The Chemistry and Function of Lubricant Additives

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry and Function of Lubricant Additives WEBINARS Debbie Sniderman / Contributing Editor The chemistry and function of lubricant additives Their effectiveness depends on the base oil and how they interact with other chemicals. KEY CONCEPTS • AdditivesAdditives comppensateensate fforor thethe deficiencies inherently ppresentesent inin basib c basebase oiloil ssystems.ystems. • AdditivAdditivee effectiveness deppends on the ooil.il. AnAn additive thathatt works welwelll in one oiloil mighmight notnot inin LUBRICANTS ARE USED TO REDUCE FRICTION AND WEAR, dissipate heat aanothenother. from critical parts of equipment, remove and suspend deposits that may affect performance and protect metal surface damage from deg- • It’sIt’s importantimportant to understaunderstandd radation and corrosion. They serve a diverse range of applications, hhowo addaadditives t es maymay interactinteract each requiring a different combination of base oils and additives. wiwithth each ototheher in With such a complex industry, there are many challenges to devel- oping effective lubricants. synerggisticistic oror antaantaggonisticnistic Base oils themselves perform most of the functions of lubricants. ways whene creatingcreating But they can only do part of the job. Additives are needed when a additive packagges.es. lubricant’s base oil doesn’t provide all the properties the applica- tion requires. They’re used to improve the good properties of the 18 Snakes have two sets of eyes—one set to see and the other to detect heat and movement. No eyelids for snakes, just a thin membrane covering the eye. MEET THE PRESENTER This article is based on a Webinar originally presented by STLE Education on June 17, 2015. The Chemistry and Function of Lubricant Additives is available at www.stle.org: $39 to STLE members, $59 for all others. Vincent Gatto has worked for 30 years as a research, applications, technical service and product de- velopment scientist in the area of lubricant, fuel and polymer additives. He is currently research director for Vanderbilt Chemicals, LLC, in Norwalk, Conn., working to discover and develop new chemicals for use as additives in the lubricant, rubber and plastics industries. He also directs and prioritizes projects in the Petroleum Applications Laboratory. Gatto holds approximately 110 U.S. patents, patent applications and technical publications in the areas of chelation, additives for polymers, lubricants and fuels. He was R&D and technical service manager at Albemarle Corp. for 11 years and a lubricant additive scientist at Ethyl Corp. (now Afton Chemical Co.) for 16 years. He received his doctorate in chemistry from the University of Maryland and held a postdoctoral position at the University of Miami. You can reach Dr. Gatto at [email protected]. Vincent Gatto base oils and minimize the bad. They diesel engines, which are the most de- compensate for the deficiencies inher- manding and require the most additives EXAMPLES OF ENGINE AND ently present in basic base oil systems (see Figure 1). NON-ENGINE LUBRICANTS (see Examples of Engine and Non-Engine Additives are combined into well- Lubricants). balanced, optimized packages allow- Engine Lubricants Typical lubricants are composed ing lubricants to meet specified perfor- Gasoline engine oils of a base oil, an additive package and, mance criteria in a finished fluid. One Diesel engine oils optionally, a viscosity index (VI) im- example of an additive package is the • Heavy duty prover. Turbine, hydraulic and indus- Dispersant Inhibitor (DI) package used • Off-road trial gears demand much lower treat for engine oils, containing mainly dis- • Automotive rates of additive packages compared to persants, detergents, oxidation inhibi- • Stationary automotive gear, ATF and gasoline and tors, antiwear agents and friction modi- Medium-speed engine oils in: • Railroad • Marine Natural gas engine oils 3-9% Aviation engine oils Gasoline & 10-15% Two-stroke cycle engine oils Diesel Engine 80-88% 3-6% 3-6% Automatic Non-Engine Lubricants 88-94% Transmission Fluid 7% Transmission fluids • Automatic Automotive Gear 93% 2% • Manual Power steering fluids Industrial Gear 98% 1% Shock absorber fluids Gear oils Hydraulic 99% 1% Base oil • Automotive VI Improver • Industrial Additive Package Turbine 99% Hydraulic fluids Metalworking fluids Turbine oils Misc. industrial oils Figure 1 | Composition of base