4.7 Topological Conjugacy and Equivalence

Total Page:16

File Type:pdf, Size:1020Kb

4.7 Topological Conjugacy and Equivalence 1 Chapter 4B 4.7 Topological Conjugacy and Equivalence This section is concerned with classification of dynamical systems. First we need some notions from analysis and topology. A map is surjective or onto if for all there is at least one such that , injective or one-to-one if implies , bijective if both surjective and injective. Surjective or Onto: sketch a surjective map from to Injective or One-to-one: sketch an injective map from to Bijective: sketch a bijective map from to A bijective map establishes a one-to-one correspondence between elements and has an inverse. A map is a homeomorphism if it is continuous, bijective and has a continuous inverse. A map is a diffeomorphism if it is , bijective and has a inverse. Example. defined by . sketch Inverse . sketch. is a homeomorphism but not a diffeomorphism. Note that is not at . ■ The flows and are topologically conjugate or conjugate if there is a homeomorphism such that . [1] We can also write or , a form which recalls similarity transformations from linear algebra. A commutative diagram for [1] is 2 Chapter 4B Both pathways around the diagram give the same result. Example. Show that the flow of is topologically conjugate to that of . We need to find a homeomorphism between the two flows such that [1] holds. Find and . Then [1] requires . For find that works. This does not give a homeomorphism if extended to . For find that works. Thus from the previous example is the required homeomorphism. ■ Topological conjugacy requires that orbits be put into one-to-one correspondence. For the previous 1D example we have the picture. -, arrows, show correspondence between the three orbits of this with -, arrows In 2D we have sketch a figure like 4.12. Topological conjugacy requires more than that the trajectories of one map map continuously into those of the other. It also requires that the temporal parameterization be the same. Two flows and are topologically equivalent if there exists a homeomorphism that maps the orbits of onto the orbits of and preserves the direction of time. That is, look for an increasing map such that . [2] Example. On the flow of is topologically equivalent to that of . We need to find a homeomorphism between the two flows and a map such that [2] holds. Find . To find the second flow, solve the initial value problem . 3 Chapter 4B Separate variables and use the initial condition to find . In the notation used for flows, . Then [2] becomes . sketch -, -, -, -, The flows on are qualitatively similar. Try . Then [2] becomes , solve for to get For fixed, is an increasing function of . ■ Theorem 4.10 (One Dimensional Equivalence). Two flows and in are topologically equivalent iff their equilibria, ordered on the line, can be put into one-to-one correspondence and have the same topological type (sink, source or semistable). Do not give proof. Example. On the flow of is not topologically equivalent to that of . Sketch the flows Two flows and are diffeomorphic when there is a diffeomorphism such that [1] is satisfied. Example. Show that the flow of , Is diffeomorphic to that of , . First find the flows. Denote , etc. Obtain . Then the equation for becomes: , Multiply by an integrating factor and integrate to obtain . 4 Chapter 4B In the notation of flows we have and . We now seek to satisfy [1]. The first component may be written . Note that is a solution. The second component of [1] may be written . A short calculation shows that is a solution. The required diffeomorphism is . To sketch the two flows, note that the unstable eigenspace is the image of and the stable eigenspace is the image of . axes, , and , axes, ■ Consider diffeomorphic flows with a pair of corresponding equilibria: and with and , with and . Take a time derivative of the diffeomorphism to obtain , . Differentiate again with respect to . Evaluate at and use to obtain . 5 Chapter 4B Let and . These two matrices appear in the linearizations of the flows about the equilibrium points: and . Let . Then the matrices of the linearized systems are related by or . The matrices are related by a similarity transformation. They have the same eigenvalues, and these have the same algebraic and geometric multiplicities. Theorem 4.11 (Linear Conjugacy). The flow and of the linear systems and are diffeomorphic iff the matrix is similar to the matrix . Proof. Note and . Assume is similar to , i.e., there is a nonsingular matrix such that . Then is a diffeomorphism and , which implies and are diffeomorphic. Assume and are diffeomorphic. Then there is such that and for all and . Differentiate to obtain . Evaluate this at and set to find . Differentiate with respect to and set to finally obtain . Thus and are similar. □ Example. The matrices and are not similar. The matrix is similar to no other matrix