Worksheet 3/23/2018–3/26/2018 - History of Math (Spring 2018)

Total Page:16

File Type:pdf, Size:1020Kb

Worksheet 3/23/2018–3/26/2018 - History of Math (Spring 2018) Worksheet 3/23/2018{3/26/2018 - History of Math (Spring 2018) The purpose of this assignment is to understand early methods of differentiation, which predate the modern notion of a limit by at least 150 years, and to compare similarities and differences with current methods. As a word of caution, the reader should be aware that the methods of Barrow, Newton, Leibniz and their contemporaries are considered non-rigorous by modern standards... you may be asked to reflect, at some point, on why. From several different perspectives, we will consider the curve defined by y − x3 + 5x2 − 6 = 0. Our goal, in each of the following five problems, is to find the slope of the tangent line at any given point (x; y) on the curve. 1. Pretend you are a modern Calculus I student. Set y = f(x) = x3 − 5x2 + 6, and differen- tiate using the power rule to find an expression for y0. 2. Pretend you are a modern Calculus I instructor, trying to illustrate to your students how the slope of a tangent line may be found by taking a limit of slopes of secant lines. (a) Set y = f(x) = x3 − 5x2 + 6, and compute a simplified expression for the difference quotient f(x + h) − f(x) . h Sketch a picture of what this different quotient is supposed to represent. (b) Find y0 by taking the limit as h ! 0 of your expression for the difference quotient. 1 2 3. Pretend you are Isaac Barrow (see Burton pp. 389{391 for additional guidance on this problem). Consider the curve defined by y − x3 + 5x2 − 6 = 0, and let P = (x; y) denote a point on this curve. (a) Construct the “differential triangle": let Q = (x − e; y − a) be another point on the curve, and let R be a point so that 4P QR becomes a right triangle, with right angle \R, and the legs have length PR = a and QR = e. Sketch a picture of the triangle with two vertices on the curve. (The picture need not be to scale.) (b) Now supposing the distances e and a to be infinitely small (whatever that means), we ! agree it is reasonable to regard the line PQ as being equal to the tangent line to the a curve at P . So we want to find its slope e . To find it, observe that since Q lies on the curve, we must have (y − a) − (x − e)3 + 5(x − e)2 − 6 = 0. Expand out the equation above. (c) Use the fact that P lies on the curve to write y − x3 + 5x2 − 6 = 0, and remove as many terms as possible from your expression in part (b). (d) Looking at the reduced expression from part (c), now \reject all terms in which a and e are above the first power, or are multiplied together (for they are no value with the rest, as being infinitely small." (Barrow 1670) In other words, drop all terms where the degree of a plus the degree of e is more than 1. a (e) Lastly, solve for e to find an expression for the slope of the tangent line. 4. Pretend you are Sir Isaac Newton (see Burton p. 419 for additional guidance on this prob- lem). Consider the curve defined by y − x3 + 5x2 − 6 = 0. From your viewpoint, each of the variables x and y is fluent, i.e. in continuous motion along the path of the curve. The flux- ion, or instantaneous rate of change, of y is denoted byy _ and the fluxion of x is denoted byx _. y_ To find the slope of the tangent line at a given point (x; y), it is our task to find x_ , the ratio of the fluxion of y to the fluxion of x. (a) Suppose now the fluents x and y are altered by an infinitely small change o (whatever that means). After the change is effected, the new values of x and y will be x +xo _ and y +yo _ , respectively. Since the new values still lie on the curve, we must have (y +yo _ ) − (x +xo _ )3 + 5(x +xo _ )2 − 6 = 0. Expand out the equation above. (b) Use the fact that y − x3 + 5x2 − 6 = 0, and remove as many terms as possible from your expression in part (b). (c) Divide o out from all the remaining terms in your reduced expression from part (c). 3 (d) Looking at the reduced expression from part (d), note that \whereas o is supposed to be infinitely little, that it may represent the moments of quantities, the terms that are multiplied by it will be nothing in respect to the rest; I therefore reject them." (Newton 1671). In other words, drop all terms where o appears. y_ (e) Lastly, solve for x_ to find an expression for the slope of the tangent line. 5. Pretend you are Gottfried Wilhelm Leibniz (see Burton pp. 415{416 for additional guid- ance on this problem). Consider the curve y − x3 + 5x2 − 6 = 0. Your method for finding the slope of the tangent line at (x; y) is almost identical to Barrow's, but instead of considering a “differential trian- gle" with two vertices (x; y) and (x − e; y − a) an infinitely small distance apart, you prefer considering a \characteristic triangle" (which is the same idea with a different name) with two vertices (x; y) and (x + dx; y + dy). Here again dx and dy are considered infinitely small distances. Mimic the methods of the previous problems, to find the slope of the tangent line, dy which is given by the ratio dx . 