FIREWORKS Principles and Practice 3Rd Edition

Total Page:16

File Type:pdf, Size:1020Kb

FIREWORKS Principles and Practice 3Rd Edition FIREWORKS Principles and Practice 3rd Edition by The Reverend Ronald Lancaster M.B.E. M.A. (Durham) F.R.S.C. and contributions from Roy E.A. Butler M.A. (Cambridge) J. Mark Lancaster B.Sc. M.B.A. (Exeter) M.I.Exp.E. Takeo Shimizu D. Eng. (Tokyo) Thomas A.K. Smith M.A. D.Phil. (Oxford) CHEMICAL PUBLISHING CO., INC. New York, N.Y. © 1998 Chemical Publishing Co., Inc. New York ISBN 0-8206-0354-6 1st Edition, 1972 2nd Edition, 1992 3rd Edition, 1998 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permis- sion of the publisher and copyright owner. Printed in the United States of America Preface to the Third Edition The idea of this book took place thirty years ago, and it is gratifying that it still has a place in the firework world. The original intention was to produce a straightforward description of firework manufacture in the Western World. It was an attempt to describe what had happened in the past and to make suggestions for good practice at the present time. It was also an attempt to be fairly basic and thereby not offend friends and competitors in the trade who had to make an attempt to make a living at fireworks. Amateurs have wonderful enthusiasm and like true scientists need to know everything—for its own sake. They also want to share findings with everyone else. However, this is in complete contrast to commerce, where survival may depend on the quality of the product or the price at which it might be produced. Needless to say this "edge" can be very costly in terms of hours of research and capital expenditure. Recent years have seen the decline of the Western firework industry. The story is the same for almost every country where it has become uneconomical to make small fireworks compared to the price at which they can be bought from China. In the U.K., for example, there were ten manufacturers of small-shop fireworks in 1960, but there are none left in 1998. In the U.K. only Kimbolton Fireworks makes a full range of display fireworks with two other firms making special effects for the stage, etc. Much of the material from the Far East is cheap and only partly reliable. It is also a boon to the ever-increasing numbers of unspecial- ized (and often legally ignorant) importers who bring in and distribute explosives in much the same way as bananas. The Civil Service, in the iv Fireworks Principles and Practice U.K. at least, has been less than effective in the control of these illegali- ties in latter years. It was not so in the past, and while the EEC gets the blame for most things, it is clear that some of our partners in the EEC are much better 'at looking after their own' than is the case in the U.K. This industrial decline is a great tragedy, but it is generally agreed that there will be a place for the present for those manufacturers able to make a good quality product. Those people willing to make this capital outlay need a Civil Service which creates a level playing field. In 1998 a high profile manufacturer is constantly bombarded with rules, regulations, bureaucratic nonsense, and more and more costs at every stage. Every sizeable company has to employ unproductive safety ad- visers, subscribe to suppliers of safety information, make space for records and risk assessments. No one can deny that the simple desire for good health and safety management is laudable. In reality it has become a burden with those working in it leaving no stone unturned and sometimes reaching absurdum as they justify their existence. In the meantime companies disappear or transfer their production to the Third World. All this time, the importers increase in number and have the financial gain. It is difficult to predict what the next few years will bring. Importa- tions from the Far East will increase, but it is clear that there are far too many Chinese exporters. Most of them are selling much the same products, and it is always more important to remain competitive than to produce superior products. A Chinese supplier may well sell the same products to several people in a limited market—a policy doomed to a very limited lifespan for obvious reasons. Once again I am grateful to the many friends who have helped to make this edition possible. In particular to friends mentioned in Chapter 1 who have filled out the details about the firework scene in their own countries. I would particularly mention Dr Takeo Shimizu (b. 1912) whom I have known for over thirty years and who has been absolutely prolific