than itself. To see this, suppose that is any invertible matrix. Then since commutes with . It follows that the flows and of and cannot be diffeomorphic. More generally, recall the classification of linear systems. Let and , and . -, -, the parabola 6 Chapter 4B Similarity transformations preserve both the algebraic and geometric multiplicities of eigenvalues. Therefore the flows of linear systems on the parabola that have only a single eigenspace cannot be diffeomorphic to flows that have two eigenspaces. In particular, the only eigenspace of is . ■ The flows associated with the matrices and in this example are topologically conjugate. Theorem 4.12. Suppose and are two real, hyperbolic matrices and and the corresponding flows. Then and are topologically conjugate iff the dimensions of the stable and unstable spaces of are equal to the corresponding dimensions for . Proof. Don’t give. Show topological equivalence classes of linear systems from Hale and Kocak 4.8 Hartman-Grobman Theorem Recall linearization of an ODE about an equilibrium point. Let and suppose . Then , where and we have used . Let . The linearization of the system at is . Theorem 4.13 (Hartman-Grobman) Let be a hyperbolic equilibrium point of the vector field with flow . Then there is a neighborhood of such that is topologically conjugate to its linearization on . Example. Consider the system , [1] . Study this system as the parameter varies. The system linearized about the origin is 7 Chapter 4B , where . [2] The eigenvalues of are . The linearized system is a stable focus for , an unstable focus for , and a center for . The Hartman-Grobman theorem guarantees that the flow of the nonlinear system is topologically conjugate to that of the linearized system in some neighborhood of the origin so long as the equilibrium point is hyperbolic, that is At , there is a bifurcation, a qualitative change in the character of the solution. The Hartman-Grobman theorem does not apply because the equilibrium point is not hyperbolic. At the linearized system [2] is a center. What is the nature of the flow for the system [1] at We can study this by transforming to polar coordinates , . Differentiating, one finds , . From the second equation obtain . At the system is described by and . Study the dynamics of by plotting as a function of 0…r-, 0… -, arrows The system is an unstable nonhyperbolic focus. sketch and compare with the flow of the center. At the flow in any open neighborhood of the origin of the nonlinear system [1] is qualitatively different from that of the linearized system [2]. ■ Discussion of Proof. Meiss’ discussion of the proof of the Hartman-Grobman theorem is interesting and the main point is easy to understand. Write in the form 8 Chapter 4B where represents the nonlinear terms, so that . Let be the flow of the nonlinear ODE and the flow for the linear part. We wish to find a homeomorphism satisfying or . [3] Suppose is a homeomorphism that satisfies this equation for one value of time, say . Then . [4] Now let . [5] Then it follows from the group property of the flow and [4] that Thus also satisfies [4]. In the actual proof, is the flow of the system , with in some neighborhood of the origin and outside some larger neighborhood . Then, under the hypotheses of the theorem, it is possible to show that the solution to [4] is unique. It follows that . Therefore, by [5] , satisfying [3] and is the homeomorphism that we originally sought! The time 1 homeomorphism can be found iteratively, by starting with the , and then successively solving , as described by Miess. In general, convergence of the iteration scheme requires outside of a neighborhood of the origin. 9 Chapter 4B Remark. If in the above theorem we have , then is diffeomorphic to its linearization in some neighborhood of a hyperbolic equilibrium point. See Perko, p. 127. 4.9 Omega-Limit Sets Consider a complete flow , point with forward and backward orbits and . is a limit point of if there is a sequence of times such that as . The -limit set of is . limits sets are important in applications because they characterize the steady state behavior of solutions of differential equations. is a limit point of if there is a sequence of times such that as . The -limit set of is . Example. An asymptotically stable equilibrium point is an -limit set of all points in some neighborhood of . sketch point, nearby trajectories A source point is an -limit set of all points in some neighborhood of . sketch point, nearby trajectories. ■ A limit cycle is a periodic orbit that is the - or - limit set of some point . Example. The planar system ( and are real). , . Polar coordinates sketch axes, , . Take time derivatives 10 Chapter 4B where . sketch -, -, sketch -, -, circle, flow arrows, nearby trajectory is the -limit set of every point in ■ [Revert to ] Lemma 4.14 (Closure) , where is the closure of the forward orbit of Hence, is closed.
