Daniel F. Evans

Total Page:16

File Type:pdf, Size:1020Kb

Daniel F. Evans Daniel F. Evans Astrophysics Group, Lennard-Jones Building, Keele University, Newcastle-under-Lyme, United Kingdom, ST5 6QE Email: [email protected] Research Interests The role of stellar multiplicity in planet formation. Detection and characterisation of exoplanet atmospheres. Technical Skills Reduction and analysis of high resolution imaging data and integral field spectroscopy. Scientific Python, C++, and x86 Assembly. Reduction of time-series CCD photometry. Education Keele University Ph.D. Astrophysics, 2014 { present `High Resolution Imaging of Transiting Extrasolar Planetary systems' Supervisor J. Southworth. University of Sheffield MPhys Physics and Astronomy, 2010 { 2014 Research Ph.D. Student, Keele University, 2014 { present High Resolution Imaging of Transiting Extrasolar Planetary systems (supervisor J. South- worth) Masters Research Project, University of Sheffield, 2013 { 2014 Ultra-fast correlation of gravitational wave signals using Assembly code (supervisor E. Daw) Third Year Research Project, University of Sheffield, 2012 { 2013 Observations of the transiting exoplanet TrES-3b using the Point-5 Metre Telescope (su- pervisor V.S. Dhillon) Summer Research Project, Keele University, 2012 Measuring the physical properties of transiting planets from Isaac Newton Telescope pho- tometry (supervisor J. Southworth) Honours and Awards Tessella Prize in Physics For the most innovative use of software in a final year project, University of Sheffield, 2014. Proposals and Grants Awarded P.I. Observing proposal for SPHERE/VLT (September 2016) Awarded 9.0 hours in ESO Period 99. P.I. Observing proposal for SPHERE/VLT (April 2016) 1 Awarded 15.4 hours in ESO Period 98. P.I. Multiple Observing proposals for Danish 1.54m Telescope (2015-2017) 21.8 hours of observations since 2015 using the Two Colour Instrument (lucky imager). Co-I. Observing proposal for Danish 1.54m Telescope (2014) 25.6 hours of observations in 2014 using the Two Colour Instrument (lucky imager). P.I. Funding request for PhD student training at SAAO October 2016, $735, Keele University Researcher Development Funds. Teaching Experience Laboratory Demonstrator, Keele University, 2014{2017 Taught experimental skills and research techniques to undergraduate students in Physics Outreach AskScience Outreach Project, 2013{present Member of the organising committee of the `AskScience' project, an online, multi-discipline, question-and-answer forum reaching an audience of over 15 million. Conference Talks The effects of binary systems and contaminating light on transiting hot Jupiters NAM 2017, UK, July 2017 The effects of binary systems and contaminating light on transiting hot Jupiters EWASS 2017, Czech Republic, June 2017 Lucky Imaging of Transiting Extrasolar Planets (LITEP) MiNDSTEp Consortium Meeting, Italy, March 2016 Stellar Companions to Southern Exoplanet Host Stars NAM 2015, UK, July 2015 Observing Experience • 54 nights optical photometry and lucky imaging with the Danish 1.54m telescope (2015{2017) • 38 nights optical time-series photometry with the Calar Alto 1.23m telescope (2015{2017) • 14 nights optical time-series photometry with the SAAO 40in telescope (2016) Selected Publications High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016. Evans D.F., Southworth J, Smalley B., et al., 2016, A&A, submitted. WASP-20 Is a Close Visual Binary with a Transiting Hot Jupiter. Evans D.F., Southworth J., Smalley B., 2016, ApJ, 833, L19, arXiv 1611.08735. Contamination from a nearby star cannot explain the anomalous trans- mission spectrum of the ultrashort period giant planet WASP-103 b. Southworth J, Evans D.F., 2016, MNRAS, 463, 37, arXiv 1608.00746. High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I. Lucky imaging observations of 101 systems in the southern hemisphere. 