific blood levels of zolpi- be a replacement for patients who have built up a tolerance dem and to recognize the increased risk of driving-impairing to the “z drug” class. “I’ve anecdotally already had a couple blood levels of zolpidem in women.”6 In May of 2014, the of patient successes, at least short term, with very brittle Agency also decreased the recommended starting dose of insomnia or intolerance to other traditional agents,” he said. Lunesta to 1mg at bedtime. A study of Lunesta found that “That said, our paradigm now in chronic insomnia is mostly the previously recommended dose of 3mg can cause impair- to emphasize behavioral therapies, such as cognitive behav- ment to driving skills, memory, and coordination that can ioral therapy and sleep hygiene education.” n last more than 11 hours after receiving an evening dose.7 “The FDA is, I think, rather nervous about a new sleep 1. Crean, D. A history of insomnia medication and sleeping pills. http://www.sleepdex.org/medhistory.htm 2. Citrome, L. Suvorexant for Insomnia: A Systematic Review of the Efficacy and Safety Profile for This Newly Approved drug, given the recent reports of residual drowsiness in Hypnotic. Int J Clin Pract. 2014;68(12):1429-1441. women on zolpidem, and possibly some other areas such 3. Zeitzer JM, Nishino S, Mignot E. The neurobiology of hypocretins (orexins), narcolepsy and related therapeutic interven- tions. Trends Pharmacol Sci. 2006 Jul;27(7):368-74. as mood disorders and memory problems linked to some 4. FDA News Release. FDA approves new type of sleep drug, Belsomra; August 13, 2014. sleep drugs,” said Carl Bazil, MD, PhD, Director of Division 5. Belsomra® [package insert] Whitehouse Station, NJ. Merck; 2014. of Epilepsy and Sleep and Caitlin Tynan Doyle Professor of 6. FDA release. Questions and Answers: Risk of next-morning impairment after use of insomnia drugs; FDA requires lower recommended doses for certain drugs containing zolpidem; Jan.
Recommended publications
  • Drug Class Review Newer Drugs for Insomnia
    Drug Class Review Newer Drugs for Insomnia Final Update 2 Report October 2008 The Agency for Healthcare Research and Quality has not yet seen or approved this report. The purpose of Drug Effectiveness Review Project reports is to make available information regarding the comparative clinical effectiveness and harms of different drugs. Reports are not usage guidelines, nor should they be read as an endorsement of or recommendation for any particular drug, use, or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Update 1: July 2006 Original: December 2005 Susan Carson, MPH Marian S. McDonagh, PharmD Sujata Thakurta, MPA:HA Po-Yin Yen, MS Drug Effectiveness Review Project Marian McDonagh, PharmD, Principal Investigator Oregon Evidence-based Practice Center Mark Helfand, MD, MPH, Director Copyright © 2008 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Report Update 2 Drug Effectiveness Review Project The medical literature relating to the topic is scanned periodically (see http://www.ohsu.edu/xd/research/centers-institutes/evidence-based-policy- center/derp/documents/methods.cfm for scanning process description). Upon review of the last scan, the Drug Effectiveness Review Project governance group elected not to proceed with another full update of this report based on the information contained in the scan. Some portions of the report may not be up to date. Prior versions of this report can be accessed at the DERP website. Insomnia Page 2 of 87 Final Report Update 2 Drug Effectiveness Review Project TABLE OF CONTENTS INTRODUCTION ............................................................................................................. 6 Scope and Key Questions ......................................................................................................................
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Prefrontal Α7nachr Signaling Differentially Modulates Afferent
    Research Articles: Systems/Circuits Prefrontal α7nAChR signaling differentially modulates afferent drive and trace fear conditioning behavior in adolescent and adult rats https://doi.org/10.1523/JNEUROSCI.1941-20.2020 Cite as: J. Neurosci 2021; 10.1523/JNEUROSCI.1941-20.2020 Received: 27 July 2020 Revised: 29 November 2020 Accepted: 23 December 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 the authors 1 Prefrontal α7nAChR signaling differentially modulates afferent drive 2 and trace fear conditioning behavior in adolescent and adult rats 3 4 5 6 7 Running title: Prefrontal α7nAChR control of afferent drive 8 9 10 11 Anabel M. M. Miguelez Fernandez, Hanna M. Molla, Daniel R. Thomases, and Kuei Y. Tseng* 12 13 Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 14 15 16 17 *Corresponding Author: Kuei Y. Tseng, MD, PhD 18 Department of Anatomy and Cell Biology 19 University of Illinois at Chicago – College of Medicine 20 Chicago, IL 60612, USA 21 Email: [email protected] 22 23 24 Number of figures: 8 25 Number of tables: 0 26 Abstract: 250 27 Main text: 4,030 words (Introduction: 451; Methods: 1,205; Results: 979; Discussion: 1,395) 28 29 30 31 32 Acknowledgements 33 Supported by NIH Grants R01-MH086507 and R01-MH105488 to KYT, and UIC College of Medicine 34 funds to KYT.