in his research for the firework trade. What would we have done without him? Mention must also be made of the late Chris Philip who died in January 1998. The importation fireworks in the U.K had always been a major problem because of the prohibition on the admixture of chlor- ates and sulfur. However, Chris Philip set out to challenge a somewhat negative attitude towards importation at that time. A total ban had been easy to control, but his success then has done no favours to the home- Preface to the Third Edition v based industry some thirty years later. It has not shaken the Government into being more proactive in controlling the quality of what can be sold from abroad up to 1997 either. Nearer home I am grateful to Mark Lancaster, Dr Tom Smith, Tony Cardell, Roy Butler, and John Bennett, the Editor of the excellent U.K. magazine 'Fireworks'. This magazine has done so much to encourage an interest in fireworks and to keep some of the history intact. Lastly, to my wife Kath who has always maintained that I eat and sleep fire- works and talk about them in bed—sometimes. Ronald Lancaster 7, High Street Kimbolton Huntingdon Cambs PE18 OHB U.K. Preface to Second Edition It is now over sixteen years since this book was first put together. Progress there has been, but fundamentally fireworks are much the same as before. Over the last few years one or two important new books have been published along with a number of useful essays on individual topics. Reference has been made to these in the bibliography. I am grateful to a number of friends who have helped with this revision particularly Robert Cardwell the Editor and creator of Pyro- technica. Robert has done much to further the firework cause by the production of this interesting and scholarly periodical. I am grateful to him for revising our notes on the contemporary American firework industry. Similarly Bill Withrow of Euless, Texas, a good friend over the years has been tireless in his help and encouragement to get this book completed. Mention must also be made of the late Max P. Vander Horck. Max did so much to encourage the writing of the First Edition and when it was completed he maintained that if Weingart's Pyrotech- nics was the firework maker's Bible, then 'Fireworks, Principles and Practice' was the New Testament. I am also grateful to Dr. Tom Smith, Mr. L. Jackson and to Mark Lancaster for their help with photographs and drawings, to Tony Cardell and Walter Zink for some extremely helpful information, to Mrs. G. Crocker for allowing material to be used from the Gunpowder Mills Study Group and to Mr. J. Salmon for his excellent drawings of the Faversham Gunpowder Mills. Last and not least to Mr. Bryan Earl who kindly allowed me to quote from his splendid, scholarly work 'Cornish Explosives'. Ronald Lancaster 7, High Street Kimbolton Huntingdon England. Preface For many years Weingart's "Pyrotechnics" has been regarded as the amateur firework enthusiast's Bible, and it was news of the re-print of this work in 1968 which prompted the writer to suggest a revision of it. As it happened the suggestion came too late with the result that a new work has evolved. From the beginning the writer was anxious to share the task of writing this work, and accords grateful thanks to the other three contributors:- Dr. Shimizu, who very willingly translated part of his book "Hanabi" from the original Japanese. The script of chapter 19 is more or less as he translated it, and a great credit to him. To the best of our knowledge this was the first treatise on Japanese firework manufacture in the En- glish language. Ronald Hall, one of my long-standing firework friends who has long experience as a chemist in the explosives and firework industries. Has also been responsible for the introduction of polymerizing resins into commercial firework manufacture and is especially interested in foren- sic aspects of explosives. Last but not least my thanks go to my teaching colleague and friend Roy Butler; an able firework maker who has given even more of his time to write a precis of available historical records, adding also more up-to-date material. Turning to the general preparation of the book, I would like to express grateful thanks to Peter Smout Esq., M.A., Senior Master at Kimbolton School who has so kindly read through the script and made many helpful suggestions. Helpful comments have also been made by Peter Watson, Esq., B.Sc. Senior Chemistry Master at Kimbolton School, Dr. Herbert Ellern, the x Fireworks Principles and Practice author of Military and Civilian Pyrotechnics, and Mr.