2 Evans D.F., Southworth J, Maxted P.F.L., et al., 2016, A&A, 589, 58, arXiv 1603.03274. 3 Publications 19 refereed publications, 3 first author. Total citations: 151, h-index: 7. Source: NASA Astrophysics Data System and Google Scholar. 2017 1. High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016. Evans D.F., Southworth J, Smalley B., Jørgensen U.G., Dominik M., Andersen M.I., Bozza V., Bramich D.M., Burgdorf M., Ciceri S., D'Ago G., Figuera Jaimes R., Gu S.-H., Hinse T.C., Henning Th., Hundertmark M., Kains N., Kerins E., Korhonen H., Kokotanekova R., Kuffmeier M., Longa-Pe~naP., Mancini L., MacKenzie J., Popovas A., Rabus M., Rahvar S., Sajadian S., Snodgrass C., Skottfelt J., Surdej J., Tronsgaard R., Unda Sanzana E., von Essen C., Wang Y.-B., Wertz O., 2016, A&A, submitted. 2. GravityCam: Wide-Field High-Resolution High-Cadence Imaging Sur- veys in the Visible from the Ground. Mackay C., Dominik M., Steele I.A., Snodgrass C., Jørgensen U.G., Skottfelt J., Stefanov K., Carry B., Braga-Ribas F., Doressoundiram A., Ivanov V.D., Gandhi P., Evans D.F., Hundertmark M., Serjeant S., Ortolani S., MNRAS, submitted, arXiv 1709.00244. 3. OGLE-2016-BLG-1190Lb: First Spitzer Bulge Planet is an Extreme Super-Jupiter. Ryu Y.-H., Yee J.C., Udalski A., . , Evans D.F., et al., ApJ, submitted. 4. Qatar Exoplanet Survey : Qatar-3b, Qatar-4b, and Qatar-5b. Alsubai K., Mislis D., Tsvetanov Z.I., Latham D.W., Bieryla A., Buchhave L.A., Esquerdo G.A., Bramich D.M., Pyrzas S., Vilchez N.P.E., Mancini L., Southworth J., Evans D.F., Henning Th., Ciceri S., 2016, ApJ, 833, L19, arXiv 1611.08735. 2016 5. The First Simultaneous Microlensing Observations by Two Space Tele- scopes: Spitzer and Swift Reveal a Brown Dwarf in Event OGLE-2015- BLG-1319. Henderson C.B., Poleski R., Penny M., . , Evans D.F., et al., 2016, PASP, 128, 4401, arXiv 1512.09142. 6. WASP-20 Is a Close Visual Binary with a Transiting Hot Jupiter. Evans D.F., Southworth J., Smalley B., 2016, ApJ, 833, L19, arXiv 1611.08735. 7. Contamination from a nearby star cannot explain the anomalous trans- mission spectrum of the ultrashort period giant planet WASP-103 b. Southworth J, Evans D.F., 2016, MNRAS, 463, 37, arXiv 1608.00746. 8. The First Simultaneous Microlensing Observations by Two Space Tele- scopes: Spitzer and Swift Reveal a Brown Dwarf in Event OGLE-2015- BLG-1319. Shvartzvald Y., Li Z., Udalski A., . , Evans D.F., et al., 2016, ApJ, 831, 183, arXiv 1606.02292. 4 9. Many new variable stars discovered in the core of the globular clus- ter NGC 6715 (M 54) with EMCCD observations. Figuera Jaimes R., Bramich D.M., Kains N., Skottfelt J., Jørgensen U.G., Horne K., Do- minik M., Alsubai K.A., Bozza V., Burgdorf M., Calchi Novati S., Ciceri S., D'Ago G., Evans D.F., Galianni P., Gu S.-H., Harpsøe K.B.W., Haugbølle T., Hinse T.C., Hundert- mark M., Juncher D., Kerins E., Korhonen H., Kuffmeier M., Mancini L., Peixinho N., Popovas A., Rabus M., Rahvar S., Scarpetta G., Schmidt R.W., Snodgrass C., Starkey D., Street R.A., Surdej J., Tronsgaard R., Unda-Sanzana E., von Essen C., Wang X.-B., Wertz O., 2016, A&A, 592, 120, arXiv 1605.06141. 10. Mass Measurements of Isolated Objects from Space-based Microlens- ing. Zhu W., Calchi Novati S., Gould A., . , Evans D.F., et al., 2016, ApJ, 825, 60, arXiv 1510.02097. 