oil, VI improver and additive packages in typical lubricants. Greases (Figure courtesy of Vanderbilt Chemicals, LLC.) WWW.STLE.ORG TRIBOLOGY & LUBRICATION TECHNOLOGY NOVEMBER 2017 • 19 fiers. Additives may interact with each other and may have multi-functional • Additives are combined to produce well balanced/optimized additive properties. Each additive package is a packages to meet certain performance criteria unique blend whose combination pro- e.g. Dispersant Inhibitor (DI) Packages for Engine Oils duces a complex chemistry with positive Miscellaneous and negative interactions (see Figure 2). e.g. corrosion & Dispersants rust inhibitors 55% THE NEED FOR FRICTION MODIFIER < 2% ADDITIVES One of the key functions of lubrication Friction is to reduce friction and wear when Modifiers 4% Detergents moving metal parts are in contact. The 20% Anti-wear Agent Oxidation Stribeck curve illustrates how friction 8% Inhibitors reduction takes place in a lubricant. In 12% the boundary regime at low speeds, low • Additives may interact with each other showing synergism or antagonism viscosity or high loads, a lubricant has • Some additives may have multi-functionality high friction due to metal/metal contact in the presence of a very thin film of oil. As the speed or viscosity increases, or load decreases, the system moves Figure 2 | Example of Dispersant Inhibitor (DI) additive package for engine oils. (Figure cour- tesy of Vanderbilt Chemicals, LLC.) into the mixed regime where friction is significantly reduced in the lubricant mainly due to a thicker oil film and greater separation between the metal surfaces (see Figure 3). Both the boundary and mixed-film lubrication conditions can be detrimen- tal to machinery. Without additives, this contact will lead to significant system wear and premature field fail- ure. Properly selected friction modifier additives can significantly reduce the coefficient of friction in these regimes. Low friction can best manifest itself as an improvement in an engine’s fuel ef- ficiency (see Figure 4). THE NEED FOR ANTIOXIDANT ADDITIVES Ionic Liquids - New Aspects for the Future, J.-I. Kadokawa ed., CC by 3.0, Chapter 5, Tribological When exposed to heat, oxygen and Properties of Ionic Liquids, Y Kondo, T. Koyama, S. Sasaki, Jan. 23, 2013 metal contamination, lubricants un- dergo oxidation. Base oils can perform Figure 3 | The Stribeck curve illustrates lubricant friction regimes. (Figure courtesy of Vander- many lubrication functions, but they bilt Chemicals, LLC.) can’t protect against the detrimental effects of oil oxidation. Oxidation creates polymers, oil in- soluble high-molecular-weight mol- it remains too long, sludge can plug oil in wear (see Figure 5). ecules that increase the viscosity of the lines and filters leading to oil starvation There is good news however. Even lubricant, accelerate wear and eventually in the machinery and adhere to metal though lubricant degradation processes leads to varnish. The hard “baked on” surfaces, accelerating wear. Along with are complex, the solution is straightfor- polymeric coating of varnish also accel- other hard accumulations of sludge and ward. Antioxidant additives minimize erates wear and is a long-term detriment. varnish typically on pistons and valves oxidation and deposit formation. De- Oxidation also creates sludge, a soft in engines, deposits due to oxidation tergents and dispersants also play a role oil-insoluble material made of combus- can cause valve and ring sticking, even- in mitigating the effects of sludge and tion byproducts that suspend in oil. If tually leading to catastrophic increase deposits. 20 • NOVEMBER 2017 TRIBOLOGY & LUBRICATION TECHNOLOGY WWW.STLE.ORG a threshold dosage before becoming active. The dosage is affected by syn- ergism or antagonism with other addi- tives in the oil. Actual treat rates have Lubricant Lubricant Film Film to be based on specifications and per- formance requirements. There are two types of additives: FLUID-FILM LUBRICATION BOUNDARY LUBRICATION Film thickness (H) approaches zero Elastohydrodynamic regime: H > R bulk oil additives and surface additives. Hydrodynamic regime: H >>> R Bulk additives affect the rheological, interfacial and chemical properties of the lubricant, and surface additives are Lubricant active at metal surfaces (see Figure 6 on Film Page 22). MIXED-FILM LUBRICATION DISPERSANTS Film thickness (H) ~ equal to Surface roughness (R) Dispersants are non-metallic, ashless cleaning agents that