Chlorarachniophyta Cryptophyta

Total Page:16

File Type:pdf, Size:1020Kb

Chlorarachniophyta Cryptophyta Chlorarachniophyta • These algae (Fig.1) represent an intermediate stage in the evolution of two membranes of chloroplast endoplasmic reticulum. • This group has a small number of green amoebae that have Chlorarachniophyta ingested green algal cells in the past, with the green algal cells evolving into endosymbionts within the amoeba host (Fig. 3). Cryptophyta Prymnesiophyta (Haptophyta) ١ .Fig. 1 Examples of algae in the Chlorarachniophyta ٢ • Chlorarachnion reptans is a marine amoeba that forms large plasmodia with the individual cells linked by a network of reticulopodia or filopodia. • Chlorarachnion means “green spider” for the web-like network of reticulopodia (pseudopodia) in which are embedded the green amoeboid cells. • The chloroplast (e.g., endosymbiont chloroplast) contains chlorophylls a • The cells are naked and contain a number of lobed chloroplasts, each with a central and b and xanthophylls. pyrenoid (Fig. 3) and has a nucleomorph. • The chloroplast is surrounded by four membranes, the innermost two • A vesicle containing the storage product carbohydrate, paramylon (β-1,3-glucan) membranes are those of the chloroplast envelope of the endosymbiont. caps the pyrenoid. The next membrane is the plasma membrane of the endosymbiont and the • The cells move over the reticulopodia and ingest other algal cells and bacteria as a outer membrane represents the food-vacuole membrane of the amoeba food source. host. •A nucleomorph or reduced nucleus is present between the second and third envelope of each chloroplast. • The origin of this organelle is different from the origin of the cryptophytes nucleomorph, because the chlorarachniophytes originated from a green algal endosymbiont. • The reduced nature of the nucleomorph implies that some of the functions originally coded by the DNA of the endosymbiont nucleus have been taken over by the nucleus of the Plasmodial reticulum of Chlorarachnion, bright field Fig.3 Semidiagrammatic drawing of the cell host amoeba. structure of Chlorarachnion reptans. microscope image (a) and schematic drawing (b). (Bar: 4 µm.) Fig .3 Semidiagrammatic drawing of the cell structure .of Chlorarachnion reptans ٣ ٤ • Asexual reproduction is carried out by either normal mitotic cell division or zoospore formation. • Under nutrient deprivation, the star-shaped vegetative cells become resting cells by retracting their reticulopodia, rounding up and secreting a thin cell wall. • The resting cells apparently rely principally on photosynthate from the chloroplasts as a food source. • The resting cells germinate to star-shaped vegetative cells under favorable conditions. • Zoosporogenesis occurs by Cryptophyta a resting cell dividing twice to produce four ovoid zoospores, each with a single flagellum wrapped around the cell body. • The zoospores settle to produce the star-shaped vegetative cells. • Sexual reproduction characterized by heterogamy and occurs when a non-motile female gamete is approached by a motile, star-shaped, male gamete. gametes fuse producing a zygote The٥ • ٦ that germinates into a star-shaped vegetative cell. Fig. 4 Chlorarachnion reptans. ١ Cell structure CRYPTOPHYCEAE • There are two apically or laterally attached • This group is composed primarily of flagellates that occur in both marine and flagella at the base of a depression. freshwater environments; palmelloid phases can also be formed, and some • Each flagellum is approximately the same members are known to be zooxanthellae in host invertebrates or within length as the body of the cell. certain marine ciliates. • Depending on the species, there are one • The cells contain chlorophylls a and c2 and phycobiliproteins that occur inside or two rows of microtubular hairs attached the thylakoids of the chloroplast. to the flagellum. • The cell body is asymmetric with a clearly defined dorsiventrally construction. • Small, organic scales (Fig.9.2) are • The asymmetric cell shape results in a peculiar swaying motion during common on the flagellar surface and swimming. sometimes on the cell body. • Most cryptophytes have a single lobed chloroplast with a central pyrenoid. • The Corps de Maupas (CM) is a large vesicular structure in the anterior portion of the cell. Its main function is probably that of disposing of unwanted protoplasmic structures by digestion. Fig. 9.9 (a) Cryptomonas erosa. (b) Chilomonas paramecium. (c) Goniomonas truncata. (d) Rhodomonas lacustris. (e) Chroomonas nordstedtii. Fig. 9.1 Drawing of a cell of the Cryptophyceae as seen in the light and electron microscope. (CE) Chloroplast Fig. 9.2 Drawing of the most common type of flagellar envelope; (CER) chloroplast endoplasmic reticulum; scale found in freshwater cryptophytes. (CM) Corps de Maupas; (D) dorsal; (E) ejectisome; (L) lipid; (M) mitochondrion; (N) nucleus; (NM) ٧ ٨ nucleomorph; (P) pyrenoid; (PP) periplast plate; (S) starch; (V) ventral. • The chloroplast most likely evolved from a symbiosis between phagocytic • The outer portion of the cell, or periplast, is composed of the plasma organism and a red alga. membrane and a proteinaceous plate, or series of plates, directly under the • The chloroplast is surrounded by two membranes of chloroplast endoplasmic plasma membrane (Figs. 9.1, 9.10). reticulum and the two membranes of the chloroplast envelope. • The number and shape of these plates are used to characterize genera • Between the outer pair of membranes and the inner pair of membranes of the taking into consideration that the haploid and diploid phases of a single chloroplast endoplasmic reticulum (periplastidial space) are starch grains and a genus can have different plates. nucleomorph, probably the remnant of the nucleus of the endosymbiont in the • Sulfated fucose-rich polysaccharides can be excreted outside of the cell. event that led to chloroplast E.R. • The primary method of reproduction is simply by longitudinal cell division, • The nucleomorph contains three minute paired-chromosomes with 531 genes that but sexual reproduction has recently been documented. encode 30 proteins targeted into the chloroplast. • The nucleomorph is surrounded by an envelope that has pores similar to those in a nuclear envelope. • The cryptophytes are the only algae that form their storage product in the periplastidial space. • The starch is an α-1,4-glucan composed of about 30% amylose and amylopectin. • Cryptophycean starch is similar to potato starch and starch found in the green algae and dinoflagellates. • Sometimes an eyespot formed Chroomonas oblonga has multiple periplast plates (P) by spherical globules is under the plasma membrane present inside the plastid. ٩ ١٠ • The Cryptophyceae have projectiles called ejectisomes, which are of different structure from the trichocysts of the Dinophyceae. • In the chloroplast, the thylakoids are grouped in pairs (Fig. 9.3), and there are no connections between adjacent thylakoids. The • There are usually large ejectisomes near the anterior depression and Cryptophyta is the only group to have this arrangement of thylakoids. smaller ejectisomes around the cell periphery. • Chlorophylls a and c are present. • Both sizes of ejectisomes have the same structure; they are made up of 2 two unequal-sized bodies enclosed within a single membrane (Fig. 9.5). • The major carotenoid present is α-carotene, and the major xanthophyll, diatoxanthin. • The ejectisomes discharge when the organism is irritated. • Phycobilins are present in the thylakoid lumen rather than in • The discharge of the ejectisome results in a movement of the organism phycobilisomes on the stromal side of the thylakoids as occurs in the in the opposite direction. The discharge of the ejectisome could function cyanobacteria and red algae. as an escape mechanism, or it could be a direct defense mechanism causing damage to an offending organism. • Each photosynthetic cryptophyte has only one species of phycobiliprotein – either a phycoerythrin or a phycocyanin – but never both. • No allophycocyanin is present. Fig. 9.3 Transmission electron micrograph of part of a chloroplast of Chroomonas mesostigmatica. The thylakoids are grouped in pairs. The dense contents of the thylakoids represent the phycobilisomes. Also present are lipid droplets (l) and a large starch grain (s). × 50 000. Fig. 9.5 (a) General organization of an ejectisome showing the two subparts. (b) A model of an ejectisome ١١ ١٢ being fired outside of the cell. (c) A drawing of a discharged ejectisome. ٢ Ecology • In comparison with other algal groups, the Cryptophyta appear to be especially light sensitive, often forming the deepest living • Cryptophytes will often undergo diel vertical migrations populations in clear oligotrophic lakes. with an amplitude less than 5 meters. • Because of the low