Assessment of the State of Marine Biodiversity in the Region of the CCLME

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of the State of Marine Biodiversity in the Region of the CCLME Canary Current Large Marine Ecosystem Project (CCLME) Assessment of the state of marine biodiversity in the region of the CCLME STUDY REPORT M. INEJIH CHEIKH ABDELLAHI, MAHFOUDH O TALEB SIDI ET HAMET DIAW DIADHIOU FINAL REPORT July 2014 « No problem can be solved from the same level of consciousness that created it» 1 Albert Einstein Acronyms CBD : Convention on Biological Diversity CCLME: Canary Current Large Marine Ecosystem (Grand Ecosystème Marin du Courant des Canaries) CIPA : Centro de Investigaçao Pesqueira Applicada, Bissau. Guinea-Bissau CITES: Convention on International Trade in Endangered Species of Wild Fauna and Flora CMS: Convention on Migratory Species of Wild Animals CNSHB : Centre National des Sciences Halieutiques de Boussoura, Conakry, Guinea. CRODT : Centre de Recherche Océanographiques de Dakar-Thiaroy, Dakar, Senegal EBSA: Ecological and Biological Significant Area CBD EEZ: Economi Exclusive Zone FAO: Food Agriculture Organisation, UN IBAP : Institut de la Biodiversité et des Aires Protégées ; Guinée-Bissau ICCAT: International Commission for the Conservation of Atlantic Tuna IMR: Institute of Marine Research Bergen, Norvège IMROP : Institut Mauritanien de Recherches Océanographiques et des Pêches. Nouadhibou, Mauritania INDP: National Institute for the Development of Fisheries. Mindelo, Cabo Verde INRH : Institut National de recherches halieutiques, Casablanca, Morocco MPA : Marine Protected Area PNBA: Parc National du Banc d’Arguin, Mauritania PRCM : Regional Partenariat for the Conservation of West African marine and Coastal Area RAMPAO : Réseau Régional d'Aires Marines Protégées en Afrique de l’Ouest RD: Research and Development, Fisheries Department, Banjul, Gambia SIBE : Site d’Intérêt Biologique et Ecologique (Morocco Network) SRFC : Sub-Regional Fishery Commission, West Africa UN: Unated Nation UNCLOS: Unated Nations Convention on the Law Of the Sea UNESCO: United Nations Educational, Scientific and Cultural Organization i Sommaire ACRONYMS ............................................................................................................................................ I SOMMAIRE .......................................................................................................................................... II EXECUTIVE SUMMARY ..................................................................................................................... II The status of the biodiversity in the region CCLME ............................................................................................... vii Conclusions and recommendations ........................................................................................................................ ix Conclusions......................................................................................................................................................... ix Recommendations .............................................................................................................................................. x FIGURES AND TABLES ..................................................................................................................... IV Figures ..................................................................................................................................................................... iv Tables ...................................................................................................................................................................... vi I. GENERAL INTRODUCTION ............................................................................................................ 1 II. KEY FEATURES OF THE CCLME .................................................................................................. 3 II.1. Geographical, physical and ecological framework ...................................................................................... 3 II.2. Social and economic framework ................................................................................................................. 5 II.3. Political and administrative framework of biodiversity in the CCLME ........................................................ 8 III. CHARACTERIZATION OF MARINE BIODIVERSITY AND HABITATS .............................. 14 III.1 Overall context of marine biodiversity and methodology ............................................................................. 14 III.2. The state of marine biodiversity in CCLME countries ................................................................................... 17 III.2.1 General Inventory of marine biodiversity in the CCLME ........................................................................ 18 III.2.2 National inventory of biodiversity .......................................................................................................... 36 III.3 CCLME marine and coastal key habitats and conservation status ................................................................. 67 III.3.1 Critical coastal habitats and CCLME marine space ................................................................................. 67 III.3.2 State of conservation of CCLME key habitats ......................................................................................... 75 IV: ANALYSIS OF PRESSURES AND THREATS TO BIODIVERSITY ........................................ 80 IV.1 Fishing and other economic activities............................................................................................................ 