inhibit sludge from forming at low to moderate tempera- tures. Dispersants make up between 4%- Figure 4 | Friction modifier additives help reduce friction in boundary and mixed-lubrication 13% of fully formulated oils, and most regimes. (Figure courtesy of Vanderbilt Chemicals, LLC.) are diluted with 50%-75% by weight in mineral oil to lower their viscosity and improve handling properties. Dispersant molecules have a hy- drophilic polar head that attaches to agglomerates and a long-chain hydrophobic hydrocarbon tail that functions as a solubilizer. As oxida- tion occurs in hydrocarbons, poly- meric products of oligomerization tend to agglomerate and form soluble particles in the oil. Dispersants’ polar heads attach to these soluble
Recommended publications
  • Assessment of the Use of Dispersants on Oil Spills in California Marine Waters
    Assessment of the Use of Dispersants on Oil Spills in California Marine Waters by S.L. Ross Environmental Research Ltd. 200-717 Belfast Rd. Ottawa, ON K1G 0Z4 for Minerals Management Service Engineering and Research Branch 381 Elden Street Herndon, VA 20170-4817 June 2002 Summary Objective This project is a comprehensive assessment of operational and environmental factors associated with using chemical dispersants to treat oil spills in California. The project addresses spills from both transportation and production sources. It addresses four subjects: a) amenability of produced and imported oils to chemical dispersion; b) time windows (TW) for chemical dispersion in California spills; c) operational logistic and feasibility issues in California; and d) net environmental benefits or drawbacks of dispersant use for California spills. Review of Basics The report begins with a review of the basics of (a) marine spill behavior, (b) chemical dispersants, (c) factors that control dispersant effectiveness, and (d) accounts of field trials and spills. The review shows that dispersants will be effective if: (a) the response takes place quickly while the spilled oil is unemulsified, relatively thick, and low in viscosity; (b) the thick portions of the spill are treated with state-of-the art chemicals at the proper dose; and (c) sea states are light-to-medium or greater. If the spilled oil becomes highly viscous through the process of water-in-oil emulsification, dispersant use will not be effective. Likely Dispersibility of California Oils Three groups of oils are considered: a) crude oils produced in California OCS waters; b) oils imported into California ports; and c) fuel oils spilled from marine industrial activities (e.g., fuel tanks from ships, cargoes of small tankers).
    [Show full text]
  • Chemical Dispersants and Their Role in Oil Spill
    THE SEA GRANT and GOMRI CHEMICAL DISPERSANTS AND THEIR PARTNERSHIP ROLE IN OIL SPILL RESPONSE The mission of Sea Grant is to enhance the practical use and Larissa J. Graham, Christine Hale, Emily Maung-Douglass, Stephen Sempier, conservation of coastal, marine LaDon Swann, and Monica Wilson and Great Lakes resources in order to create a sustainable economy and environment. Nearly two million gallons of dispersants were used at the water’s There are 33 university–based surface and a mile below the surface to combat oil during the Sea Grant programs throughout the coastal U.S. These programs Deepwater Horizon oil spill. Many Gulf Coast residents have questions are primarily supported by about why dispersants were used, how they were used, and what the National Oceanic and Atmospheric Administration impacts dispersants could have on people and the environment. and the states in which the programs are located. In the immediate aftermath of the Deepwater Horizon spill, BP committed $500 million over a 10–year period to create the Gulf of Mexico Research Institute, or GoMRI. It is an independent research program that studies the effect of hydrocarbon releases on the environment and public health, as well as develops improved spill mitigation, oil detection, characterization and remediation technologies. GoMRI is led by an independent and academic 20–member research board. The Sea Grant oil spill science outreach team identifies the best available science from The Deepwater Horizon site (NOAA photo) projects funded by GoMRI and others, and only shares peer- reviewed research results. On April 20, 2010, an explosion on million barrels (172 million gallons), were the Deepwater Horizon oil rig killed released into Gulf of Mexico waters.1,2,3,4,5 11 people.