light intensity under snow and ice cover, these • In small humic forest lakes, species of Cryptomonas are algae concentrate in surface waters to receive sufficient light for positively phototactic in the morning, moving into the photosynthesis. • Survival at these extremely low light levels depends not only on a phosphorus-depleted upper layer. Later in the day the highly efficient photosynthetic system, but also on cells move away from the uppermost water layer, – slow rates of cell respiration at low water temperatures and avoiding high levels of irradiance, and move into the – reduced winter zooplankton grazing. phosphorus-rich hypolimnion. A further advantage of this • In spring, with the disappearance of snow and resulting sudden increase in light in Arctic and mountain lakes, cryptomonads suffer
Recommended publications
  • Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)*
    Biologia 63/6: 799—805, 2008 Section Botany DOI: 10.2478/s11756-008-0101-4 Siderocelis irregularis (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)* Maya P. Stoyneva1, Elisabeth Ingolič2,WernerKofler3 &WimVyverman4 1Sofia University ‘St Kliment Ohridski’, Faculty of Biology, Department of Botany, 8 bld. Dragan Zankov, BG-1164 Sofia, Bulgaria; e-mail: [email protected], [email protected]fia.bg 2Graz University of Technology, Research Institute for Electron Microscopy, Steyrergasse 17,A-8010 Graz, Austria; e-mail: [email protected] 3University of Innsbruck, Institute of Botany, Sternwartestrasse 15,A-6020 Innsbruck, Austria; e-mail: werner.kofl[email protected] 4Ghent University, Department Biology, Laboratory of Protistology and Aquatic Ecology, Krijgslaan 281-S8,B-9000 Gent, Belgium; e-mail: [email protected] Abstract: Siderocelis irregularis Hindák, representing a genus Siderocelis (Naumann) Fott that is known from European temperate waters, was identified as a common phytoplankter in Lake Tanganyika. It was found aposymbiotic as well as ingested (possibly endosymbiotic) in lake heterotrophs, mainly Strombidium sp. and Vorticella spp. The morphology and ultrastructure of the species, studied with LM, SEM and TEM, are described with emphasis on the structure of the cell wall and the pyrenoid. Key words: Chlorophyta; cell wall; pyrenoid; symbiosis; ciliates; Strombidium; Vorticella Introduction ics of symbiotic species in general came into alignment with that of free-living algae and the term ‘zoochlorel- Tight partnerships between algae and aquatic inver- lae’ was abandoned as being taxonomically ambiguous tebrates, including symbiotic relationships, have long (e.g. Bal 1968; Reisser & Wiessner 1984; Taylor 1984; been of interest and a number of excellent reviews are Reisser 1992a).
    [Show full text]
  • Toxicity, Physiological, and Ultrastructural Effects of Arsenic
    International Journal of Environmental Research and Public Health Article Toxicity, Physiological, and Ultrastructural Effects of Arsenic and Cadmium on the Extremophilic Microalga Chlamydomonas acidophila Silvia Díaz 1, Patricia De Francisco 1,2, Sanna Olsson 3 , Ángeles Aguilera 2,*, Elena González-Toril 2 and Ana Martín-González 1 1 Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid (UCM), C/José Antonio Novais, 12, 28040 Madrid, Spain; [email protected] (S.D.); [email protected] (P.d.F.); [email protected] (A.M.-G.) 2 Astrobiology Center (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain; [email protected] 3 Department of Forest Ecology and Genetics, INIA Forest Research Center (INIA-CIFOR), Carretera de A Coruña km 7.5, 28040 Madrid, Spain; sanna.olsson@helsinki.fi * Correspondence: [email protected]; Tel.: +34-91-520-6434 Received: 17 December 2019; Accepted: 24 February 2020; Published: 3 March 2020 Abstract: The cytotoxicity of cadmium (Cd), arsenate (As(V)), and arsenite (As(III)) on a strain of Chlamydomonas acidophila, isolated from the Rio Tinto, an acidic environment containing high metal(l)oid concentrations, was analyzed. We used a broad array of methods to produce complementary information: cell viability and reactive oxygen species (ROS) generation measures, ultrastructural observations, transmission electron microscopy energy dispersive x-ray microanalysis (TEM–XEDS), and gene expression. This acidophilic microorganism was affected differently by the tested metal/metalloid: It showed high resistance to arsenic while Cd was the most toxic heavy metal, showing an LC50 = 1.94 µM.