Recommended publications
  • ENCYCLOPEDIA of CHEMISTRY & EXPLOSIVES MATERIALS Abelite
    ENCYCLOPEDIA OF CHEMISTRY & EXPLOSIVES MATERIALS A Abelite An explosive, composed mainly of ammonium nitrate and trinitrotoluene. Absolute Zero The least possible temperature for all substances. Generally accepted as -273.15ÝC AC Alternating current. Acceptance Quality Level (AQL) A nominal value expressed in terms of percentage defective per hundred units, by which a group of sampling plans is identified. The sampling plans so identified have a high probability of accepting lots containing material with a process average not greater than the designed value of the AQL. Acetin [CH3COOC3H5(OH)2] also known as glyceryl monoacetate, a colourless hydroscopic liquid. Used as an intermediate for various explosives, and a solvent for various dyes. Acetone [CH3COCH3] colourless, flammable liquid. Acetone is widely used in industry as a solvent for many organic substances. It is used in making synthetic Resins and fillers, smokeless powders, and many other organic compounds. Boiling Point 56ÝC. Useful solvent for acetylene, also known as the simplest saturated ketone. Acetylene or ethyne, a colourless gas and the simplest alkyne Hydrocarbon. Explosive on contact with air, it is stored dissolved under pressure in Acetone. It is used to make neoprene rubber, plastics, and resins. The oxyacetylene torch mixes and burns oxygen and acetylene to produce a very hot flame-as high as 3480ÝC (6300ÝF)-that can cut steel and weld iron and other metals. Produced by the action of wateron calcium carbide and catalytically from naphtha. Acetylide A carbide formed by bubbling acetylene through a metallic salt solution, eg cuprous acetylide, Cu2C2. These are violently explosive compounds. Acid Any substance capable of giving up a proton; a substance that ionizes in solution to give the positive ion of the solvent; a solution with a pH measurement less than 7.
    [Show full text]
  • WPA Newsletter, Volume 25, Issue 1
    WPA Newsletter, Volume 25, Issue 1 Table of Contents Corporate Members 4 Editorials 5 Passages 8 Winter Blast Round-Up 12 Burro Races 16 Guest photographer Kelly 18 Maker Faire 27 Cover Picture - “BANG! BANG!” News from Here and There 28 Photo by Kelly Dreller DO IT announcement 31 Elected Officers of the WPA New Rocket Policy 33 President: Steve Wilson Moapa 33 Vice President: Greg Dandurand Blackfinger’s Insert Workshop 34 VP Publications: Pete Hand Treasurer: Richard Haase Secretary: Dennis Miele THE SMALL PRINT The Western Pyrotechnic Association, Inc., also known as the WPA, is a non-profit group of fireworks professionals and their apprentices. This newsletter is a vehicle for their exchange of information in this craft and the right to publish this information is guaranteed by the Constitution of the United States of America. Nonetheless, readers are urged to learn and obey all laws and regulations of all federal, state, and local jurisdictions and of their agencies and representatives. Some information herein may contain incom- plete descriptions of fireworks techniques based on the experience of its author(s) in a controlled environment with circumstances, and conditions different from the reader. Readers must form their own opinion as to the application of this information. This information is considered documentary in nature and no opinion is given as to its suitability or use. No warranties are made either expressed or implied, including but not limited to warranties of the accuracy of the information herein. The WPA is not responsible for the opinions of authors or mistakes in printing. All information is intended solely for viewing by members of the Western Pyrotechnic Association, Inc.