11. WASP-120 b, WASP-122 b, AND WASP-123 b: Three Newly Discov- ered Planets from the WASP-South Survey. Turner O.D, Anderson D.R., Collier Cameron A., Delrez L, Evans D.F., Gillon M., Hellier C., Jehin F., Lendl M., Maxted P.F.L., Pepe F., Pollacco D., Queloz D., S`egransanD., Smalley B., Smith A.M.S., Triaud A.H.M.J., Udry S., West R.G., 2016, PASP, 128, 4401, arXiv 1509.02210. 12. Absolute parameters for AI Phoenicis using WASP photometry. Kirkby-Kent J.A., Maxted P.F.L., Serenelli A.M., Turner O.D., Evans D.F., Anderson D.R., Hellier C., West R.G., 2016, A&A, 591, 124, arXiv 1605.07059. 13. The Spitzer Microlensing Program as a Probe for Globular Clus- ter Planets: Analysis of OGLE-2015-BLG-0448. Poleski R., Zhu W., Christie G.W., . , Evans D.F., et al., 2016, ApJ, 823, 63, arXiv 1512.08520. 14. High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I. Lucky imaging observations of 101 systems in the southern hemisphere. Evans D.F., Southworth J, Maxted P.F.L., Skottfelt J., Hundertmark M., Jørgensen U.G., Dominik M., Alsubai K.A., Andersen M.I., Bozza V., Bramich D.M., Burgdorf M., Ciceri S., D'Ago G., Figuera Jaimes R., Gu S.-H., Haugbølle T., Hinse T.C., Juncher D., Kains N., Kerins E., Korhonen H., Kuffmeier M., Mancini L., Peixinho N., Popovas A., Rabus M., Rahvar S., Schmidt R.W., Snodgrass C., Starkey D., Surdej J., Tronsgaard R., von Essen C., Wang Y., 2016, A&A, 589, 58, arXiv 1603.03274. 15. High-precision photometry by telescope defocussing - VIII. WASP- 22, WASP-41, WASP-42 and WASP-55. Southworth J, Tregloan-Reed J., Andersen M.I., Calchi Novati S., Ciceri S., Colque J.P., D'Ago G., Dominik M., Evans D.F., Gu S.-H., Herrera-Cordova A., Hinse T.C., Jørgensen U.G., Juncher D., Kuffmeier M., Mancini L., Peixinho N., Popovas A., Rabus M., Skottfelt J., Tronsgaard R., Unda-Sanzana E., Wang X.-B., Wertz O., Alsubai K.A., Andersen J.M., Bozza V., Bramich D.M., Burgdorf M., Damerdji Y., Diehl C., Elyiv A., Figuera Jaimes R., Haugbølle T., Hundertmark M., Kains N., Kerins E., Korhonen H., Liebig C., Mathiasen M., Penny M.T., Rahvar S., Scarpetta G., Schmidt R.W., Snodgrass C., Starkey D., Surdej J., Vilela C., von Essen C., Wang Y., 2016, MNRAS, 457, 4205, arXiv 1512.05549. 16. Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path to- 5 ward Breaking Strong Microlens Degeneracies.
Recommended publications
  • The TESS Light Curve of AI Phoenicis
    MNRAS 000,1{14 (2020) Preprint 9 June 2020 Compiled using MNRAS LATEX style file v3.0 The TESS light curve of AI Phoenicis P. F. L. Maxted,1? Patrick Gaulme,2? D. Graczyk,3? K. G. He lminiak,3? C. Johnston,4? Jerome A. Orosz,5? Andrej Prˇsa,6? John Southworth,1? Guillermo Torres,7? Guy R Davies,8;9? Warrick Ball,8;9 and William J Chaplin8;9 1Astrophysics group, Keele University, Keele, Staordshire, ST5 5BG, UK. 2Max-Planck-Institut fur¨ Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077, G¨ottingen, Germany. 3Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Rabia´nska 8, 87-100 Toru´n, Poland. 4Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium. 5Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1221, USA. 6Villanova University, Dept. of Astrophysics and Planetary Science, 800 Lancaster Avenue, Villanova PA 19085, USA. 7Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA. 8School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK. 9Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Accurate masses and radii for normal stars derived from observations of detached eclipsing binary stars are of fundamental importance for testing stellar models and may be useful for calibrating free parameters in these model if the masses and radii are sufficiently precise and accurate. We aim to measure precise masses and radii for the stars in the bright eclipsing binary AI Phe, and to quantify the level of system- atic error in these estimates.