    [Show full text]
  • Closing the Circle in Chlamydomonas the Different Stages of the Calvin-Benson Cycle Take Place in Separate Locations Within the Chloroplast
    INSIGHT CARBON FIXATION Closing the circle In Chlamydomonas the different stages of the Calvin-Benson cycle take place in separate locations within the chloroplast. MARYLOU C MACHINGURA AND JAMES V MORONEY terrestrial plants and both groups have Rubisco Related research article Ku¨ ken A, Sommer enzymes with similar properties. However, land F, Yaneva-Roder L, Mackinder LCM, Ho¨ hne plants rarely have pyrenoids because CO2 dif- M, Geimer S, Jonikas MC, Schroda M, Stitt fuses 10,000 times more rapidly in air than in M, Nikoloski Z, Mettler-Altmann T. 2018. water. Once an aquatic organism has fixed CO2, Effects of microcompartmentation on flux it takes a long time for the next molecule to distribution and metabolic pools in Chlamy- arrive, hence the need for a carbon concentra- domonas reinhardtii chloroplasts. eLife 7: tion mechanism that kicks in when the levels of e37960. DOI: 10.7554/eLife.37960 CO2 get too low. The carbon concentration mechanism in Chla- - mydomonas takes bicarbonate (HCO3 ) from outside the cells and converts it into CO2 that can be used by Rubisco inside the pyrenoid. hen the unicellular green alga Chla- There, Rubisco catalyzes the addition of CO2 mydomonas reinhardtii is viewed onto a molecule known as RuBP to create two W under a microscope, the most promi- molecules of a compound called 3PGA; this is nent object in the cell is a structure called the the first step in the Calvin-Benson cycle, a chain pyrenoid. Located within the chloroplast, the of reactions which results in the creation of organelle where photosynthesis takes place, the organic molecules that the cell needs.
    [Show full text]
  • Effects of Microcompartmentation on Flux Distribution and Metabolic Pools
    RESEARCH ARTICLE Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts Anika Ku¨ ken1,2, Frederik Sommer1†, Liliya Yaneva-Roder1, Luke CM Mackinder3‡, Melanie Ho¨ hne1, Stefan Geimer4, Martin C Jonikas3§, Michael Schroda1†, Mark Stitt1, Zoran Nikoloski1,2, Tabea Mettler-Altmann1,5,6* 1Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; 2Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany; 3Department of Plant Biology, Carnegie Institution for Science, Stanford, United States; 4Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany; 5Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Du¨ sseldorf, Germany; 6Institute of Plant Biochemistry, Heinrich-Heine University, Du¨ sseldorf, Germany Abstract Cells and organelles are not homogeneous but include microcompartments that alter *For correspondence: [email protected] the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a † Present address: Molecular microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the Biotechnology and Systems photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained Biology, University of experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM- Kaiserslautern, Kaiserslautern,
    [Show full text]
  • Cryptophyte Farming by Symbiotic Ciliate Host Detected in Situ
    Cryptophyte farming by symbiotic ciliate host detected in situ Dajun Qiua, Liangmin Huanga, and Senjie Linb,1 aChinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; and bDepartment of Marine Sciences, University of Connecticut, Groton, CT 06340 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved September 8, 2016 (received for review July 28, 2016) Protist–alga symbiosis is widespread in the ocean, but its character- as the causative species of the bloom, with no detectable crypto- istics and function in situ remain largely unexplored. Here we report phytes and hardly any other organisms present in the bloom water − the symbiosis of the ciliate Mesodinium rubrum with cryptophyte (Fig. 1B). At 1.03 × 106 cells L 1, M. rubrum abundance in the bloom cells during a red-tide bloom in Long Island Sound. In contrast to was over 100-fold higher than the annual peak in Long Island Sound the current notion that Mesodinium retains cryptophyte chloroplasts (15). Each Mesodinium cell harbored 20 to 30 cryptophyte cells (n = or organelles, our multiapproach analyses reveal that in this bloom 16), which packed the peripheral region of the M. rubrum cells (Fig. the endosymbiotic Teleaulax amphioxeia cells were intact and 1E), with complete cell structures, including cell membranes, nuclei, expressing genes of membrane transporters, nucleus-to-cytoplasm and chloroplasts (Fig. 1C). Taking advantage of the large cell size of RNA transporters, and all major metabolic pathways. Among the Mesodinium spp. (width, 20 to 23 μm; length, 25 to 26 μm), we most highly expressed were ammonium transporters in both organ- picked M.