    [Show full text]
  • Review Article Green Inhibitors for Corrosion Protection of Metals and Alloys: an Overview
    Hindawi Publishing Corporation International Journal of Corrosion Volume 2012, Article ID 380217, 15 pages doi:10.1155/2012/380217 Review Article Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview B. E. Amitha Rani and Bharathi Bai J. Basu Surface Engineering Division, CSIR-National Aerospace Laboratories, Bangalore 560037, India Correspondence should be addressed to B. E. Amitha Rani, [email protected] Received 31 March 2011; Revised 17 June 2011; Accepted 17 June 2011 Academic Editor: Ali Y. El-Etre Copyright © 2012 B. E. A. Rani and B. B. J. Basu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Corrosion control of metals is of technical, economical, environmental, and aesthetical importance. The use of inhibitors is one of the best options of protecting metals and alloys against corrosion. The environmental toxicity of organic corrosion inhibitors has prompted the search for green corrosion inhibitors as they are biodegradable, do not contain heavy metals or other toxic compounds. As in addition to being environmentally friendly and ecologically acceptable, plant products are inexpensive, readily available and renewable. Investigations of corrosion inhibiting abilities of tannins, alkaloids, organic,amino acids, and organic dyes of plant origin are of interest. In recent years, sol-gel coatings doped with inhibitors show real promise. Although substantial research has been devoted to corrosion inhibition by plant extracts, reports on the detailed mechanisms of the adsorption process and identification of the active ingredient are still scarce.
    [Show full text]
  • Dispersant Additives and Additive Concentrates and Lubricating Oil Compositions Containing Same
    (19) TZZ¥_ __T (11) EP 3 124 581 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 01.02.2017 Bulletin 2017/05 C10M 163/00 (2006.01) C10M 169/04 (2006.01) (21) Application number: 16179973.9 (22) Date of filing: 18.07.2016 (84) Designated Contracting States: • Oberoi, Sonia AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Linden, NJ New Jersey 07036 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • Hu, Gang PL PT RO RS SE SI SK SM TR Linden, NJ New Jersey 07036 (US) Designated Extension States: •HOBIN,Peter BA ME Abingdon, Oxfordshire OX13 6BB (GB) Designated Validation States: • STRANGE, Gareth MA MD Abingdon, Oxfordshire OX13 6BB (GB) • CATANI, Alessandra (30) Priority: 30.07.2015 US 201514813257 17047 Savona - Liguria (IT) • FITTER, Claire (71) Applicant: Infineum International Limited Abingdon, Oxfordshire OX13 6BB (GB) Abingdon, • MILLINGTON, James Oxfordshire OX13 6BB (GB) Abingdon, Oxfordshire OX13 6BB (GB) (72) Inventors: (74) Representative: Goddard, Frances Anna et al • Emert, Jacob PO Box 1 Linden, NJ New Jersey 07036 (US) Milton Hill Abingdon, Oxfordshire OX13 6BB (GB) (54) DISPERSANT ADDITIVES AND ADDITIVE CONCENTRATES AND LUBRICATING OIL COMPOSITIONS CONTAINING SAME (57) A lubricant additive concentrate having a kine- cinic anhydride (SA) functionality (F) of greater than 1.7 matic viscosity of from about 40 to about 300 cSt at and less than about 2.5; and a detergent colloid including 100°C,containing a dispersant-detergent colloid mixture, overbased detergent having a total base number (TBN) including
    [Show full text]
  • Additive Components
    Performance you can rely on. Additive Components InfineumInsight.com/Learn © INFINEUM INTERNATIONAL LIMITED 2017. All Rights Reserved. 2015006e . © INFINEUM INTERNATIONAL LIMITED 2017. All Rights Reserved. 2015006e . Performance you can rely on. What happens without lubrication? © INFINEUM INTERNATIONAL LIMITED 2017. All Rights Reserved. 2015006e . Performance you can rely on. Outline • The function of additives – What do they do? • Destructive processes in the engine – What are these processes? – How do additives minimize them? • Types of additives – Which additives are commonly used? – How do they work? © INFINEUM INTERNATIONAL LIMITED 2017. All Rights Reserved. 2015006e . Performance you can rely on. The function of additives Why do we add additives? – Enhance lubricant performance – Minimise destructive processes in the engine – Extend oil life time © INFINEUM INTERNATIONAL LIMITED 2017. All Rights Reserved. 