    [Show full text]
  • Annual Report 2016–2017 AAVSO
    AAVSO The American Association of Variable Star Observers Annual Report 2016–2017 AAVSO Annual Report 2012 –2013 The American Association of Variable Star Observers AAVSO Annual Report 2016–2017 The American Association of Variable Star Observers 49 Bay State Road Cambridge, MA 02138-1203 USA Telephone: 617-354-0484 Fax: 617-354-0665 email: [email protected] website: https://www.aavso.org Annual Report Website: https://www.aavso.org/annual-report On the cover... At the 2017 AAVSO Annual Meeting.(clockwise from upper left) Knicole Colon, Koji Mukai, Dennis Conti, Kristine Larsen, Joey Rodriguez; Rachid El Hamri, Andy Block, Jane Glanzer, Erin Aadland, Jamin Welch, Stella Kafka; and (clockwise from upper left) Joey Rodriguez, Knicole Colon, Koji Mukai, Frans-Josef “Josch” Hambsch, Chandler Barnes. Picture credits In additon to images from the AAVSO and its archives, the editors gratefully acknowledge the following for their image contributions: Glenn Chaple, Shawn Dvorak, Mary Glennon, Bill Goff, Barbara Harris, Mario Motta, NASA, Gary Poyner, Msgr. Ronald Royer, the Mary Lea Shane Archives of the Lick Observatory, Chris Stephan, and Wheatley, et al. 2003, MNRAS, 345, 49. Table of Contents 1. About the AAVSO Vision and Mission Statement 1 About the AAVSO 1 What We Do 2 What Are Variable Stars? 3 Why Observe Variable Stars? 3 The AAVSO International Database 4 Observing Variable Stars 6 Services to Astronomy 7 Education and Outreach 9 2. The Year in Review Introduction 11 The 106th AAVSO Spring Membership Meeting, Ontario, California 11 The
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • Save Pdf (0.09
    THE SOLAR-TYPE ECLIPSING BINARY SYSTEM AI PHOENICIS E.F. Milone and B.J. Hrivnak Rothney Astrophysical Observatory, The Univ. of Calgary INTRODUCTION AI Phe was discovered to be variable and identified as an EA binary by Strohmeier (1972). Reipurth (1978) subsequently carried out uvby photometry, determined the period (24.5923 d), and noted the lengthy totality of primary minimum and the displacement of the second­ ary minimum. Imbert (1978) obtained radial velocity curves and deter­ mined spectroscopic orbital elements. Imbert also gives a spectroscopic classification of G2V for the primary (hotter) component and approxi­ mately G5 for the secondary. AI Phe thus appeared to offer a unique opportunity to study the limb darkening of a non-interacting solar-type star. As an extension of a solar UV limb darkening study (Kjeldseth Moe and Milone 1978), ten IUE spectra were obtained on Aug. 12 in 2 successive shifts (cf Milone et al 1981). In conjunct-ion with this, ground-based 5-colour photometry and spectroscopy were carried out at CTIO and at UTLCO. PRESENT WORK UBVRI photometry was carried out in September 1981 by Hrivnak at CTIO, and over the season, by I. Sheldon at Las Campanas. Figure 1 displays the differential V light curve relative to comparison star HD 6236. Standardization to the Johnson system permitted the deter­ mination of magnitude and colours of the two components, since the secondary is seen alone at primary minimum. star V U - V B - V V - R V - I S 9.326 1.35 0.85 0.70 1.15 P 9.335 0.47 0.49 0.47 0.70 Spectra taken iri eclipse beginning at phase 0P.0048 reveal a composite spectral type of about G5.