    [Show full text]
  • A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov
    Phytotaxa 432 (1): 065–080 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.432.1.6 A taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen.nov. HANI SUSANTI1,6, MASAKI YOSHIDA2, TAKESHI NAKAYAMA2, TAKASHI NAKADA3,4 & MAKOTO M. WATANABE5 1Life Science Innovation, School of Integrative and Global Major, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. 4Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan. 5Algae Biomass Energy System Development and Research Center, University of Tsukuba. 6Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46 Cibinong West Java, Indonesia. Corresponding author: [email protected] Abstract Chlamydomonas (Volvocales, Chlorophyceae) is a large polyphyletic genus that includes numerous species that should be classified into independent genera. The present study aimed to examine the authentic strain of Chlamydomonas meslinii and related strains based on morphological and molecular data. All the strains possessed an asteroid chloroplast with a central pyrenoid and hemispherical papilla; however, they were different based on cell and stigmata shapes. Molecular phylogenetic analyses based on 18S rDNA, atpB, and psaB indicated that the strains represented a distinct subclade in the clade Chloromonadinia. The secondary structure of ITS-2 supported the separation of the strains into four species.
    [Show full text]
  • The Fine Structure of Chloroplasts and Pyrenoids in Some Marine Dinoflagellates
    J. Cell Sri. 3, 41-48 (1968) 41 Printed in Great Britain THE FINE STRUCTURE OF CHLOROPLASTS AND PYRENOIDS IN SOME MARINE DINOFLAGELLATES J. D. DODGE Department of Botany, Birkbeck College, London, W.C. 1 SUMMARY The chloroplasts of some members of the Dinophyceae are bounded by an envelope consist- ing of three membranes and having a mean thickness of 230 A. Within the chloroplast are arranged, in a more or less parallel manner, many lamellae normally composed of three apposed thylakoids, although the number of thylakoids often varies and may reach 30 in a single stack. By study of disintegrated chloroplasts it was found that the thylakoids are circular in shape with a diameter of 0*15-3-6 /* and a mean thickness of 240 A. Ribosomes, lipid droplets and DNA areas are present in the chloroplast stroma. No connexions were seen between the chloroplasts and any other organelles, nor did the chloroplasts contain girdle lamellae. Stalked pyrenoids, which are found in some dinoflagellates, are shown to arise from the inner face of the chloroplasts, to contain a finely granular material and to be frequently surrounded by an electron-transparent area. These findings are discussed in relation to the fine structure of the chloroplasts and pyrenoids of other algal classes. INTRODUCTION Although the chloroplasts and pyrenoids of many algae have been extensively studied by electron microscopy over the past few years, those of dinoflagellates have received little attention. The first published electron micrograph of a sectioned dinoflagellate was of Amphidinium elegans (Grell & Wohlfarth-Botterman, 1957). This showed the chloroplast to be lamellate with each lamella consisting of a number of parallel membranes.