6. The use of infinitesimals, or “infinitely small quantities," like Newton's o and Leibniz's dx were criticized by many authors. One of the major criticisms is that the inventors of the calculus treated infinitesimals as if they were zero, while simultaneously treating them as if they were non-zero. For example, in George Berkeley's famous critique of calculus, The Analyst (1734), the au- thor writes: \...the fallacious way of proceeding to a certain Point on the Supposition of an Increment, and then at once shifting your Supposition to that of no Increment . Since if this second Supposition had been made before the common Division by o, all had vanished at once, and you must have got nothing by your Supposition. Whereas by this Artifice of first dividing, and then changing your Supposition, you retain 1 and nxn−1. But, notwithstanding all this address to cover it, the fallacy is still the same. ... And what are these Fluxions? The Velocities of evanescent Increments? And what are these same evanescent Increments? They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?" Explain in concrete terms exactly how Barrow, Newton, and Leibniz treat infinitesimals both as zero, and as non-zero..
Recommended publications
  • Numerical Differentiation and Integration
    Chapter 4 Numerical Di↵erentiation and Integration 4.1 Numerical Di↵erentiation In this section, we introduce how to numerically calculate the derivative of a function. First, the derivative of the function f at x0 is defined as f x0 h f x0 f 1 x0 : lim p ` q´ p q. p q “ h 0 h Ñ This formula gives an obvious way to generate an approximation to f x0 : simply compute 1p q f x0 h f x0 p ` q´ p q h for small values of h. Although this way may be obvious, it is not very successful, due to our old nemesis round-o↵error. But it is certainly a place to start. 2 To approximate f x0 , suppose that x0 a, b ,wheref C a, b , and that x1 x0 h for 1p q Pp q P r s “ ` some h 0 that is sufficiently small to ensure that x1 a, b . We construct the first Lagrange ‰ Pr s polynomial P0,1 x for f determined by x0 and x1, with its error term: p q x x0 x x1 f x P0,1 x p ´ qp ´ qf 2 ⇠ x p q“ p q` 2! p p qq f x0 x x0 h f x0 h x x0 x x0 x x0 h p qp ´ ´ q p ` qp ´ q p ´ qp ´ ´ qf 2 ⇠ x “ h ` h ` 2 p p qq ´ for some ⇠ x between x0 and x1. Di↵erentiating gives p q f x0 h f x0 x x0 x x0 h f 1 x p ` q´ p q Dx p ´ qp ´ ´ qf 2 ⇠ x p q“ h ` 2 p p qq „ ⇢ f x0 h f x0 2 x x0 h p ` q´ p q p ´ q´ f 2 ⇠ x “ h ` 2 p p qq x x0 x x0 h p ´ qp ´ ´ qDx f 2 ⇠ x .
    [Show full text]
  • MPI - Lecture 11
    MPI - Lecture 11 Outline • Smooth optimization – Optimization methods overview – Smooth optimization methods • Numerical differentiation – Introduction and motivation – Newton’s difference quotient Smooth optimization Optimization methods overview Examples of op- timization in IT • Clustering • Classification • Model fitting • Recommender systems • ... Optimization methods Optimization methods can be: 1 2 1. discrete, when the support is made of several disconnected pieces (usu- ally finite); 2. smooth, when the support is connected (we have a derivative). They are further distinguished based on how the method calculates a so- lution: 1. direct, a finite numeber of steps; 2. iterative, the solution is the limit of some approximate results; 3. heuristic, methods quickly producing a solution that may not be opti- mal. Methods are also classified based on randomness: 1. deterministic; 2. stochastic, e.g., evolution, genetic algorithms, . 3 Smooth optimization methods Gradient de- scent methods n Goal: find local minima of f : Df → R, with Df ⊂ R . We assume that f, its first and second derivatives exist and are continuous on Df . We shall describe an iterative deterministic method from the family of descent methods. Descent method - general idea (1) Let x ∈ Df . We shall construct a sequence x(k), with k = 1, 2,..., such that x(k+1) = x(k) + t(k)∆x(k), where ∆x(k) is a suitable vector (in the direction of the descent) and t(k) is the length of the so-called step. Our goal is to have fx(k+1) < fx(k), except when x(k) is already a point of local minimum. Descent method - algorithm overview Let x ∈ Df .