80 IV.2 Exploration and exploitation of hydrocarbures ............................................................................................. 81 IV.3 Pollution ......................................................................................................................................................... 82 IV.4 invasive marine species ................................................................................................................................. 84 IV.5 Climate Change .............................................................................................................................................. 87 V: CONCLUSIONS AND RECOMMENDATIONS ........................................................................... 88 V.1 Conclusions ..................................................................................................................................................... 88 V. 2 Recommendations ......................................................................................................................................... 94 ii BIBLIOGRAPHIC REFERENCES ..................................................................................................... 97 Websites.............................................................................................................................................................. 119 ANNEXES .......................................................................................................................................... 121 Appendix 1 : Study TOR ....................................................................................................................................... 122 Appendix 2: Types of services and biodiversity values. ...................................................................................... 125 Appendix 3 : List of species repertoried in CCLME’s Countries with references................................................. 128 Appendix 4: List of seabird species of CCLME ..................................................................................................... 129 ANNEXE 5: List of CCLME key habitats under conservation status ..................................................................... 131 iii Figures and Tables Figures Figure 1: Approach and steps taken to address the TdR of the study .......................................................................... 1 Figure 2: Figure 2: (a) Schematic map of the Canary Current with the main currents (light blue: surface current, dark blue: current slope), the main caps, freshwater (blue arrows) and deposition of sand aerosols (> 10 g / m² per year yellow shaded area), retentio areas (orange), dispersion (green) on the shelf, frontal zones between water bodies (discontinuous blue lines) and eddies (blue: cyclones red : anticyclones) south of the canary islands (b) Map of sea-surface temperature over the study area on 25 July 2007 from OSTIA (Arístegui et al, 2009) ..................................................................................... 4 Figure 3: Methodological census of marine and coastal biodiversity in the region CCLME...................................... 16 Figure 4: Microalgae of the Pediastrum genus ............................................................................................................ 20 Figure 5: Distribution of events in 1970 (left map) and 2009 (right map), respectively, where paralytic toxins were detected in shellfish and fish, providing circumstantial evidence for an extension in the distribution of these agents (According to Medlin and Cembella 2013).................................................................... 21 Figure 6: Distribution of Harbour porpoise Phocoena phocoena ............................................................................... 29 Figure 7:Interactions marine mammals fishing (photo credit: IMROP) .....................................................................
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Centropages (Crustacea) Collected from Shimizu Port, Middle Japan: Introduced Or Not?
    Plankton Biol. Ecol. 52 (2): 92-99, 2005 plankton biology & ecology €■ The Planklon Society of Japan 21)05 A new species of the calanoid copepod genus Centropages (Crustacea) collected from Shimizu Port, Middle Japan: Introduced or not? Susumu Ohtsuka1, Hiroshi Itoh2 & Takeshi Mizushima3 ' Takeham Marine Science Station, Setouchi Field Science Center. Graduate School of Biosphere Science, Hiroshima University, 5-8-1 Minaio-machi, Takehara 725-0024, Japan 'Suidosha Co. Ltd., 8-11-11 Ikuta, Tama-Ku, Kawasaki 214-0038, Japan 3 School ofMarine Science and Technology. Tokai University, 3-20-1 Orido, Shimizu-Ku, Shizuoka 424-8610, Japan Received 12 March 2005; Accepted 13 May 2005 Abstract: A new species of the planktonic calanoid copepod Centropages is described from Shimizu Port, Middle Japan. The new species is assigned to the alcocki group that is distributed in the tropi cal/subtropical Indo-West Pacific regions. The sporadic occurrence of the new species alludes to the possibility that the new species was introduced to Japan via ballast water. Key words: Centropages maigo, alien species, Calanoida, ballast water, Shimizu Port coastal species are very abundant and play important roles Introduction as food for fish (Brodsky 1950, Chen & Zhang 1965). In Alien marine benthic species are an increasingly serious Japanese waters the following ten species of the genus have problem all over the world and are now being joined by hitherto been recorded: C. abdominalis Sato, 1913; C. planktonic species. On the Pacific coast of the U.S.A. and bradyi Wheeler, 1899; C. calaninus (Dana, 1849); C. elon Chile, many planktonic copepods have been introduced gates Giesbrecht, 1896; C.