    [Show full text]
  • Variation of Storage Polysaccharides in Phototrophic Microorganisms
    J. Appl. Glycosci., 60, 21‒27 (2013) doi:10.5458/jag.jag.JAG-2012_016 ©2013 The Japanese Society of Applied Glycoscience Special Issue: Starch Metabolism, Structure and Properties Review Variation of Storage Polysaccharides in Phototrophic Microorganisms (Received October 24, 2012; Accepted December 3, 2012) (J-STAGE Advance Published Date: January 25, 2013) Eiji Suzuki1,* and Ryuichiro Suzuki1 1Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University (241‒438 Kaidobata-Nishi, Nakano, Shimoshinjo, Akita 010‒0195, Japan) Abstract: Phototrophic eukaryotes were established by the engulfment of oxygenic phototrophic prokary- otes (cyanobacteria) by a heterotrophic host. This process, called primary endosymbiosis, gave rise to the taxon Archaeplastida, which comprises green plants, rhodophytes and glaucophytes. Further rounds of endosymbiotic events produced a variety of phototrophic organisms, which could accumulate α-1,4-/α-1,6- glucans (including starch) or β-1,3-/β-1,6-glucans. In this article, we review the recent progress in the study of the intracellular localization and molecular forms of storage glucan, especially starch, among the known phototrophs and related organisms. Key words: Archaeplastida, cyanobacteria, endosymbiosis, semi-amylopectin, starch Starch is produced and stored in plastids of plant tissues characteristics of these polysaccharides, especially starch-like (chloroplasts in leaves and amyloplasts in seeds and tubers). α-glucans in representative organisms from each lineage, as It is widely accepted that the organelle was derived from an revealed by recent studies are discussed. independent organism, which was closely related to the extant cyanobacteria, through an event known as endosym- The form of storage polysaccharide and the site of its biosis.1) During the course of evolution of photosynthetic accumulation in various phototrophic organisms.
    [Show full text]
  • Principles of Plant Taxonomy, VIII
    PRINCIPLES OF PLANT TAXONOMY, VIII*. JOHN H. SCHAFFNER. In the seventh paper of this series, a phylogenetic synopsis was presented of the orders of the META-THALLOPHYTA. A similar synopsis is now given of the orders of THALLOPHYTA. The two diagramatic "trees" of relationships may be put together and thus a crude picture of the phyletic relationships of the entire plant kingdom will be represented from the lowest stage to the highest with all the multitudinous ramifications out to the orders. The Archemycetas as described in the Ohio Jour, of Sci. 27: 250, 1927, should be shifted in the list to immediately follow the Myxomycetae and re-defined as being mostly sexual; since it now appears that most of them have some sort of a conjugation process. There are many problems of a fundamental nature in the thallophytes which cannot be solved at present, because of a lack of knowledge of life histories. This is especially true of the lower green algae, the lower brown algae, the archemycetes, and the ascomycetes. So long as the genera and families are not properly segregated, it will be impossible to deal con- clusively with the larger groups. This fact should not deter us, however, from attempting to make a correct phyletic taxonomy. Every careful attempt will bring the true tax- onomic view nearer. The older morphological speculations, which did not distinguish progressive series from digressive movements or segregations, could not construct a true tax- onomic system because they made no definite attempt to judge structures and individuals on a phyletic basis, but merely compared similarities and differences, and frequently deduced phylogenetic sequences which required a series of re-creations, if the one form was actually to be evolved from the other.