Recommended publications
  • The Topological Entropy Conjecture
    mathematics Article The Topological Entropy Conjecture Lvlin Luo 1,2,3,4 1 Arts and Sciences Teaching Department, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; [email protected] or [email protected] 2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China 3 School of Mathematics, Jilin University, Changchun 130012, China 4 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China Abstract: For a compact Hausdorff space X, let J be the ordered set associated with the set of all finite open covers of X such that there exists nJ, where nJ is the dimension of X associated with ¶. Therefore, we have Hˇ p(X; Z), where 0 ≤ p ≤ n = nJ. For a continuous self-map f on X, let a 2 J be f an open cover of X and L f (a) = fL f (U)jU 2 ag. Then, there exists an open fiber cover L˙ f (a) of X induced by L f (a). In this paper, we define a topological fiber entropy entL( f ) as the supremum of f ent( f , L˙ f (a)) through all finite open covers of X = fL f (U); U ⊂ Xg, where L f (U) is the f-fiber of − U, that is the set of images f n(U) and preimages f n(U) for n 2 N. Then, we prove the conjecture log r ≤ entL( f ) for f being a continuous self-map on a given compact Hausdorff space X, where r is the maximum absolute eigenvalue of f∗, which is the linear transformation associated with f on the n L Cechˇ homology group Hˇ ∗(X; Z) = Hˇ i(X; Z).
    [Show full text]
  • Chapter 5. Flow Maps and Dynamical Systems
    Chapter 5 Flow Maps and Dynamical Systems Main concepts: In this chapter we introduce the concepts of continuous and discrete dynamical systems on phase space. Keywords are: classical mechanics, phase space, vector field, linear systems, flow maps, dynamical systems Figure 5.1: A solar system is well modelled by classical mechanics. (source: Wikimedia Commons) In Chapter 1 we encountered a variety of ODEs in one or several variables. Only in a few cases could we write out the solution in a simple closed form. In most cases, the solutions will only be obtainable in some approximate sense, either from an asymptotic expansion or a numerical computation. Yet, as discussed in Chapter 3, many smooth systems of differential equations are known to have solutions, even globally defined ones, and so in principle we can suppose the existence of a trajectory through each point of phase space (or through “almost all” initial points). For such systems we will use the existence of such a solution to define a map called the flow map that takes points forward t units in time from their initial points. The concept of the flow map is very helpful in exploring the qualitative behavior of numerical methods, since it is often possible to think of numerical methods as approximations of the flow map and to evaluate methods by comparing the properties of the map associated to the numerical scheme to those of the flow map. 25 26 CHAPTER 5. FLOW MAPS AND DYNAMICAL SYSTEMS In this chapter we will address autonomous ODEs (recall 1.13) only: 0 d y = f(y), y, f ∈ R (5.1) 5.1 Classical mechanics In Chapter 1 we introduced models from population dynamics.
    [Show full text]
  • Topological Invariance of the Sign of the Lyapunov Exponents in One-Dimensional Maps
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 1, Pages 265–272 S 0002-9939(05)08040-8 Article electronically published on August 19, 2005 TOPOLOGICAL INVARIANCE OF THE SIGN OF THE LYAPUNOV EXPONENTS IN ONE-DIMENSIONAL MAPS HENK BRUIN AND STEFANO LUZZATTO (Communicated by Michael Handel) Abstract. We explore some properties of Lyapunov exponents of measures preserved by smooth maps of the interval, and study the behaviour of the Lyapunov exponents under topological conjugacy. 1. Statement of results In this paper we consider C3 interval maps f : I → I,whereI is a compact interval. We let C denote the set of critical points of f: c ∈C⇔Df(c)=0.We shall always suppose that C is finite and that each critical point is non-flat: for each ∈C ∈ ∞ 1 ≤ |f(x)−f(c)| ≤ c ,thereexist = (c) [2, )andK such that K |x−c| K for all x = c.LetM be the set of ergodic Borel f-invariant probability measures. For every µ ∈M, we define the Lyapunov exponent λ(µ)by λ(µ)= log |Df|dµ. Note that log |Df|dµ < +∞ is automatic since Df is bounded. However we can have log |Df|dµ = −∞ if c ∈Cis a fixed point and µ is the Dirac-δ measure on c. It follows from [15, 1] that this is essentially the only way in which log |Df| can be non-integrable: if µ(C)=0,then log |Df|dµ > −∞. The sign, more than the actual value, of the Lyapunov exponent can have signif- icant implications for the dynamics. A positive Lyapunov exponent, for example, indicates sensitivity to initial conditions and thus “chaotic” dynamics of some kind.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Multiple Periodic Solutions and Fractal Attractors of Differential Equations with N-Valued Impulses