    [Show full text]
  • Hypnotic Drug Risks of Mortality, Infection, Depression, and Cancer: but Lack of Benefit [Version 3; Peer Review: 2 Approved]
    F1000Research 2018, 5:918 Last updated: 03 AUG 2021 REVIEW Hypnotic drug risks of mortality, infection, depression, and cancer: but lack of benefit [version 3; peer review: 2 approved] Daniel F. Kripke University of California, San Diego, La Jolla, CA, 92037-2226, USA v3 First published: 19 May 2016, 5:918 Open Peer Review https://doi.org/10.12688/f1000research.8729.1 Second version: 17 Mar 2017, 5:918 https://doi.org/10.12688/f1000research.8729.2 Reviewer Status Latest published: 12 Nov 2018, 5:918 https://doi.org/10.12688/f1000research.8729.3 Invited Reviewers 1 2 Abstract This is a review of hypnotic drug risks and benefits. Almost every version 3 month, new information appears about the risks of hypnotics (update) report report (sleeping pills). The most important risks of hypnotics include excess 12 Nov 2018 mortality (especially overdose deaths, quiet deaths at night, and suicides), infections, cancer, depression, automobile crashes, falls, version 2 other accidents, and hypnotic-withdrawal insomnia. Short-term use of (update) report one-two prescriptions is associated with even greater risk per dose 17 Mar 2017 than long-term use. Hypnotics have usually been prescribed without approved indication, most often with specific contraindications, but version 1 even when indicated, there is little or no benefit. The recommended 19 May 2016 report report doses objectively increase sleep little if at all, daytime performance is often made worse (not better) and the lack of general health benefits is commonly misrepresented in advertising. Treatments such as the 1. Jerome M. Siegel, University of cognitive behavioral treatment of insomnia and bright light treatment California, Los Angeles, Los Angeles, USA of circadian rhythm disorders offer safer and more effective alternative approaches to insomnia.
    [Show full text]
  • Foods, Drugs, Oils, and Compounds Chapter 198 1
    Foods, Drugs, Oils, and Compounds Chapter 198 1 FOODS, DRUGS, OILS, AND COMPOUNDS CHAPTER 198 SENATE BILL NO. 2218 (Senators J. Lee, Kilzer, Robinson) (Representatives Glassheim, N. Johnson, R. Kelsch) AN ACT to create and enact a new section to chapter 19-02.1 and section 19-03.1-22.4 of the North Dakota Century Code, relating to requirements for prescribing and dispensing controlled substances and certain other specified drugs and requirements for dispensing controlled substances by means of the internet; to amend and reenact subsection 2 of section 19-02.1-15 and section 19-03.1-23 of the North Dakota Century Code, relating to the exclusion from the exemption for dispensing certain drugs and penalties for unlawful distribution or dispensing of controlled substances and counterfeit controlled substances by means of the internet; and to provide a penalty. BE IT ENACTED BY THE LEGISLATIVE ASSEMBLY OF NORTH DAKOTA: SECTION 1. A new section to chapter 19-02.1 of the North Dakota Century Code is created and enacted as follows: Requirements for dispensing controlled substances and specified drugs - Penalty. 1. As used in this section: a. "Controlled substance" has the meaning set forth in section 19-03.1-01. b. "In-person medical evaluation" means a medical evaluation that is conducted with the patient in the physical presence of the practitioner, without regard to whether portions of the evaluation are conducted by other practitioners, and must include one of the following actions: (1) The prescribing practitioner examines the patient at
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Indiplon Item No. 11638 CAS Registry No.: 325715-02-4 Formal Name: N-methyl-N-[3-[3-(2-thienylcarbonyl) O pyrazolo[1,5-a]pyrimidin-7-yl] S phenyl]-acetamide N Synonym: NBI 34060 N MF: C20H16N4O2S N FW: 376.4 Purity: ≥95% UV/Vis.: λmax: 230, 312, 347 nm O Supplied as: A crystalline solid N Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Indiplon is supplied as a crystalline solid. A stock solution may be made by dissolving the indiplon in the solvent of choice. Indiplon is soluble in organic solvents such as DMSO and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of indiplon in these solvents is approximately 14 and 25 mg/ml, respectively. Indiplon is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, indiplon should first be dissolved in DMF and then diluted with the aqueous buffer of choice. Indiplon has a solubility of approximately 0.5 mg/ml in a 1:1 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description γ-Aminobutyric acid (GABA) is an important inhibitory neurotransmitter in mammals.1 Indiplon is a pyrazolopyrimidine that acts as a high-affinity positive allosteric modulator of the GABAA receptor, potentiating GABA-activated chloride currents in a dose-dependent and reversible manner.2,3 Indiplon is 2,3 selective for α1 subunits (EC50 = 2.6 nM) as compared with α2, α3, or α5 (EC50 = 24, 60, and 77 nM).