    [Show full text]
  • Black Match” …………………………………………… P
    Selected Pyrotechnic Publications of K.L. and B.J. Kosanke Part 5 (1998 through 2000) This book contains 134 pages Development of a Video Spectrometer …………………………………………… P. 435-445. Measurements of Glitter Flash Delay, Size and Duration ……………………… P. 446-449. Lift Charge Loss for a Shell to Remain in Mortar ……………………………… P. 450-450. Configuration and “Over-Load” Studies of Concussion Mortars ……………… P. 451-463. Quick Match – A Review and Study ……………………………………………… P. 464-479. Pyrotechnic Primes and Priming ………………………………………………… P. 480-495. Dud Shell Risk Assessment: NFPA Distances …………………………………… P. 496-499. Dud Shell Risk Assessment: Mortar Placement ………………………………… P. 500-503. Performance Study of Civil War Vintage Black Powder ……………………… P. 504-509. CAUTION: Very Fast “Black Match” …………………………………………… P. 510-512. Peak In-Mortar Aerial Shell Accelerations ……………………………………… P. 513-516. Firing Precision for Choreographed Displays …………………………………… P. 517-518. Sticky Match and Quick Match: Temperature Dependent Burn Times ……… P. 519-523. Mortar Separations in Troughs and Drums …………………………………… P. 524-530. Preliminary Study of the Effect of Ignition Stimulus on Aerial Shell Lift Performance …………………………………………………… P. 531-535. Pyrotechnic Particle Morphologies – Metal Fuels ……………………………… P. 536-542. Peak Mortar Pressures When Firing Spherical Aerial Shells …………………… P. 543-544. Indoor Pyrotechnic Electrostatic Discharge Hazard …………………………… P. 545-545. Pyrotechnic Particle Morphology – Low Melting Point Oxidizers ……………… P. 546-556. An earlier version
    [Show full text]
  • BRAVEBENBOW 2017 R1 Comp
    For my wife Petra without whose help this book would not have been possible, and for my children, Carol-Lynn and Sean, and grandchildren, Zachary, Eli and Griffin. Cover by Petra Benbow BRAVE BENBOW By William A. Benbow (Copyright 1987 by William A. Benbow All rights reserved Registration NO. 360746) CANADIAN CATALOGUING IN PUBLICATION DATA Benbow, William A. Brave Benbow Bibliography: ISBN 0-9692991-0-9 LIBRARY OF CONGRESS CATALOG CARD NUMBER: 87-670036 e-Edition 2017 www.bravebenbow.com [email protected] Victoria, BC, Canada Preface Once upon a time, my father told me a tale of a renowned ancestor, an Admiral in the British Navy, who was part pirate and part hero, who had fought bravely on the Spanish Main, captured many enemy ships and died in a famous battle in the West Indies, in the midst of a mutiny. This family legend has led me on two quests, to search for my roots and to find Admiral Benbow. William A. Benbow Victoria, B.C. June 1988. ADMIRAL JOHN BENBOW Benbow! On the roll of fame Thine stands forth a honoured name; Britain mourned her gallant son, Wilst recounting trophies won; England’s Queen with pity moved Mourned the hero England loved. Many a year has passed since then, Many a race of gifted men: Heroes, statesmen, princes, kings, Borne on Time’s relentless wings In their turn have passed away, Mingling with their kindred clay. Yet the memory of the brave Dies not with the opening grave, But like some sweet perfume cast Lives, all fragrant, to the last.
    [Show full text]
  • Rushlight Index 1980-2006
    Rushlight Cumulative Index, 1980 – 2006 Vol. 46 – 72 (Pages 2305 – 3951) Part 1: Subject Index Page 2 Part 2: Author Index Page 21 Part 3: Illustration Index Page 25 Notes: The following conventions are used in this index: a slash (/) after the page number indicates the item is an illustration with little or no text. MA before an entry indicates a notice of a magazine article; BR indicates a book review. Please note that if issues were mispaginated, the corrected page numbers are used in this index. The following chart lists the range of pages in each volume of the Rushlight covered by this index. Volume Range of Pages Volume Range of Pages 46 (1980) 2305-2355 60 (1994) 3139-3202 47 (1981) 2356-2406a 61 (1995) 3203-3261 48 (1982) 2406b-2465 62 (1996) 3262-3312 49 (1983) 2465a-2524 63 (1997) 3313-3386 50 (1984) 2524a-2592 64 (1998) 3387-3434 51 (1985) 2593-2679 65 (1999) 3435-3512 52 (1986) 2680-2752 66 (2000) 3513-3569 53 (1987) 2753-2803 67 (2001) 3570-3620 54 (1988) 2804-2851 68 (2002) 3621-3687 55 (1989) 2852-2909 69 (2003) 3688-3745 56 (1990) 2910-2974 70 (2004) 3746-3815 57 (1991) 2974a-3032 71 (2005) 3816-3893 58 (1992) 3033-3083 72 (2006) 3894-3951 59 (1993) 3084-3138 1 Rushlight Subject Index Subject Page Andrews' burning fluid vapor lamps 3400-05 Abraham Gesner: Father of Kerosene 2543-47 Andrews patent vapor burner 3359/ Accessories for decorating lamps 2924 Andrews safety lamp, award refused 3774 Acetylene bicycle lamps, sandwich style 3071-79 Andrews, Solomon, 1831 gas generator 3401 Acetylene bicycle lamps, Solar 2993-3004
    [Show full text]
  • Pyrotechnic Serpents
    Edited by Jack & Dorothy Drewes American Fireworks News THE BEST OF AFN III Edited by Jack & Dorothy Drewes Copyright ©1995 by Rex E. & S. P., Inc. Published by American Fireworks News HC67 - Box 30 Dingmans Ferry, PA 18328 All rights reserved. ISBN 0-929931-11-4 Printed in The United States of America 1st printing, April, 1995. 2nd printing, March, 1996 3rd printing, March, 1998 Warning: This publication contains descriptions and pictures of fireworks. The information contained herein is based on the authors' experiences using specific tools and ingredients under specific conditions not necessarily described in the articles. No warranties are made, given or implied. Readers are cautioned that they must form their own opinion as to the application of any information contained herein. 2 CONTENTS BASICS, SMALL DEVICES DISPLAY GOODS & OPERATIONS Getting a Pyro Education 7 The Basic Technician, #1, 2, 3 62 Fireworks and Me 8 Unexplained Explosion & Probability Lightning & Thunder Fountain 9 Theory 66 Construction Techniques of %" Roman Pyro Emitting Device 67 Candle Using Round Stars 10 Fireworks on a Budget 68 Bigger & Better Breaks with Small Ball Vis-A-Vis Fountains 70 Shells 11 Neon Blue & Recumbent Lances 71 Designing Portfires 12 Molecular Sieves as Cores 72 Fun with Jumping Jacks 14 Lance Development 73 Tischfeuerwerk 15 Illumination Breaks & Shimmering Bike Wheel Pyro 16 Curtains 73 Ground Bloom Flower Wheel 16 Pyro Surprises 74 Easy Sun 18 Push Sticks Aid Low Breaks 75 Class C Repeaters 19 Eight Experiments in Non-Commercial Exploding
    [Show full text]
  • Washington State Patrol Crime Laboratory Division Materials
    Washington State Patrol Crime Laboratory Division Materials Analysis EXPLOSIVES TRAINING MANUAL May 2018 Washington State Patrol Crime Laboratory Division Explosives Laboratory Training Manual Contents 1 INTRODUCTION ..................................................................................................................................... 7 1.1 PURPOSE AND SCOPE ................................................................................................................... 7 1.2 ORGANIZATION OF THE TRAINING MANUAL ................................................................................ 7 2 EXPLOSIVES ANALYSIS OVERVIEW ........................................................................................................ 9 2.1 OBJECTIVES ................................................................................................................................... 9 2.2 OVERVIEW ..................................................................................................................................... 9 2.2.1 Definitions ............................................................................................................................. 9 2.3 SUGGESTED READINGS ............................................................................................................... 11 2.3.1 Introduction ........................................................................................................................ 11 2.3.2 Scene ..................................................................................................................................
