Inge Lehmann's Paper: “ P'” (1936)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 3. the Crust and Upper Mantle
Theory of the Earth Don L. Anderson Chapter 3. The Crust and Upper Mantle Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: T he structure of the Earth's interior is fairly well known from seismology, and knowledge of the fine structure is improving continuously. Seismology not only provides the structure, it also provides information about the composition, crystal structure or mineralogy and physical state. In subsequent chapters I will discuss how to combine seismic with other kinds of data to constrain these properties. A recent seismological model of the Earth is shown in Figure 3-1. Earth is conventionally divided into crust, mantle and core, but each of these has subdivisions that are almost as fundamental (Table 3-1). The lower mantle is the largest subdivision, and therefore it dominates any attempt to perform major- element mass balance calculations. The crust is the smallest solid subdivision, but it has an importance far in excess of its relative size because we live on it and extract our resources from it, and, as we shall see, it contains a large fraction of the terrestrial inventory of many elements. In this and the next chapter I discuss each of the major subdivisions, starting with the crust and ending with the inner core. -
Energy and Magnitude: a Historical Perspective
Pure Appl. Geophys. 176 (2019), 3815–3849 Ó 2018 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-018-1994-7 Pure and Applied Geophysics Energy and Magnitude: A Historical Perspective 1 EMILE A. OKAL Abstract—We present a detailed historical review of early referred to as ‘‘Gutenberg [and Richter]’s energy– attempts to quantify seismic sources through a measure of the magnitude relation’’ features a slope of 1.5 which is energy radiated into seismic waves, in connection with the parallel development of the concept of magnitude. In particular, we explore not predicted a priori by simple physical arguments. the derivation of the widely quoted ‘‘Gutenberg–Richter energy– We will use Gutenberg and Richter’s (1956a) nota- magnitude relationship’’ tion, Q [their Eq. (16) p. 133], for the slope of log10 E versus magnitude [1.5 in (1)]. log10 E ¼ 1:5Ms þ 11:8 ð1Þ We are motivated by the fact that Eq. (1)istobe (E in ergs), and especially the origin of the value 1.5 for the slope. found nowhere in this exact form in any of the tra- By examining all of the relevant papers by Gutenberg and Richter, we note that estimates of this slope kept decreasing for more than ditional references in its support, which incidentally 20 years before Gutenberg’s sudden death, and that the value 1.5 were most probably copied from one referring pub- was obtained through the complex computation of an estimate of lication to the next. They consist of Gutenberg and the energy flux above the hypocenter, based on a number of assumptions and models lacking robustness in the context of Richter (1954)(Seismicity of the Earth), Gutenberg modern seismological theory. -
The Deep Structure of Continents
VOL. 84, NO. B I3 JOURNAL OF GEOPHYSICAL RESEARCH DECEMBER 10, 1979 The Deep Structure of Continents DON L. ANDERSON SeismologicalLaboratory, California Institute of Technology,Pasadena, California 91125 The Lehmann discontinuityat 220-km depth is an important global feature which occursunder both oceansand continents.It is a barrier to penetrationby younglithosphere and marks the baseof seismic- ity in regionsof continent-continentcollision. The stronglateral variationin uppermantle velocitiesoc- cursmainly abovethis depth. Continentalroots extend no deeperthan about 150-200 km. The basalt- eclogitetransformation and eclogite-harzburgiteseparation may be responsiblefor the geometryof inter- mediatedepth earthquakes.Oceanic and continentalgeotherms converge above about 200 km and be- comeless steep than the meltinggradient at greaterdepth. This impliesa low viscositychannel near 250 km. This would give a decouplingzone of maximumshear beneath continental shields. The Lehmann discontinuitymay be the interfacebetween two distinctgeochemical reservoirs. The velocityjump, and the inferreddensity jump, at 220 km are consistentwith an increasein garnetcontent. The mantle may be garnetlherzolite above and eclogiteimmediately below the Lehmanndiscontinuity. The transitionre- gion may be mainly eclogiteand be the sourceregion for oceanictholeiites. INTRODUCTION nental values[Jordan and Anderson,1974; Jordan, 1975].Hart et al. [1977] determined an attenuation corrected free oscilla- Continental lithosphereis much thicker than oceanic litho- sphere,but the question of how thick a sectionof continent tion averageearth model, QM2, which is comparedwith the translatescoherently during continental drift has not yet been continentalmodel SHR14 of Helmbergerand Engen[1974] in adequatelyaddressed. The bottom of the low-velocity zone is Figure 2. A more direct comparisonis the Pacific-easternU.S. usuallyconsidered to be the bottom of the asthenosphereand curve which is from Cara's [1979] surfacewave study. -