    [Show full text]
  • Morphometric Analysis of Surface Utricles in Halimeda Tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry Within Individual Segments
    S S symmetry Article Morphometric Analysis of Surface Utricles in Halimeda tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry within Individual Segments Jiri Neustupa * and Yvonne Nemcova Department of Botany, Faculty of Science, Charles University, Prague, 12801 Benatska 2, Czech Republic; [email protected] * Correspondence: [email protected] Received: 26 June 2020; Accepted: 20 July 2020; Published: 1 August 2020 Abstract: Calcifying marine green algae of genus Halimeda have siphonous thalli composed of repeated segments. Their outer surface is formed by laterally appressed peripheral utricles which often form a honeycomb structure, typically with varying degrees of asymmetry in the individual polygons. This study is focused on a morphometric analysis of the size and symmetry of these polygons in Mediterranean H. tuna. Asymmetry of surface utricles is studied using a continuous symmetry measure quantifying the deviation of polygons from perfect symmetry. In addition, the segment shapes are also captured by geometric morphometrics and compared to the utricle parameters. The area of surface utricles is proved to be strongly related to their position on segments, where utricles near the segment bases are considerably smaller than those located near the apical and lateral margins. Interestingly, this gradient is most pronounced in relatively large reniform segments. The polygons are most symmetric in the central parts of segments, with asymmetry uniformly increasing towards the segment margins. Mean utricle asymmetry is found to be unrelated to segment shapes. Systematic differences in utricle size across different positions might be related to morphogenetic patterns of segment development, and may also indicate possible small-scale variations in CaCO3 content within segments.
    [Show full text]
  • The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
    山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships.
    [Show full text]
  • A New Classification of the Chirostyloidea (Crustacea: Decapoda: Anomura)
    Zootaxa 2687: 56–64 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new classification of the Chirostyloidea (Crustacea: Decapoda: Anomura) KAREEN E. SCHNABEL1 & SHANE T. AHYONG2 1National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand. E-mail: [email protected] 2Australian Museum, 6 College Street, Sydney, NSW 2010 Australia. E-mail: [email protected] Abstract The high level classification of the Chirostyloidea Ortmann, 1892, is reviewed. Eumunididae Milne-Edwards & Bouvier, 1900, is resurrected for two genera formerly placed in the Chirostylidae Ortmann, 1892, Eumunida Smith, 1883, and Pseudomunida Haig, 1979, based on shared characteristics such as the dorsal carapace striation, presence of supraocular spines of the rostrum, dentition of the mandible, presence of an epipod and an annulated exopod flagellum of maxilliped 1. Three families are now included in the Chirostyloidea: Chirostylidae, Eumunididae and Kiwaidae. Diagnoses are provided for each family as well as a key to the families. The fossil record of the Chirostyloidea is discussed, with putative records of Eumunida in the fossil record referred to the galatheid genus Sadayoshia Baba, 1969. Key words: Galatheoidea, Chirostylidae, Eumunididae, Kiwaidae, adult somatic morphology, larval morphology, fossil record Introduction Recent focus on the phylogeny of Anomura has generated significant molecular phylogenetic information that has challenged the traditional understanding of the marine squat lobsters and porcelain crabs, the Galatheoidea, which comprised the Chirostylidae Ortmann, 1892, Galatheidae Samouelle, 1819, Porcellanidae Haworth, 1825, and Kiwaidae Macpherson, Jones & Segonzac, 2005 (e.g., Ahyong et al.
    [Show full text]
  • African Clawless Otter (Aonyx Capensis) – Near Threatened (IUCN Red List)
    African clawless otter (Aonyx capensis) – Near Threatened (IUCN Red List) The Cape clawless otter is large: head and body about 1 m long, tail 50 cm, and typically weighs 10 - 20 kg. Upper parts of the body are dark brown, and the chin, cheeks, throat, and chest off- white. Whiskers are very long, numerous, and white. They assist in detecting its main prey (crabs) which are captured with the dexterous clawless forefeet. In freshwater habitats, it feeds mostly on crabs, and lesser amounts of frogs, fish, and seasonally on dragonfly larvae. Otters dry and groom themselves by rolling in grass, or on sandbanks or rocks. At most rolling places latrines are established, which like the rolling places, are regularly used. While defecating a clawless otter often rotates on the spot, so the scats are dropped all around it, broken into short pieces, not tapered at both ends. When fresh scats are dark brown, changing to a cream colour as they dry out; typically, about 25 mm diameter, range 22 - 30 mm. Track is 60 – 90mm wide. Male’s larger than female’s African Otter Network – africanotternetwork.wordpress.com – African clawless Fresh scat – 20 - 32mm diameter, typically full of crab, maybe some fish. No seeds, hair. Otter scat – fresh (left); aged (below) Otter scat can be confused with marsh mongoose scat (right). Mongoose scat is smaller 15 – 22mm diameter and consists of crab, small mammal (hair), insect, bird feathers Marsh mongoose scat The African Otter Network is looking for information on current distribution: if seen please report to: [email protected] Where, when, how many, and any other observation information.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • 1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
    1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]