    [Show full text]
  • Mediterranea, 2006, Pp
    Collana diretta da Orazio Cancila Collana diretta da Rossella Cancila 1. Antonino Marrone, Repertorio della feudalità siciliana (1282-1390), 2006, pp. 560 21. Orazio Cancila, Nascita di una città. Castelbuono nel secolo XVI, 2013, pp. 902 2. Antonino Giuffrida, La Sicilia e l’Ordine di Malta (1529-1550). La centrali tà della 22. Claudio Maddalena, I bastoni del re. I marescialli di Francia tra corte diplomazia e guerra durante la successione spagnola, 2013, pp. 323 periferia mediterranea, 2006, pp. 244 23. Storia e attualità della Corte dei conti. Atti del convegno di studi, Palermo 29 3. Domenico Ligresti, Sicilia aperta. Mobilità di uomini e idee nella Sicilia spagnola (secoli novembre 2012, 2013, pp. 200 XV-XV1I), 2006, pp. 409 24. Rossella Cancila, Autorità sovrana e potere feudale nella Sicilia moderna, 2013, pp. 306 4. Rossella Cancila (a cura di), Mediterraneo in armi (secc. XV-XV1I1), 2007, pp. 714 25. Fabio D'Angelo, La capitale di uno stato feudale. Caltanissetta nei secoli XVI e XVII, 2013, 5. Matteo Di Figlia, Alfredo Cucco. Storia di un federale, 2007, pp. 261 pp. 318 6. Geltrude Macrì, I conti della città. Le carte dei razionali dell’università di Palermo (secoli I testi sono consultabili (e scaricabili in edizione integrale) nella sezione Quaderni del XVI-XIX), 2007, pp. 242 nostro sito (www.mediterranearicerchestoriche.it). 7. Salvatore Fodale, I Quaterni del Sigillo della Cancelleria del Regno di Sicilia (1394- 1396), 2008, pp. 163 8. Fabrizio D’Avenia, Nobiltà allo specchio. Ordine di Malta e mobilità sociale nella Sicilia moderna, 2009, pp. 406 9. Daniele Palermo, Sicilia.
    [Show full text]
  • DEFINITIONS and TYPES of CONSUMER FIREWORKS Summary of Survey Responses C.O.B., October 19, 2007
    FLORIDA DEPARTMENT OF AGRICULTURE AND CONSUMER SERVICES FLORIDA CONSUMER FIREWORKS TASK FORCE DEFINITIONS AND TYPES OF CONSUMER FIREWORKS Summary of Survey Responses C.O.B., October 19, 2007 Members Responding: Michelle Berger, Rickey Farrell, Tommy Glasgow, Les Hallman, Mike Long, Ira Schwartz Ken Welch Members Not Responding: Trey McCarley, Definition for “Consumer Fireworks” Respondents provided a definition that each would like the Task Force to evaluate at the October 25, 2007 meeting. o Consumer fireworks are those approved on a list maintained by the Florida State Fire Marshals office and which are sold for individual use. o Any small firework device designed to produce visible effects by combustion and which must comply with the construction, chemical composition, and cautionary labeling regulations of the CPSC, as set forth in title 16, Code of Federal Regulations, parts 1500 and 1507. Some small devices designed to produce audible effects are included, such as whistling devices, ground devices containing 50mg or less of explosive materials, and aerial devices containing 130mg or less of explosive materials. The U.S. Dept of Transportation (DOT) at 49 CFR 172.01 classifies consumer fireworks as fireworks UN0336 and UN0337. (Not all fireworks covered by this definition are allowed for consumer use in the State, however may be allowable for wholesale under certain conditions defined within this law.) o Retail purchase of product that does not explode or launch. o The term "consumer fireworks" shall mean and include: Any combustible
    [Show full text]
  • APA STANDARD 87-1 Contents 1
    APA STANDARD 87-1 Contents 1. INTRODUCTION..............................................................................................1 2. DEFINITIONS.....................................................................................................1 3. REQUIREMENTS FOR CONSUMER FIREWORKS, NOVELTIES AND THEATRICAL PYROTECHNICS .....................................................................4 3.1 Types of Consumer Fireworks.......................................................................5 3.2 Types of Novelties .........................................................................................8 3.4 Other Devices ................................................................................................9 3.6 Specific Requirements for Consumer Fireworks...........................................10 3.7 Prohibited Chemicals and Components.........................................................12 3.8 Requirements for Theatrical Pyrotechnics ....................................................13 3.9 Approval ........................................................................................................13 3.10 Marking and Labeling..................................................................................14 4. REQUIREMENTS FOR DISPLAY FIREWORKS DEVICES ..........................14 4.1 Types of Display Fireworks Devices.............................................................14 4.2 Construction of Aerial Shells.........................................................................15 4.3 Approval