    mathematics Article Multiple Periodic Solutions and Fractal Attractors of Differential Equations with n-Valued Impulses Jan Andres Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; [email protected] Received: 10 September 2020; Accepted: 30 September 2020; Published: 3 October 2020 Abstract: Ordinary differential equations with n-valued impulses are examined via the associated Poincaré translation operators from three perspectives: (i) the lower estimate of the number of periodic solutions on the compact subsets of Euclidean spaces and, in particular, on tori; (ii) weakly locally stable (i.e., non-ejective in the sense of Browder) invariant sets; (iii) fractal attractors determined implicitly by the generating vector fields, jointly with Devaney’s chaos on these attractors of the related shift dynamical systems. For (i), the multiplicity criteria can be effectively expressed in terms of the Nielsen numbers of the impulsive maps. For (ii) and (iii), the invariant sets and attractors can be obtained as the fixed points of topologically conjugated operators to induced impulsive maps in the hyperspaces of the compact subsets of the original basic spaces, endowed with the Hausdorff metric. Five illustrative examples of the main theorems are supplied about multiple periodic solutions (Examples 1–3) and fractal attractors (Examples 4 and 5). Keywords: impulsive differential equations; n-valued maps; Hutchinson-Barnsley operators; multiple periodic solutions; topological fractals; Devaney’s chaos on attractors; Poincaré operators; Nielsen number MSC: 28A20; 34B37; 34C28; Secondary 34C25; 37C25; 58C06 1. Introduction The theory of impulsive differential equations and inclusions has been systematically developed (see e.g., the monographs [1–4], and the references therein), among other things, especially because of many practical applications (see e.g., References [1,4–11]).
    [Show full text]
  • Flows of Continuous-Time Dynamical Systems with No Periodic Orbit As an Equivalence Class Under Topological Conjugacy Relation
    Journal of Mathematics and Statistics 7 (3): 207-215, 2011 ISSN 1549-3644 © 2011 Science Publications Flows of Continuous-Time Dynamical Systems with No Periodic Orbit as an Equivalence Class under Topological Conjugacy Relation Tahir Ahmad and Tan Lit Ken Department of Mathematics, Faculty of Science, Nanotechnology Research Alliance, Theoretical and Computational Modeling for Complex Systems, University Technology Malaysia 81310 Skudai, Johor, Malaysia Abstract: Problem statement: Flows of continuous-time dynamical systems with the same number of equilibrium points and trajectories, and which has no periodic orbit form an equivalence class under the topological conjugacy relation. Approach: Arbitrarily, two trajectories resulting from two distinct flows of this type of dynamical systems were written as a set of points (orbit). A homeomorphism which maps between these two sets is then built. Using the notion of topological conjugacy, they were shown to conjugate topologically. By the arbitrariness in selection of flows and their respective initial states, the results were extended to all the flows of dynamical system of that type. Results: Any two flows of such dynamical systems were shown to share the same dynamics temporally along with other properties such as order isomorphic and homeomorphic. Conclusion: Topological conjugacy serves as an equivalence relation in the set of flows of continuous-time dynamical systems which have same number of equilibrium points and trajectories, and has no periodic orbit. Key words: Dynamical system, equilibrium points, trajectories, periodic orbit, equivalence class, topological conjugacy, order isomorphic, Flat Electroencephalography (Flat EEG), dynamical systems INTRODUCTION models. Nandhakumar et al . (2009) for example, the dynamics of robot arm is studied.
    [Show full text]
  • Arxiv:1812.04689V1 [Math.DS] 11 Dec 2018 Fasltigipisteeitneo W Oitos Into Foliations, Two Years
    FOLIATIONS AND CONJUGACY, II: THE MENDES CONJECTURE FOR TIME-ONE MAPS OF FLOWS JORGE GROISMAN AND ZBIGNIEW NITECKI Abstract. A diffeomorphism f: R2 →R2 in the plane is Anosov if it has a hyperbolic splitting at every point of the plane. The two known topo- logical conjugacy classes of such diffeomorphisms are linear hyperbolic automorphisms and translations (the existence of Anosov structures for plane translations was originally shown by W. White). P. Mendes con- jectured that these are the only topological conjugacy classes for Anosov diffeomorphisms in the plane. We prove that this claim holds when the Anosov diffeomorphism is the time-one map of a flow, via a theorem about foliations invariant under a time one map. 1. Introduction A diffeomorphism f: M →M of a compact manifold M is called Anosov if it has a global hyperbolic splitting of the tangent bundle. Such diffeomor- phisms have been studied extensively in the past fifty years. The existence of a splitting implies the existence of two foliations, into stable (resp. unsta- ble) manifolds, preserved by the diffeomorphism, such that the map shrinks distances along the stable leaves, while its inverse does so for the unstable ones. Anosov diffeomorphisms of compact manifolds have strong recurrence properties. The existence of an Anosov structure when M is compact is independent of the Riemann metric used to define it, and the foliations are invariants of topological conjugacy. By contrast, an Anosov structure on a non-compact manifold is highly dependent on the Riemann metric, and the recurrence arXiv:1812.04689v1 [math.DS] 11 Dec 2018 properties observed in the compact case do not hold in general.