    [Show full text]
  • Calculus Lab 4—Difference Quotients and Derivatives (Edited from U. Of
    Calculus Lab 4—Difference Quotients and Derivatives (edited from U. of Alberta) Objective: To compute difference quotients and derivatives of expressions and functions. Recall Plotting Commands: plot({expr1,expr2},x=a..b); Plots two Maple expressions on one set of axes. plot({f,g},a..b); Plots two Maple functions on one set of axes. plot({f(x),g(x)},x=a..b); This allows us to plot the Maple functions f and g using the form of plot() command appropriate to Maple expressions. If f and g are Maple functions, then f(x) and g(x) are the corresponding Maple expressions. The output of this plot() command is precisely the same as that of the preceding (function version) plot() command. 1. We begin by using Maple to compute difference quotients and, from them, derivatives. Try the following sequence of commands: 1 f:=x->1/(x^2-2*x+2); This defines the function f (x) = . x 2 − 2x + 2 (f(2+h)-f(2))/h; This is the difference quotient of f at the point x = 2. simplify(%); Simplifies the last expression. limit(%,h=0); This gives the derivative of f at the point where x = 2. Exercise 1: Find the difference quotient and derivative of this function at a general point x (hint: make a simple modification of the above steps). This f (x + h) − f (x) means find and f’(x). Record your answers below. h Use this to evaluate the derivative at the points x = -1 and x = 4. (It may help to remember the subs() command here; for example, subs(x=1,e1); means substitute x = 1 into the expression e1).
    [Show full text]
  • 3.2 the Derivative As a Function 201
    SECT ION 3.2 The Derivative as a Function 201 SOLUTION Figure (A) satisfies the inequality f .a h/ f .a h/ f .a h/ f .a/ C C 2h h since in this graph the symmetric difference quotient has a larger negative slope than the ordinary right difference quotient. [In figure (B), the symmetric difference quotient has a larger positive slope than the ordinary right difference quotient and therefore does not satisfy the stated inequality.] 75. Show that if f .x/ is a quadratic polynomial, then the SDQ at x a (for any h 0) is equal to f 0.a/ . Explain the graphical meaning of this result. D ¤ SOLUTION Let f .x/ px 2 qx r be a quadratic polynomial. We compute the SDQ at x a. D C C D f .a h/ f .a h/ p.a h/ 2 q.a h/ r .p.a h/ 2 q.a h/ r/ C C C C C C C 2h D 2h pa2 2pah ph 2 qa qh r pa 2 2pah ph 2 qa qh r C C C C C C C D 2h 4pah 2qh 2h.2pa q/ C C 2pa q D 2h D 2h D C Since this doesn’t depend on h, the limit, which is equal to f 0.a/ , is also 2pa q. Graphically, this result tells us that the secant line to a parabola passing through points chosen symmetrically about x a is alwaysC parallel to the tangent line at x a. D D 76. Let f .x/ x 2.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • The Infinite and Contradiction: a History of Mathematical Physics By
    The infinite and contradiction: A history of mathematical physics by dialectical approach Ichiro Ueki January 18, 2021 Abstract The following hypothesis is proposed: \In mathematics, the contradiction involved in the de- velopment of human knowledge is included in the form of the infinite.” To prove this hypothesis, the author tries to find what sorts of the infinite in mathematics were used to represent the con- tradictions involved in some revolutions in mathematical physics, and concludes \the contradiction involved in mathematical description of motion was represented with the infinite within recursive (computable) set level by early Newtonian mechanics; and then the contradiction to describe discon- tinuous phenomena with continuous functions and contradictions about \ether" were represented with the infinite higher than the recursive set level, namely of arithmetical set level in second or- der arithmetic (ordinary mathematics), by mechanics of continuous bodies and field theory; and subsequently the contradiction appeared in macroscopic physics applied to microscopic phenomena were represented with the further higher infinite in third or higher order arithmetic (set-theoretic mathematics), by quantum mechanics". 1 Introduction Contradictions found in set theory from the end of the 19th century to the beginning of the 20th, gave a shock called \a crisis of mathematics" to the world of mathematicians. One of the contradictions was reported by B. Russel: \Let w be the class [set]1 of all classes which are not members of themselves. Then whatever class x may be, 'x is a w' is equivalent to 'x is not an x'. Hence, giving to x the value w, 'w is a w' is equivalent to 'w is not a w'."[52] Russel described the crisis in 1959: I was led to this contradiction by Cantor's proof that there is no greatest cardinal number.