    [Show full text]
  • Neurocrine Biosciences Announces Indiplon (NBI-34060) Data Presented at the Associated Professional Sleep Societies (APSS) Meeting
    Neurocrine Biosciences Announces Indiplon (NBI-34060) Data Presented at the Associated Professional Sleep Societies (APSS) Meeting June 12, 2002 Results Demonstrate No Significant Differences in the PK Profiles For Gender nor Age SAN DIEGO, June 12 /PRNewswire-FirstCall/ -- Neurocrine Biosciences, Inc. (Nasdaq: NBIX) announced today that data from two Phase I pharmacokinetic (PK) clinical trials with indiplon (NBI-34060) will be presented at the 16th Annual Meeting of Associated Professional Sleep Societies (APSS) in Seattle, June 10-12, 2002. The elderly and female population represents over 60% of the chronic insomnia patient market. A number of currently marketed sedative hypnotic agents have demonstrated significant differences in PK profiles for both these groups, resulting in slower drug clearance, higher plasma levels and longer half-lives which can lead to increased adverse effects. In two separate studies Neurocrine has evaluated the nighttime PK profile of indiplon in young vs. elderly as well as in males vs. female populations. The results from these clinical studies indicate that there were no significant differences in the pharmacokinetic profiles in the elderly subjects relative to younger adults after single and repeated dosing. In addition, no significant differences were observed in female subjects relative to males. This is in contrast to zolpidem where previous studies have shown significantly higher drug plasma levels in both the elderly and female subjects, which may be associated with increased adverse effects in these groups. These encouraging results for indiplon further support the potential for safer use in these major insomnia populations. Neurocrine is currently conducting one of the largest and the most comprehensive clinical program in insomnia with multiple Phase III clinical trials underway with two formulations of indiplon, Immediate Release (IR) and Modified Release (MR), to address the needs of patients with different types of insomnia.
    [Show full text]
  • Therapeutic Class Overview Sedative Hypnotics
    Therapeutic Class Overview Sedative Hypnotics Therapeutic Class • Overview/Summary: Insomnia is the most common sleep disorder in adulthood, affecting 33 to 69% of the population. It is estimated that five to ten percent of adults experience specific insomnia disorders.1,2 Insomnia is a disorder that results from a difficulty in initiating or maintaining sleep, waking too early, or sleep that is considered nonrestorative or poor quality.1-3 Furthermore, individuals with insomnia must also report at least one of the following types of daytime impairment as a result of the difficulties experienced with sleep: fatigue/malaise; impairment in memory, attention, or concentration; social or work-related dysfunction; poor school performance; irritability; day time sleepiness; loss of motivation, energy, or initiative; increased tendency for work or driving related accidents/errors; tension headaches; gastrointestinal symptoms; or concerns/worries about sleep. In individuals with insomnia, these complaints occur despite having sufficient opportunity and circumstances for sleep.1,2 According to the International Classification of Sleep Disorders, insomnia may be classified as one of the following: short-term insomnia, chronic insomnia or other insomnia (defined as patients who experience difficulty initiating or maintaining sleep but do not meet all of the criteria for either short-term or chronic insomnia).2 There are several classes of medications available for the management of insomnia.4-6 Doxepin (Silenor®) is a tricyclic antidepressant that
    [Show full text]
  • Portrait of DNA Methylated Genes Predictive of Poor Prognosis in Head
    www.nature.com/scientificreports OPEN Portrait of DNA methylated genes predictive of poor prognosis in head and neck cancer and the implication for targeted therapy Jessica Hier1, Olivia Vachon1, Allison Bernstein1, Iman Ibrahim1, Alex Mlynarek1, Michael Hier1, Moulay A. Alaoui‑Jamali2, Mariana Maschietto3 & Sabrina Daniela da Silva1,2* In addition to chronic infection with human papilloma virus (HPV) and exposure to environmental carcinogens, genetic and epigenetic factors act as major risk factors for head and neck cancer (HNC) development and progression. Here, we conducted a systematic review in order to assess whether DNA hypermethylated genes are predictive of high risk of developing HNC and/or impact on survival and outcomes in non‑HPV/non‑tobacco/non‑alcohol associated HNC. We identifed 85 studies covering 32,187 subjects where the relationship between DNA methylation, risk factors and survival outcomes were addressed. Changes in DNA hypermethylation were identifed for 120 genes. Interactome analysis revealed enrichment in complex regulatory pathways that coordinate cell cycle progression (CCNA1, SFN, ATM, GADD45A, CDK2NA, TP53, RB1 and RASSF1). However, not all these genes showed signifcant statistical association with alcohol consumption, tobacco and/or HPV infection in the multivariate analysis. Genes with the most robust HNC risk association included TIMP3, DCC, DAPK, CDH1, CCNA1, MGMT, P16, MINT31, CD44, RARβ. From these candidates, we further validated CD44 at translational level in an independent cohort of 100 patients with tongue cancer followed‑up beyond 10 years. CD44 expression was associated with high‑risk of tumor recurrence and metastasis (P = 0.01) in HPV‑cases. In summary, genes regulated by methylation play a modulatory function in HNC susceptibility and it represent a critical therapeutic target to manage patients with advanced disease.