    [Show full text]
  • Mica and Mineral Insulated Band Heaters
    Mica and Mineral Insulated Band Heaters Mica and Mineral Insulated Band Heaters Mica & Mineral Insulated Band Heaters from National Plastic Heater are available in various sizes, voltages, wattage's, and constructions to suit every application. The Mica Insulated Band Heater is used for temperatures to 900ºF. The Mineral Insulated Band Heaters is used for temperatures to 1400ºF. The Mica and Mineral Band Heater can be internally or externally heated, full or split case for easy removal or installed and supplied with various types of leads as shown below. Mica & Mineral Insulated Band Heater Features: Sheath temperatures to 1400ºF (760ºC) mineral insulated • Split case design for easy removal and installation • Nichrome ribbon resistance wire precision wound • Mica/mineral insulation thin construction for quick heat transfer • Contamination resistant closed ended heater construction • Superior heat transfer due to minimum spacing between wire and sheath • Single set of leads possible on split case heaters Mica & Mineral Band Heater Specifications Design Capabilities: Dimensions. Minimum Inner Diameter 0.750" Maximum Diameter Consult NPH Maximum width 2 X diameter Consult NPH Voltage. 12 volts to 600 Volts AC/DC 1 or 3 Phase Watt Densities. Maximum to 100 watts/in Mineral Insulated Maximum Current. .30 Amps Post Terminals 8.5 Amps per Pair Options. Holes along the heater at required location Cutouts or slots of various dimensions Partial Coverage for sectional heating Larger Gaps at clamping end for sensors etc. Ground Wire or Lug for safety 2 Piece Split Case or Hinged construction European Plug / Terminal Box Internal Thermocouple. Available J, K Thermocouple Location. .Sheath To Order a Mica & Mineral Band Heater Please Provide: Watts, Volts, Inner Diameter, Width, Lead Length, Type of leads, Options.
    [Show full text]
  • Historical Introduction Summarized History of Air Heating and Sheathed Heating Elements
    Jacques Jumeau English version History of technologies linked to heating. Chapter 5 Historical introduction Summarized history of air heating and sheathed heating elements Copyright: Jacques Jumeau 1st edition 2015/11/26 Copy is allowed, provided you cite the origin: Ultimheat Museum 1 Update 2019/02/20 Historical introduction Summarized history of air heating and sheathed heating elements The invention of sheathed heating elements comprising a metal tube swaged around a coiled heating wire, and which is insulated by compressed magnesia, was an essential step of the electrothermics development. Thanks to their mechanical strength, impermeability and resistance to corrosion, these are the most professional heating technical solutions. The appearance of these heating elements, now universally used, was the result of a combination of different advanced techniques of the early 20th Century. Over the last two decades of the 19th Century, the emergence of electric heating had revealed the need to find reliable solutions for converting electricity into heat. The first electrical heaters were platinum wires (inherited laboratory equipment), nickel silver or even iron. Research carried on resistive elements with greater resistivity and good temperature resistance. On October 12, 1878, St. George Lane Fox-Pitt filed patent in England 4043, in which he developed the use of electricity for lighting and heating. This patent, based on the use of platinum filaments, was not followed for heating but it was the basis for the development of electric bulbs. In 1884, French Henri Marbeau, a pioneer in the manufacture of Nickel in New Caledonia and France, founded the company "Le Ferro-Nickel'' in Lizy sur Ourcq".
    [Show full text]