    [Show full text]
  • University of Birmingham the TESS Light Curve of AI Phoenicis
    University of Birmingham The TESS light curve of AI Phoenicis Maxted, P. F. L.; Gaulme, Patrick; Graczyk, D.; Heminiak, K. G.; Johnston, C.; Orosz, Jerome A.; Prša, Andrej; Southworth, John; Torres, Guillermo; Davies, Guy R.; Ball, Warrick; Chaplin, William J DOI: 10.1093/mnras/staa1662 License: None: All rights reserved Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Maxted, PFL, Gaulme, P, Graczyk, D, Heminiak, KG, Johnston, C, Orosz, JA, Prša, A, Southworth, J, Torres, G, Davies, GR, Ball, W & Chaplin, WJ 2020, 'The TESS light curve of AI Phoenicis', Monthly Notices of the Royal Astronomical Society, vol. 498, no. 1, pp. 332–343. https://doi.org/10.1093/mnras/staa1662 Link to publication on Research at Birmingham portal Publisher Rights Statement: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • HAT-P-65B and HAT-P-66B: TWO TRANSITING INFLATED HOT JUPITERS and OBSERVATIONAL EVIDENCE for the REINFLATION of CLOSE-IN GIANT PLANETS* J
    The Astronomical Journal, 152:182 (32pp), 2016 December doi:10.3847/0004-6256/152/6/182 © 2016. The American Astronomical Society. All rights reserved. HAT-P-65b AND HAT-P-66b: TWO TRANSITING INFLATED HOT JUPITERS AND OBSERVATIONAL EVIDENCE FOR THE REINFLATION OF CLOSE-IN GIANT PLANETS* J. D. Hartman1, G. Á. Bakos1,14,15, W. Bhatti1, K. Penev1, A. Bieryla2, D. W. Latham2, G. Kovács3, G. Torres2, Z. Csubry1, M. de Val-Borro1, L. Buchhave4, T. Kovács3, S. Quinn5, A. W. Howard6, H. Isaacson7, B. J. Fulton6, M. E. Everett8, G. Esquerdo2, B. Béky13, T. Szklenar9, E. Falco2, A. Santerne11, I. Boisse10, G. Hébrard12, A. Burrows1, J. Lázár9, I. Papp9, and P. Sári9 1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA; [email protected] 2 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 3 Konkoly Observatory of the Hungarian Academy of Sciences, Budapest, Hungary 4 Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark 5 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA 6 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA 7 Department of Astronomy, University of California, Berkeley, CA, USA 8 National Optical Astronomy Observatory, Tucson, AZ, USA 9 Hungarian Astronomical Association, Budapest, Hungary 10 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille, France 11 Instituto de Astrofisica e Ciências
    [Show full text]
  • Download This Article in PDF Format
    ASTRONOMY & ASTROPHYSICS DECEMBER I 2000, PAGE 243 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 147, 243–249 (2000) Period changes in W UMa-type eclipsing binaries: DK Cygni, V401 Cygni, AD Phoenicis and Y Sextantis? M. Wolf1,P.Mol´ık1,K.Hornoch1,andL.Sarounov´ˇ a2 1 Astronomical Institute, Charles University Prague, CZ-180 00 Praha 8, V Holeˇsoviˇck´ach 2, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Academy of Sciences of Czech Republic, CZ-251 65 Ondˇrejov, Czech Republic Received July 21; accepted September 11, 2000 Abstract. We present a period analysis of the four well- With the exception of DK Cyg, which was found to be a known W UMa-type eclipsing binaries DK Cyg (P = variable star by Guthnick & Prager (1927), the other vari- 0d. 47), V401 Cyg (0d. 58), AD Phe (0d. 38) and Y Sex (0d. 42). ables were discovered by Cuno Hoffmeister. They all are Several new times of minimum light, recorded photo- well-known close binaries and their long epoch of obser- electrically, have been gathered. Analysis of all available vations gives us the possibility to study many interesting eclipse timings of the DK Cygni and V401 Cygni has con- phenomena in these systems. The purpose of the present firmed a significant increase in period of 1.15 10−10 and work is to present new photoelectric times of minimum 1.48 10−10 day cycle−1, respectively. A simultaneous so- light, to make a period study of these systems and to de- lution of the B,V and R light curves was computed for rive new light elements.