    [Show full text]
  • CHAPTER 3: Derivatives
    CHAPTER 3: Derivatives 3.1: Derivatives, Tangent Lines, and Rates of Change 3.2: Derivative Functions and Differentiability 3.3: Techniques of Differentiation 3.4: Derivatives of Trigonometric Functions 3.5: Differentials and Linearization of Functions 3.6: Chain Rule 3.7: Implicit Differentiation 3.8: Related Rates • Derivatives represent slopes of tangent lines and rates of change (such as velocity). • In this chapter, we will define derivatives and derivative functions using limits. • We will develop short cut techniques for finding derivatives. • Tangent lines correspond to local linear approximations of functions. • Implicit differentiation is a technique used in applied related rates problems. (Section 3.1: Derivatives, Tangent Lines, and Rates of Change) 3.1.1 SECTION 3.1: DERIVATIVES, TANGENT LINES, AND RATES OF CHANGE LEARNING OBJECTIVES • Relate difference quotients to slopes of secant lines and average rates of change. • Know, understand, and apply the Limit Definition of the Derivative at a Point. • Relate derivatives to slopes of tangent lines and instantaneous rates of change. • Relate opposite reciprocals of derivatives to slopes of normal lines. PART A: SECANT LINES • For now, assume that f is a polynomial function of x. (We will relax this assumption in Part B.) Assume that a is a constant. • Temporarily fix an arbitrary real value of x. (By “arbitrary,” we mean that any real value will do). Later, instead of thinking of x as a fixed (or single) value, we will think of it as a “moving” or “varying” variable that can take on different values. The secant line to the graph of f on the interval []a, x , where a < x , is the line that passes through the points a, fa and x, fx.
    [Show full text]
  • Differentiation
    CHAPTER 3 Differentiation 3.1 Definition of the Derivative Preliminary Questions 1. What are the two ways of writing the difference quotient? 2. Explain in words what the difference quotient represents. In Questions 3–5, f (x) is an arbitrary function. 3. What does the following quantity represent in terms of the graph of f (x)? f (8) − f (3) 8 − 3 4. For which value of x is f (x) − f (3) f (7) − f (3) = ? x − 3 4 5. For which value of h is f (2 + h) − f (2) f (4) − f (2) = ? h 4 − 2 6. To which derivative is the quantity ( π + . ) − tan 4 00001 1 .00001 a good approximation? 7. What is the equation of the tangent line to the graph at x = 3 of a function f (x) such that f (3) = 5and f (3) = 2? In Questions 8–10, let f (x) = x 2. 1 2 Chapter 3 Differentiation 8. The expression f (7) − f (5) 7 − 5 is the slope of the secant line through two points P and Q on the graph of f (x).Whatare the coordinates of P and Q? 9. For which value of h is the expression f (5 + h) − f (5) h equal to the slope of the secant line between the points P and Q in Question 8? 10. For which value of h is the expression f (3 + h) − f (3) h equal to the slope of the secant line between the points (3, 9) and (5, 25) on the graph of f (x)? Exercises 1.