    [Show full text]
  • Quasiconformal Homeomorphisms in Dynamics, Topology, and Geometry
    Proceedings of the International Congress of Mathematicians Berkeley, California, USA, 1986 Quasiconformal Homeomorphisms in Dynamics, Topology, and Geometry DENNIS SULLIVAN Dedicated to R. H. Bing This paper has four parts. Each part involves quasiconformal homeomor­ phisms. These can be defined between arbitrary metric spaces: <p: X —* Y is Ä'-quasiconformal (or K qc) if zjf \ _ r SUP 1^0*0 ~ Piv) wnere \x - y\ = r and x is fixed r_>o inf \<p(x) — <p(y)\ where \x — y\ = r and x is fixed is at most K where | | means distance. Between open sets in Euclidean space, H(x) < K implies <p has many interesting analytic properties. (See Gehring's lecture at this congress.) In the first part we discuss Feigenbaum's numerical discoveries in one-dimen­ sional iteration problems. Quasiconformal conjugacies can be used to define a useful coordinate independent distance between real analytic dynamical systems which is decreased by Feigenbaum's renormalization operator. In the second part we discuss de Rham, Atiyah-Singer, and Yang-Mills the­ ory in its foundational aspect on quasiconformal manifolds. The discussion (which is joint work with Simon Donaldson) connects with Donaldson's work and Freedman's work to complete a nice picture in the structure of manifolds— each topological manifold has an essentially unique quasiconformal structure in all dimensions—except four (Sullivan [21]). In dimension 4 both parts of the statement are false (Donaldson and Sullivan [3]). In the third part we discuss the C-analytic classification of expanding analytic transformations near fractal invariant sets. The infinite dimensional Teichmüller ^spare-ofnsuch=systemrìs^embedded=in^ for the transformation on the fractal.
    [Show full text]
  • Dynamical Systems Theory
    Dynamical Systems Theory Bjorn¨ Birnir Center for Complex and Nonlinear Dynamics and Department of Mathematics University of California Santa Barbara1 1 c 2008, Bjorn¨ Birnir. All rights reserved. 2 Contents 1 Introduction 9 1.1 The 3 Body Problem . .9 1.2 Nonlinear Dynamical Systems Theory . 11 1.3 The Nonlinear Pendulum . 11 1.4 The Homoclinic Tangle . 18 2 Existence, Uniqueness and Invariance 25 2.1 The Picard Existence Theorem . 25 2.2 Global Solutions . 35 2.3 Lyapunov Stability . 39 2.4 Absorbing Sets, Omega-Limit Sets and Attractors . 42 3 The Geometry of Flows 51 3.1 Vector Fields and Flows . 51 3.2 The Tangent Space . 58 3.3 Flow Equivalance . 60 4 Invariant Manifolds 65 5 Chaotic Dynamics 75 5.1 Maps and Diffeomorphisms . 75 5.2 Classification of Flows and Maps . 81 5.3 Horseshoe Maps and Symbolic Dynamics . 84 5.4 The Smale-Birkhoff Homoclinic Theorem . 95 5.5 The Melnikov Method . 96 5.6 Transient Dynamics . 99 6 Center Manifolds 103 3 4 CONTENTS 7 Bifurcation Theory 109 7.1 Codimension One Bifurcations . 110 7.1.1 The Saddle-Node Bifurcation . 111 7.1.2 A Transcritical Bifurcation . 113 7.1.3 A Pitchfork Bifurcation . 115 7.2 The Poincare´ Map . 118 7.3 The Period Doubling Bifurcation . 119 7.4 The Hopf Bifurcation . 121 8 The Period Doubling Cascade 123 8.1 The Quadradic Map . 123 8.2 Scaling Behaviour . 130 8.2.1 The Singularly Supported Strange Attractor . 138 A The Homoclinic Orbits of the Pendulum 141 List of Figures 1.1 The rotation of the Sun and Jupiter in a plane around a common center of mass and the motion of a comet perpendicular to the plane.