    [Show full text]
  • Referierte Publikationen 2020 Refereed Publications 2020
    Max-Planck-Institut fuer Sonnensystemforschung Max Planck Institute for Solar System Research Referierte Publikationen 2020 Refereed Publications 2020 Refereed Publications 2020 (bold: affiliated to MPS) Total: 285 Agaltsov, A., Hohage, T., & Novikov, R. G. (2020). Global uniqueness in a passive inverse problem of heli- oseismology. Inverse Problems, 36(5): 055004. doi:10.1088/1361-6420/ab77d9. Agarwal, J., Kim, Y., Jewitt, D., Mutchler, M., Weaver, H., & Larson, S. (2020). Component properties and mutual orbit of binary main-belt comet 288P/(300163) 2006 VW139. Astronomy and Astrophysics, 643: A152. doi:10.1051/0004-6361/202038195. Ahlborn, F., Bellinger, E. P., Hekker, S., Basu, S., & Angelou, G. C. (2020). Asteroseismic sensitivity to in- ternal rotation along the red-giant branch. Astronomy and Astrophysics, 639: A98. doi:10.1051/0004- 6361/201936947. Ahumada, R., Allende Prieto, C., Almeida, A., Anders, F., Anderson, S. F., Andrews, B. H., Anguiano, B., Arcodia, R., Armengaud, E., Aubert, M., Avila, S., Avila-Reese, V., Badenes, C., Balland, C., Barger, K., Barrera-Ballesteros, J. K., Basu, S., Bautista, J., Beaton, R. L., Beers, T. C., Benavides, B. I. T., Bender, C. F., Bernardi, M., Bershady, M., Beutler, F., Bidin, C. M., Bird, J., Bizyaev, D., Blanc, G. A., Blanton, M. R., Boquien, M., Borissova, J., Bovy, J., Brandt, W. N., Brinkmann, J., Brownstein, J. R., Bundy, K., Bu- reau, M., Burgasser, A., Burtin, E., Cano-Díaz, M., Capasso, R., Cappellari, M., Carrera, R., Chabanier, S., Chaplin, W., Chapman, M., Cherinka, B., Chiappini, C., Choi, P. D., Chojnowski, S. D., Chung, H., Clerc, N., Coffey, D., Comerford, J. M., Comparat, J., da Costa, L., Cousinou, M.-C., Covey, K., Crane, J.
    [Show full text]
  • An Extensive Photometric Investigation of the W Uma System DK Cyg
    Hindawi Publishing Corporation Journal of Astrophysics Volume 2015, Article ID 590673, 8 pages http://dx.doi.org/10.1155/2015/590673 Research Article An Extensive Photometric Investigation of the W UMa System DK Cyg M. M. Elkhateeb,1,2 M. I. Nouh,1,2 E. Elkholy,1,2 and B. Korany1,3 1 Astronomy Department, National Research Institute of Astronomy and Geophysics, Helwan, Cairo 11421, Egypt 2Physics Department, College of Science, Northern Border University, Arar 1321, Saudi Arabia 3Physics Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 715, Saudi Arabia Correspondence should be addressed to M. I. Nouh; abdo [email protected] Received 25 August 2014; Revised 14 December 2014; Accepted 17 December 2014 Academic Editor: Theodor Pribulla Copyright © 2015 M. M. Elkhateeb et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. DK Cyg ( = 0.4707) is a contact binary system that undergoes complete eclipses. All the published photoelectric data have been collected and utilized to reexamine and update the period behavior of the system. A significant period increase with rate of −11 12.590 × 10 days/cycle was calculated. New period and ephemeris have been calculated for the system. A long term photometric solution study was performed and a light curve elements were calculated. We investigated the evolutionary status of the system using theoretical evolutionary models. 1. Introduction period and short durations of night, it is bound to remain ill- observed [9]. Only four complete light curves by Binnendijk The eclipsing binary DK Cyg (BD +330 4304, 10.37–10.93 mv) [6], Paparo et al.