    [Show full text]
  • Calculus Formulas and Theorems
    Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
    [Show full text]
  • Section 9.6, the Chain Rule and the Power Rule
    Section 9.6, The Chain Rule and the Power Rule Chain Rule: If f and g are differentiable functions with y = f(u) and u = g(x) (i.e. y = f(g(x))), then dy = f 0(u) · g0(x) = f 0(g(x)) · g0(x); or dx dy dy du = · dx du dx For now, we will only be considering a special case of the Chain Rule. When f(u) = un, this is called the (General) Power Rule. (General) Power Rule: If y = un, where u is a function of x, then dy du = nun−1 · dx dx Examples Calculate the derivatives for the following functions: 1. f(x) = (2x + 1)7 Here, u(x) = 2x + 1 and n = 7, so f 0(x) = 7u(x)6 · u0(x) = 7(2x + 1)6 · (2) = 14(2x + 1)6. 2. g(z) = (4z2 − 3z + 4)9 We will take u(z) = 4z2 − 3z + 4 and n = 9, so g0(z) = 9(4z2 − 3z + 4)8 · (8z − 3). 1 2 −2 3. y = (x2−4)2 = (x − 4) Letting u(x) = x2 − 4 and n = −2, y0 = −2(x2 − 4)−3 · 2x = −4x(x2 − 4)−3. p 4. f(x) = 3 1 − x2 + x4 = (1 − x2 + x4)1=3 0 1 2 4 −2=3 3 f (x) = 3 (1 − x + x ) (−2x + 4x ). Notes for the Chain and (General) Power Rules: 1. If you use the u-notation, as in the definition of the Chain and Power Rules, be sure to have your final answer use the variable in the given problem.
    [Show full text]
  • 4.1 AP Calc Antiderivatives and Indefinite Integration.Notebook November 28, 2016
    4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 4.1 Antiderivatives and Indefinite Integration Learning Targets 1. Write the general solution of a differential equation 2. Use indefinite integral notation for antiderivatives 3. Use basic integration rules to find antiderivatives 4. Find a particular solution of a differential equation 5. Plot a slope field 6. Working backwards in physics Intro/Warm­up 1 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Note: I am changing up the procedure of the class! When you walk in the class, you will put a tally mark on those problems that you would like me to go over, and you will turn in your homework with your name, the section and the page of the assignment. Order of the day 2 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Vocabulary First, find a function F whose derivative is . because any other function F work? So represents the family of all antiderivatives of . The constant C is called the constant of integration. The family of functions represented by F is the general antiderivative of f, and is the general solution to the differential equation The operation of finding all solutions to the differential equation is called antidifferentiation (or indefinite integration) and is denoted by an integral sign: is read as the antiderivative of f with respect to x. Vocabulary 3 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 Nov 28­9:38 AM 4 4.1 AP Calc Antiderivatives and Indefinite Integration.notebook November 28, 2016 ∫ Use basic integration rules to find antiderivatives The Power Rule: where 1.
    [Show full text]
  • Or, If the Sine Functions Be Eliminated by Means of (11)
    52 BINOMIAL THEOREM AND NEWTONS MONUMENT. [Nov., or, if the sine functions be eliminated by means of (11), e <*i : <** : <xz = X^ptptf : K(P*ptf : A3(Pi#*) . (53) While (52) does not enable us to construct the point of least attraction, it furnishes a solution of the converse problem : to determine the ratios of the masses of three points so as to make the sum of their attractions on a point P within their triangle a minimum. If, in (50), we put n = 2 and ax + a% = 1, and hence pt + p% = 1, this equation can be regarded as that of a curve whose ordinate s represents the sum of the attractions exerted by the points et and e2 on the foot of the ordinate. This curve approaches asymptotically the perpendiculars erected on the vector {ex — e2) at ex and e% ; and the point of minimum attraction corresponds to its lowest point. Similarly, in the case n = 3, the sum of the attractions exerted by the vertices of the triangle on any point within this triangle can be rep­ resented by the ordinate of a surface, erected at this point at right angles to the plane of the triangle. This suggestion may here suffice. 22. Concluding remark.—Further results concerning gen­ eralizations of the problem of the minimum sum of distances are reserved for a future communication. WAS THE BINOMIAL THEOEEM ENGKAVEN ON NEWTON'S MONUMENT? BY PKOFESSOR FLORIAN CAJORI. Moritz Cantor, in a recently published part of his admir­ able work, Vorlesungen über Gescliichte der Mathematik, speaks of the " Binomialreihe, welcher man 1727 bei Newtons Tode .
    [Show full text]