2015006e . Performance you can rely on. Destructive processes in the engine What destructive process are present in the engine? • Mechanical – Wear of engine parts – Shear affecting lubricant properties • Chemical – Corrosion of engine parts – Oxidation of lubricant © INFINEUM INTERNATIONAL LIMITED 2017. All Rights Reserved. 2015006e . Performance you can rely on. Destructive processes in the engine Friction and wear • Both are caused by relative motion between surfaces • Friction is the loss of energy – dissipated as heat – Types – sliding, rolling, static on i t c • Wear is loss of material i r – Types – abrasion, adhesion,
    [Show full text]
  • The Effect of Copolymer and Iron on the Fouling Characteristics of Cooling Tower Water Containing Corrosion Inhibitors
    AN ABSTRACT OF THE THESIS OF Abdullah A. Abu-Al-Saud for the degree of Doctor of Philosophy in Chemical Engineering, presented on August 15, 1988. Title: The Effect of Copolymer and Iron on the Fouling Characteristics of Cooling Tower Water Containing Corrosion Inhibitors. Redacted for Privacy Abstract approved: Dr. James G. Knudsen Various antifoulant treatment programs and the considerations necessary for the effective use of such programs were examined. Two different groups of tests, with and without iron contamination, have been carried out on the effectiveness of several of the state-of-the-art copolymers (PA, HEDP, AA/HPA, AA/MA, SS/MA and AA/SA) in the inhibition of the fouling of high hardness cooling tower water containing phosphate corrosion inhibitors (polyphosphates and orthophosphates). The tests were conducted on metal surfaces (SS, CS, Adm, and Cu/Ni), using simulated cooling water in a specially designed cooling tower system. For each group of tests at various pH values (6.5, 7.5 and 8.5), the effects of flow velocity (3.0, 5.5, 8.0 ft/sec) and heat transfer surface temperature (130, 145, 160°F) on thefouling characteristics of cooling tower water havebeen investigated. During the course of each test, the water quality was kept constant. For the iron tests, the effects of iron presence (2, 3 and 4 ppm Fe) on the fouling characteristics of the cooling tower water havebeen investigated and discussed for three different situations: 1. High hardness cooling tower water and iron. 2. High hardness cooling tower water, iron and phosphate corrosion inhibitors.
    [Show full text]
  • Dispersant Effectiveness Testing on Water-In-Oil Emulsions at Ohmsett
    DISPERSANT EFFECTIVENESS TESTING ON WATER-IN-OIL EMULSIONS AT OHMSETT For U.S. Department of the Interior Minerals Management Service Herndon, VA By SL Ross Environmental Research Limited Alun Lewis Consultancy And MAR Inc. September 2006 Acknowledgements This project was funded by the U.S. Minerals Management Service (MMS). The authors wish to thank the U.S. Minerals Management Service Technology Assessment and Research Branch for funding this study, and Joseph Mullin for his guidance in the work. Thanks also go to Ed Thompson and Mike Bronson of BP Exploration Alaska and Lee Majors and Ken Linderman of Alaska Clean Seas, for providing the Endicott crude oil for the testing; and to Jim Clark of ExxonMobil, for providing the Corexit 9527 and 9500 dispersants used in the study. Disclaimer This report has been reviewed by U.S. Minerals Management Service staff for technical adequacy according to contractual specifications. The opinions, conclusions, and recommendations contained in this report are those of the author and do not necessarily reflect the views and policies of the U.S. Minerals Management Service. The mention of a trade name or any commercial product in this report does not constitute an endorsement or recommendation for use by the U.S. Minerals Management Service. Finally, this report does not contain any commercially sensitive, classified or proprietary data release restrictions and may be freely copied and widely distributed. i Executive Summary The objective of this study was to determine the effectiveness of chemical dispersants when applied to water-in-oil emulsions and to determine if similar viscosity limits exist for successful dispersion of emulsions as for un-emulsified crude oils.