    [Show full text]
  • Institute of Space Sciences Annual Report 2016
    Institute of Space Sciences Annual Report 2016 An institute of the Consejo Superior de Investigaciones Cient´ıficas(CSIC). Affiliated with the Institut d'Estudis Espacials de Catalunya (IEEC). Contents 1 About us 5 1.1 What is the Institute of Space Sciences?...................................5 1.2 New Director..................................................5 1.3 New Manager..................................................6 1.4 Internal structure and governance of the Institute..............................6 1.5 International Advisory Committee......................................7 1.6 Development of protocols for internal operations..............................7 2 Personnel 9 2.1 List of personnel................................................9 2.2 Visitors..................................................... 10 2.3 Personnel summary............................................... 12 3 Scientific Summary 13 3.1 Department of Astrophysics and Planetary Sciences............................ 13 3.2 Department of Cosmology and Fundamental Physics............................ 14 3.3 Advanced Engineering Unit.......................................... 15 4 Some research highlights of this year 17 5 Missions and experiments 21 6 Publications summary 39 7 Publications Impact 41 8 Active projects in 2016 43 9 Appendix: Publication List 45 10 Other institutional activities 69 10.1 Ongoing & Completed Masters and Doctoral thesis............................. 69 10.2 Teaching & the Masters of Astrophysics and Cosmology.......................... 71 10.3
    [Show full text]
  • A Spectroscopic Study of Pulsations in Γ Doradus Stars
    A SPECTROSCOPIC STUDY OF PULSATIONS IN γ DORADUS STARS THOMAS ROBERT SHUTT MSc by Research University of York Physics March 2018 ii ABSTRACT Two candidate γ Doradus stars are analysed: HD 103257 and HD 109799. Over 250 spectra were gathered for analysis using the HERCULES spectrograph at the University of Canterbury Mt John Observatory. The spectra for each star were cross-correlated with synthetic spectra to produce line profiles and augmented with photometric data from the WASP archive and HIPPARCOS catalogue for frequency and mode analysis. Three pulsation frequencies were identified for HD 103257: 1.22496 ± 0.00001 d−1 , 1.14569 ± 0.00002 d−1 and 0.67308 ± 0.00004 d−1, explaining 66.6% of the variation across the line profiles. The frequencies were characterised with best-fit modes of (ℓ, m) = (1, 1), (1, 1) and (3, -2) respectively. The inclination of the rotation axis and the radius were −1 best-fit to i = 86.4° and R = 2.6 푅⊙, while a zero-point fit yielded a vsini of 71.5 km s . Three pulsation frequencies were identified for HD 109799: 1.48679 ± 0.00002 d−1 , 1.25213 ± 0.00002 d−1 and 0.92184 ± 0.00004 d−1 , explaining 39.3% of the variation across the line profiles. The frequencies yielded individual mode fits of modes (ℓ, m) = (1, 1), (1, 1) and (3, 2). The rotational axis for HD 109799 to the range i = 65° - 70° with a zero- point fitted vsini of 40.2 km s−1. Based on observations of frequencies and modes characteristic of the class, HD 103257 and HD 109799 can now be categorised as bona fide γ Doradus stars.
    [Show full text]
  • Appendix a Brief Review of Mathematical Optimization
    Appendix A Brief Review of Mathematical Optimization Ecce signum (Behold the sign; see the proof) Optimization is a mathematical discipline which determines a “best” solution in a quantitatively well-defined sense. It applies to certain mathematically defined prob- lems in, e.g., science, engineering, mathematics, economics, and commerce. Opti- mization theory provides algorithms to solve well-structured optimization problems along with the analysis of those algorithms. This analysis includes necessary and sufficient conditions for the existence of optimal solutions. Optimization problems are expressed in terms of variables (degrees of freedom) and the domain; objective function1 to be optimized; and, possibly, constraints. In unconstrained optimization, the optimum value is sought of an objective function of several variables without any constraints. If, in addition, constraints (equations, inequalities) are present, we have a constrained optimization problem. Often, the optimum value of such a problem is found on the boundary of the region defined by inequality constraints. In many cases, the domain X of the unknown variables x is X = IR n. For such problems the reader is referred to Fletcher (1987), Gill et al. (1981), and Dennis & Schnabel (1983). Problems in which the domain X is a discrete set, e.g., X = IN o r X = ZZ, belong to the field of discrete optimization ; cf. Nemhauser & Wolsey (1988). Dis- crete variables might be used, e.g., to select different physical laws (for instance, different limb-darkening laws) or models which cannot be smoothly mapped to each other. In what follows, we will only consider continuous domains, i.e., X = IR n. In this appendix we assume that the reader is familiar with the basic concepts of calculus and linear algebra and the standard nomenclature of mathematics and theoretical physics.
    [Show full text]