    [Show full text]
  • Flagellar Regeneration in Chlamydomonas Introduction: Chlamydomonas Are Single-Celled, Motile Green Algae
    Biology 29 Cell Structure and Function Spring, 2009 Lab 4 - Flagellar regeneration in Chlamydomonas Introduction: Chlamydomonas are single-celled, motile green algae. They move by rotating two flagella that extend from the anterior end of the cell. Figure 1 shows a typical cell. These are photosynthetic eukaryotic cells that contain a nucleus, and a single large cup-shaped chloroplast. Within the chloroplast is a carbon-fixation region called the pyrenoid. The pyrenoid is encased in highly refractive starch molecules and so appears as a bright spot in phase microscopy. The flagella contain cytoskeletal structures called Figure 1: Phase contrast image of microtubules which are in turn polymers of protein called C. reinhardtii, showing locations of chloroplast, pyrenoid and flagella tubulin (see Figure 2). The microtubules are arrayed into a cylindrical shape called an axoneme (see Figure 3), surrounded by an extension of the cell membrane. Chlamydomonas loses its flagella just before dividing and after mating. The cell can regenerate its flagella by rebuilding the microtubule polymers of the axoneme. As the new flagellum grows, monomeric tubulins are transported to the distal end by molecular motors called kinesins, and added to the growing structure at this end. The process of regeneration is triggered by signals transduced through both Calcium ion and cAMP-activated pathways. Figure 3: Cross-section of a flagellar axoneme, with microtubule polymers visible as rings (adapted from Alberts et al, 2008) Figure 2: composition of microtubules showing tubulin monomers (adapted from Alberts et al, 2008) 1 The experiment 1. Each lab group will start by familiarizing themselves with Chlamydomonas reinhardtii cells with intact flagella.
    [Show full text]
  • <I>Ceratodon Purpureus</I>
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-23-2018 Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus Caitlin Ann Maraist Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Plant Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Maraist, Caitlin Ann, "Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus" (2018). Dissertations and Theses. Paper 4353. https://doi.org/10.15760/etd.6246 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus by Caitlin Ann Maraist A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Sarah M. Eppley, Chair Todd N. Rosenstiel Mitchell B. Cruzan Bitty A. Roy Portland State University 2018 © 2018 Caitlin Ann Maraist ABSTRACT The microorganisms colonizing plants can have a significant effect on host phenotype, mediating such processes as pathogen resistance, stress tolerance, nutrient acquisition, growth, and reproduction. Research regarding plant-microbe interactions has focused almost exclusively on vascular plants, and we know comparatively little about how bryophytes – including mosses, liverworts, and hornworts – are influenced by their microbiomes. Ceratodon purpureus is a dioecious, cosmopolitan moss species that exhibits sex-specific fungal communities, yet we do not know whether these microbes have a differential effect on the growth and physiology of male and female genotypes.
    [Show full text]
  • Kingdom Protistaprotista Brown Algae Green Algae
    KingdomKingdom ProtistaProtista Brown algae Green algae Simple Eukaryotes Red algae J e KingdomKingdom ProtistaProtista DivisionDivision Phaeophyta,Phaeophyta, first brown plants land plants evolve •Recentplants, ~500 mya • “Standard” eukaryote cells No multinucleate cells Motile cells usual • Non-standard chloroplasts ThingsThings wewe willwill covercover forfor brownbrown algaealgae •• GeneralGeneral featuresfeatures -- definingdefining characteristicscharacteristics •• MorphologicalMorphological lineageslineages –– -- useuse morphologymorphology toto anticipateanticipate evolutionevolution -- revealreveal variationsvariations inin lifelife historyhistory && gametesgametes •• EcologyEcology –– understandingunderstanding interactionsinteractions withwith environmentenvironment andand otherother speciesspecies •• CommercialCommercial interestsinterests –– exploitexploit ecologyecology && lifelife historyhistory •• EvolutionEvolution –– diversitydiversity && changechange overover timetime GeneralGeneral featuresfeatures OceanOcean loverslovers 2,0002,000 speciesspecies (60(60 inin HIHI oceans)oceans) Ocean Forests 250+250+ generagenera (29(29 inin HI)HI) MorphologicalMorphological RangeRange:: filaments to complex multicell organisms Intertidal RecentlyRecently arrivedarrived Subtidal eukaryoteseukaryotes -- Reef algae wellwell suitedsuited toto Natives and invasives coastalcoastal habitatshabitats Natives and invasives DiversityDiversity GeneralGeneral featuresfeatures PigmentsPigments -- StorageStorage GrowthGrowth photosynthesis ProductsProducts
    [Show full text]