Formation and Evolution of a Population of Strike-Slip Faults in a Multiscale Cellular Automaton Model
Geophys. J. Int. (2007) 168, 723–744 doi: 10.1111/j.1365-246X.2006.03213.x Formation and evolution of a population of strike-slip faults in a multiscale cellular automaton model Cl´ement Narteau Laboratoire de Dynamique des Syst`emes G´eologiques, Institut de Physique du Globe de Paris, 4, Place Jussieu, Paris, Cedex 05, 75252, France. E-mail: [email protected] Accepted 2006 September 4. Received 2006 September 4; in original form 2004 August 10 SUMMARY This paper describes a new model of rupture designed to reproduce structural patterns observed in the formation and evolution of a population of strike-slip faults. This model is a multiscale cellular automaton with two states. A stable state is associated with an ‘intact’ zone in which the fracturing process is confined to a smaller length scale. An active state is associated with an actively slipping fault. At the smallest length scale of a fault segment, transition rates from one state to another are determined with respect to the magnitude of the local strain rate and a time-dependent stochastic process. At increasingly larger length scales, healing and faulting are described according to geometric rules of fault interaction based on fracture mechanics. A redistribution of the strain rates in the neighbourhood of active faults at all length scales ensures that long range interactions and non-linear feedback processes are incorporated in the fault growth mechanism. Typical patterns of development of a population of faults are presented and show nucleation, growth, branching, interaction and coalescence. The geometries of the fault populations spontaneously converge to a configuration in which strain is concentrated on a dominant fault. -
Seismology in the Days of Old
Seismology in the Days of Old Den danske seismolog Inge Lehmanns sidste artikel by Inge Lehmann, Copenhagen, DK Eos, Vol. 68, No. 3, January 20, 1987, pp 33-35. Copyright by the American Geophysical Union. Reprinted with permission I may have been 15 or 16 years old, when, on a Sunday morning, I was sitting at home together with my mother and sister, and the floor began to move under us. The hanging lamp swayed. It was very strange. My father came into the room. "It was an earthquake," he said. The center had evidently been at a considerable distance, for the movements felt slow and not shaky. In spite of a great deal of effort, an accurate epicenter was never found. This was my only experience with an earthquake until I became a seismologist 20 years later. In the autumn of 1925, I became an assistant to N.E. Nørlund, who shortly before had been appointed director of "Gradmaalingen" (a geodetic institution that was in charge of measuring the meridian arc in Denmark). He had become interested in establishing seismic stations in Denmark and Greenland. He wanted everything done in the best possible way, and much attention was paid to the time service. The best existing seismographs had to be used, and they were to be placed so that they were not strongly affected by disturbing movements, such as traffic, for example. Two solid buildings, part of the fortification system that surrounded Copenhagen, were made available. My first major task was to assist in the installation of the Galitzin-Willip seismographs there. -
Upper-Mantle Low-Velocity Zone Structure Beneath the Kaapvaal Craton from S-Wave Receiver Functions
Geophys. J. Int. (2009) doi: 10.1111/j.1365-246X.2009.04178.x Upper-mantle low-velocity zone structure beneath the Kaapvaal craton from S-wave receiver functions Samantha E. Hansen,1 Andrew A. Nyblade,2 Jordi Julia,` 1 Paul H.G.M. Dirks3 and Raymond J. Durrheim3 1Department of Geosciences, 407 Deike Bldg., Pennsylvania State University, University Park, PA 16802, USA. E-mail: [email protected] 2Department of Geosciences, 447 Deike Bldg., Pennsylvania State University, University Park, PA 16802, USA 3School of Geosciences, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa Accepted 2009 March 10. Received 2009 February 9; in original form 2008 October 3 SUMMARY The southern African Plateau is marked by anomalously high elevations, reaching 1–2 km above sea level, and there is much debate as to whether this topography is compensated by a lower mantle source or by elevated temperatures in the upper mantle. In this study, we use S-wave receiver functions (SRFs) to estimate the lithospheric thickness and sublithospheric mantle velocity structure beneath the Kaapvaal craton, which forms the core of the Plateau. To fit the SRF data, a low-velocity zone (LVZ) is required below a ∼160-km-thick lithospheric lid, but the LVZ is no thicker than ∼90 km. Although the lid thickness obtained is thinner than that reported in previous SRF studies, neither the lid thickness nor the shear velocity decrease (∼4.5%) associated with the LVZ is anomalous compared to other cratonic environ- ments. Therefore, we conclude that elevated temperatures in the sublithospheric upper mantle contribute little support to the high elevations in this region of southern Africa. -