    [Show full text]
  • VCI Powder Corrosion Inhibitors
    VCI POWDERS FOR CORROSION PREVENTION ARE IDEAL FOR SHORT TERM LAY UP AND LONG TERM CORROSION PROTECTION OF TANKS, COOLING TOWERS, VESSELS AND ENCLOSED SPACES Vci powders can also be used in water for • Hydro Static Testing and test stands including cast iron • A flush through application of corrosion inhibitors • A final rinse additive for corrosion control in production lines cleaning and protecting metal parts Ideal for hard to reach areas and the protection of: • Tanks • Pipes • Lay Up of Plant & Equipment • Lay up of cooling towers • Preservation of boilers, tubes and condensers • Protection of metal parts and equipment inside any enclosed container * Additive to shot blast, hydro test and metalworking solutions for corrosion control * Corrosion Protection VCI Powder Features: • Corrosion protection in the contact and vapor phase • Vapor Corrosion Inhibitor (VCI) provides a component that is attracted to all metal surfaces and forms a molecular barrier that provides protection from rust and corrosion • Nitrite, Silica and heavy metals free • Environmentally Friendly • Non-hazardous • Easy to Use • Economical Choose from the following types of VCI corrosion control powders available in 5 pound, 50 pound or 100 pound quantities: VCI-1 Powder • Corrosion protection for ferrous metals and aluminum • Apply by dry fogging, spray solution or sprinkling • Use as a hydrotesting additive to water @ ½ to 2 % percent by weight • Great for preservation of plant, cooling towers and equipment • 100% biodegradable and non-hazardous VCI Powder 1010 • Provides continuous long and short-term corrosion protection for ferrous metals and is compatible with copper, brass, zinc and galvanized steel • Water soluable up to 10 % in water by weight • Includes all of the features of VCI Powder 1 and is also compatible with non-ferrous metals Distributed by: KPR ADCOR INC.
    [Show full text]
  • M-529/M-529 L/M-529 SC, Patented Oil Based Corrosion Inhibitor METALS PROTECTED
    M-529/M-529 L/M-529 SC, Patented Oil Based Corrosion Inhibitor METALS PROTECTED • Carbon Steel • Brass • Stainless Steel • Copper • Galvanized Steel • Bronze • Aluminum TYPICAL PROPERTIES Oil Characteristics Typical Values Appearance Dark Amber Color Specific Gravity 0.92 40 °C 185 cSt Viscosity (ASTM D92) 100 °C 16.5 cSt Index 93 Pour Point (ASTM D6749) -29 °C (-20 °F) PRODUCT DESCRIPTION Flash Point (ASTM D92) 197 °C (386 °F) Fire Point (ASTM D92) 227 °C (440 °F) M-529 is an oil-based package of corrosion inhibitors for lubricating oils. Total Acid Number (ASTM D974) mg KOH/g 31.3 M-529 provides excellent corrosion protection during operating conditions and intermittent operation. ISO Particle Count Code 19/17/13 Oil, ml 0 M-529/M-529 L are very effective for mineral and synthetic based oils: Oil Separability (ASTM D1401) Water, ml 0 napthenic, iso-paraffinic, PAOs, etc. @ 180 °F Emulsion, ml 80 Time, min 60 M-529 L additionally contains an EP lubricity package and is recommended Seq. I 320/30/600+ for lubriciating oil when EP lubricity is needed, such as gears or transmissions. Foaming Characteristics Seq. II 650/400/600+ (ASTM D892) FEATURES Seq. III 295/30/600+ Properties listed above are typical of those obtained through normal production and do not constitute a • Corrosion protection for ferrous and non-ferrous metals specification. M-529 is generally soluble in hydrocarbon based fluids, however compatibility and solubility should be verified prior to use. Please contact Cortec® Technical Service for more information. • Does not
    [Show full text]
  • Oil Spill Dispersants: Effi Cacy and Eff Ects
    NATIONAL RESEARCH COUNCIL REPORT KEY FINDINGS Oil Spill Dispersants: Effi cacy and Eff ects Oil dispersants are chemicals that change the chemical and physical properties of oil to enable it to mix with water more easily, in a similar manner to the way that dish detergents break up cooking oil on a skillet. By increasing the amount of oil that mixes into sea water, dispersants can reduce the potential contamination of shoreline habitats—but at the same time, a larger volume of water at varying depths becomes exposed to spilled oil. This report reviews ongoing research on the use of dispersants as an oil spill response technique and the impact of dispersed oil on marine and coastal ecosystems. The report concludes that more information on the potential benefi ts or adverse impacts of dispersant use is needed to make effective, timely decisions on using dispersants in response to an oil spill. 1. Decisions to use dispersants involve trade-offs. Oil dispersants break up slicks, enhancing the amount of oil that physically mixes into the water column and reducing the potential that oil will contaminate shoreline habitats or come into contact with birds, marine mammals, or other organisms in coastal ecosystems. At the same time, using dispersants increases the exposure of water column and sea fl oor life to spilled oil. 2. The window of opportunity for using dispersants is early, typically within hours to 1 or 2 days after an oil spill. After that, natural “weathering” of an oil slick on the surface of the sea, caused by impacts such as the heat from the sun or buffeting by waves, makes oil more diffi cult to disperse.