    [Show full text]
  • Treating Insomnia with Medications J
    Pagel et al. Sleep Science and Practice (2018) 2:5 Sleep Science and Practice https://doi.org/10.1186/s41606-018-0025-z REVIEW Open Access Treating insomnia with medications J. F. Pagel1,4* , Seithikurippu R. Pandi-Perumal2 and Jaime M. Monti3 Abstract Insomnia is a conspicuous problem in modern 24 h society. In this brief overview, medications used to treat insomnia such as hypnotics, sedatives, medications inducing sedation as a side effect, medications directed at the sleep-associated circadian neuroendocrine system, and agents utilized in treating insomnia-inducing sleep diagnoses such as restless leg syndrome are discussed. The newer GABA-effective hypnotics are the only medications with demonstrated effectiveness in treating chronic insomnia with the majority of evidence supporting treatment efficacy for cognitive-behavioral therapy and short acting GABA-receptor agonists. In patients with comorbid insomnia the use of hypnotics can improve outcomes and potentially reduce morbidity and mortality associated with the use of more toxic medications. Except in individuals whose insomnia is secondary to circadian disturbance, mood disorder/depression and/or restless leg syndrome , there is minimal evidence supporting the efficacy of other medications used to treat insomnia despite their widespread use. Sedatives and other medications used off-label for sedative side-effects are a contributing factor to drug induced hypersomnolence, a factor in more than 30% of motor accident deaths. Hypnotic medications with low toxicity, addictive potential, minimal next day sleepiness, and an otherwise benign side-effect profile can be utilized safely and effectively to treat and improve function and quality of life for patients suffering from insomnia.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Uniform Controlled Substances Act
    CHAPTER 19-03.1 UNIFORM CONTROLLED SUBSTANCES ACT 19-03.1-01. Definitions. As used in this chapter and in chapters 19-03.2 and 19-03.4, unless the context otherwise requires: 1. "Administer" means to apply a controlled substance, whether by injection, inhalation, ingestion, or any other means, directly to the body of a patient or research subject by: a. A practitioner or, in the practitioner's presence, by the practitioner's authorized agent; or b. The patient or research subject at the direction and in the presence of the practitioner. 2. "Agent" means an authorized person who acts on behalf of or at the direction of a manufacturer, distributor, or dispenser. It does not include a common or contract carrier, public warehouseman, or employee of the carrier or warehouseman. 3. "Anabolic steroids" means any drug or hormonal substance, chemically and pharmacologically related to testosterone, other than estrogens, progestins, and corticosteroids. 4. "Board" means the state board of pharmacy. 5. "Bureau" means the drug enforcement administration in the United States department of justice or its successor agency. 6. "Controlled substance" means a drug, substance, or immediate precursor in schedules I through V as set out in this chapter. 7. "Controlled substance analog": a. Means a substance the chemical structure of which is substantially similar to the chemical structure of a controlled substance in a schedule I or II and: (1) Which has a stimulant, depressant, or hallucinogenic effect on the central nervous system which is substantially similar to or greater than the stimulant, depressant, or hallucinogenic effect on the central nervous system of a controlled substance in schedule I or II; or (2) With respect to a particular individual, which the individual represents or intends to have a stimulant, depressant, or hallucinogenic effect on the central nervous system substantially similar to or greater than the stimulant, depressant, or hallucinogenic effect on the central nervous system of a controlled substance in schedule I or II.
    [Show full text]