Beno Gutenberg
NATIONAL ACADEMY OF SCIENCES B E N O G U T E N B ER G 1889—1960 A Biographical Memoir by L E O N KNOP OFF Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1999 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of the California Institute of Technology Archives, Pasadena BENO GUTENBERG June 4, 1889–January 25, 1960 BY LEON KNOPOFF ENO GUTENBERG WAS THE foremost observational seismolo- Bgist of the twentieth century. He combined exquisite analysis of seismic records with powerful analytical, inter- pretive, and modeling skills to contribute many important discoveries of the structure of the solid Earth and its atmo- sphere. Perhaps his best known contribution was the pre- cise location of the core of the Earth and the identification of its elastic properties. Other major contributions include the travel-time curves; the discovery of very long-period seis- mic waves with large amplitudes that circle the Earth; the identification of differences in crustal structure between continents and oceans, including the discovery of a signifi- cantly thin crust in the Pacific; the discovery of a low-veloc- ity layer in the mantle (which he interpreted as the zone of decoupling of horizontal motions of the surficial parts from the deeper parts of the Earth); the creation of the magni- tude scale for earthquakes; the relation between magnitudes and energies for earthquakes; the famous universal magni- tude-frequency relation for earthquake distributions; the first density distribution for the mantle; the study of the tem- perature distribution in the Earth; the understanding of microseisms; and the structure of the atmosphere. -
MAPS CCP STACKS of P- & S-Wave RECEIVER
LITHOSPHERIC STRUCTURE BENEATH FENNOSCANDIA BASED ON P- AND S-WAVE CONTACT ME: RECEIVER FUNCTIONS [email protected] Anna Makushkina 1, Benoit Tauzin 1,2, Meghan Miller 1, Hans Thybo 3,4,5, and Hrvoje Tkalčić 1 1 Australian National University; 2 University of Lyon, Laboratoire de Géologie de Lyon; 3 CEED, University of Oslo; 4 Eurasia Institute of Earth Sciences, Istanbul Technical University; 5 China University of Geosciences, Wuhan, China, INTRODUCTION Fennoscandia consists of geologically distinct domains of Archaean, RESULTS: MAPS Moho MLD HVZ early and late Proterozoic and Phanerozoic age at the surface. A little is known about the interrelation of these domains at depth. Moho depth obtained by picking (left) SRF CCP images (background color) and (right) PRF Map of the Mid-lithospheric discontinuity Depths of the high-velocity zone CCP images with Moho depth (background) measurements from EUNAseis [1] (diamonds) Controlled-source experiments show potential expression of suture zones extending down to 100 km depth. SRF PRF Regional studies show evidence for the mid-lithospheric (MLD), 8-degree discontinuity or the lithosphere– asthenosphere boundary (LAB), that are markers of continent formation and evolution. But each study samples a small portion of Sketch of the expected discontinuities. Fennoscandia and does not provide a Red color indicates discontinuity with increase of velocity with depth, blue – Topography map (m); white circles are stations used comprehensive model for the whole decrease. MLD – mid-lithospheric in this study system [e.g. 2,3,4]. discontinuity; HVZ – high velocity zone; Our goal is to image structural differences of the upper mantle in 3 geological domains LVZ – low velocity zone; LAB – create a unified model of Fennoscandia. -
GEOL 460 Solid Earth Geophysics Lab 5: Global Seismology Part II Questions 1
GEOL 460 Solid Earth Geophysics Lab 5: Global Seismology Name: ____________________________________________________ Date: _____________ Part I. Seismic Waves and Earth’s Structure While technically "remote" sensing, the field of seismology and its tools provide the most "direct" geophysical observations of the geology of Earth's interior. Seismologists have discovered much about Earth’s internal structure, although many of the subtleties remain to be understood. The typical cross‐ section of the planet consists of the crust at the surface, followed by the mantle, the outer core, and the inner core. Information about these layers came from seismic travel times and analysis of how the behavior of seismic waves changes as they propagate deeper into the Earth. Today we are going to examine seismic waves in the Earth and we will take a look at how and what seismologists know about Earth’s core. Here is a summary of the current understanding of Earth structure: To look into what seismic waves can tell us about the core, we need to know how they travel in the Earth. While seismic energy travels as wavefronts, we often depict them as rays in figures and sketches. A ray is an idealized path through the Earth and is drawn as a line traveling through the Earth. A wavefront is a surface of energy propagating through the Earth. We’ll begin by looking at some videos of wavefronts and rays to get a handle on how these things behave in the Earth. These animations were made by Michael Wysession and Saadia Baker at Washington University in St. Louis. -