    [Show full text]
  • VAPOR CORROSION INHIBITOR in LUBRICANTS Abstract Incorporating of Vapor Corrosion Inhibitors in Lubricating Products Provides a Number of Advantages
    Vapor corrosion inhibitors M. Kharsan, A. Furman, B. Mikšić, I. Rogan Autori / Authors: Margarita Kharsan, Alla Furman, Boris Mikšić, Cortec Corporation , Minnesota USA Ivan Rogan Cortecros d.o.o. Zagreb Authors: Margarita Kharsan, Alla Furman, Boris Mikšić, Cortec Corporation , Minnesota USA Ivan Rogan Cortecros d.o.o. Zagreb VAPOR CORROSION INHIBITOR IN LUBRICANTS Abstract Incorporating of Vapor Corrosion Inhibitors in lubricating products provides a number of advantages. VCIs when added to lubricant will provide corrosion protection to machinery during the storage or transportation period and after that the same lubricant can be used in designed working application without spending extra time and money for changing the corrosion protective product for lubricating. Properly chosen combination of VCI and lubricating product also prolongs service life of machinery by minimizing the corrosive wear of the equipment. The requirements to the Vapor Corrosion Inhibitors, which will be added to the lubricants, vary considering the application condition. Usually these products should be thermostable, should not attack colored metal at high temperatures, and effect physical – chemical properties of lubricant. Two examples of lubricating product containing vapor corrosion inhibitor are presented in this paper. INTRODUCTION Vapor Corrosion Inhibitors (VCIs) are organic compounds that have appreciable pressure of saturated vapors under atmospheric conditions and inhibit corrosion by adsorption on metal / electrolyte interface. Vapor Corrosion Inhibitors change the kinetics of electrochemical reaction. The most effective are the vapor corrosion inhibitors, which have the vapor pressure in a range 10-5 – 10-7 mm Hg [1-3,4]. They are transported by diffusion through the gas phase and adsorbed onto metal in a thickness of a few monolayers and protect it from corrosion.
    [Show full text]
  • Volatile Corrosion Inhibitor (VCI)
    Three Bond Technical News Issued Jul. 1, 1987 Volatile Corrosion Inhibitor (VCI) 1. Introduction Trade dispute by export surplus has come up in the newspaper. Trading, especially export, is essential to Japan economy, whereas it is said that economical loss caused by corrosion in the export activity is about 2,000,000,000,000 yen. We at Three Bond have released a variety of volatile corrosion inhibitors as ThreeBond 1870 series when we considered these circumstances. Volatile corrosion inhibitors have been codified technically, but they took an auxiliary part only in rust prevention due to their relatively shallow history. In this issue, we will provide you with VCI's features that it should be the mainstream in the future rust prevention packaging, and also introduce a new method as well. Contents 1. Introduction ........................................................... 1 15. How to Confirm the Effectiveness of Volatile 2. What is Volatile Corrosion Inhibitor (VCI)?............ 2 Corrosion Inhibitors............................................... 8 3. Positioning of Volatile Corrosion Inhibitors............ 2 (1) Present situation and necessity of development 4. Shape of Volatile Corrosion Inhibitors ................... 2 ........................................................................ 8 5. Type of Volatile Corrosion Inhibitors...................... 2 (2) About indicator technology .............................. 8 6. Typical Volatile Corrosion Inhibitors ...................... 2 (3) Components to develop color.........................
    [Show full text]