    [Show full text]
  • STABLE ERGODICITY 1. Introduction a Dynamical System Is Ergodic If It
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 41, Number 1, Pages 1{41 S 0273-0979(03)00998-4 Article electronically published on November 4, 2003 STABLE ERGODICITY CHARLES PUGH, MICHAEL SHUB, AND AN APPENDIX BY ALEXANDER STARKOV 1. Introduction A dynamical system is ergodic if it preserves a measure and each measurable invariant set is a zero set or the complement of a zero set. No measurable invariant set has intermediate measure. See also Section 6. The classic real world example of ergodicity is how gas particles mix. At time zero, chambers of oxygen and nitrogen are separated by a wall. When the wall is removed, the gasses mix thoroughly as time tends to infinity. In contrast think of the rotation of a sphere. All points move along latitudes, and ergodicity fails due to existence of invariant equatorial bands. Ergodicity is stable if it persists under perturbation of the dynamical system. In this paper we ask: \How common are ergodicity and stable ergodicity?" and we propose an answer along the lines of the Boltzmann hypothesis { \very." There are two competing forces that govern ergodicity { hyperbolicity and the Kolmogorov-Arnold-Moser (KAM) phenomenon. The former promotes ergodicity and the latter impedes it. One of the striking applications of KAM theory and its more recent variants is the existence of open sets of volume preserving dynamical systems, each of which possesses a positive measure set of invariant tori and hence fails to be ergodic. Stable ergodicity fails dramatically for these systems. But does the lack of ergodicity persist if the system is weakly coupled to another? That is, what happens if you have a KAM system or one of its perturbations that refuses to be ergodic, due to these positive measure sets of invariant tori, but somewhere in the universe there is a hyperbolic or partially hyperbolic system weakly coupled to it? Does the lack of egrodicity persist? The answer is \no," at least under reasonable conditions on the hyperbolic factor.
    [Show full text]
  • THE DYNAMICAL SYSTEMS APPROACH to DIFFERENTIAL EQUATIONS INTRODUCTION the Mathematical Subject We Call Dynamical Systems Was
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 11, Number 1, July 1984 THE DYNAMICAL SYSTEMS APPROACH TO DIFFERENTIAL EQUATIONS BY MORRIS W. HIRSCH1 This harmony that human intelligence believes it discovers in nature —does it exist apart from that intelligence? No, without doubt, a reality completely independent of the spirit which conceives it, sees it or feels it, is an impossibility. A world so exterior as that, even if it existed, would be forever inaccessible to us. But what we call objective reality is, in the last analysis, that which is common to several thinking beings, and could be common to all; this common part, we will see, can be nothing but the harmony expressed by mathematical laws. H. Poincaré, La valeur de la science, p. 9 ... ignorance of the roots of the subject has its price—no one denies that modern formulations are clear, elegant and precise; it's just that it's impossible to comprehend how any one ever thought of them. M. Spivak, A comprehensive introduction to differential geometry INTRODUCTION The mathematical subject we call dynamical systems was fathered by Poin­ caré, developed sturdily under Birkhoff, and has enjoyed a vigorous new growth for the last twenty years. As I try to show in Chapter I, it is interesting to look at this mathematical development as the natural outcome of a much broader theme which is as old as science itself: the universe is a sytem which changes in time. Every mathematician has a particular way of thinking about mathematics, but rarely makes it explicit.
    [Show full text]
  • Mostly Conjugate: Relating Dynamical Systems — Beyond Homeomorphism
    Mostly Conjugate: Relating Dynamical Systems — Beyond Homeomorphism Joseph D. Skufca1, ∗ and Erik M. Bollt1, † 1 Department of Mathematics, Clarkson University, Potsdam, New York (Dated: April 24, 2006) A centerpiece of Dynamical Systems is comparison by an equivalence relationship called topolog- ical conjugacy. Current state of the field is that, generally, there is no easy way to determine if two systems are conjugate or to explicitly find the conjugacy between systems that are known to be equivalent. We present a new and highly generalizable method to produce conjugacy functions based on a functional fixed point iteration scheme. In specific cases, we prove that although the conjugacy function is strictly increasing, it is a.e. differentiable, with derivative 0 everywhere that it exists — a Lebesgue singular function. When applied to non-conjugate dynamical systems, we show that the fixed point iteration scheme still has a limit point, which is a function we now call a “commuter” — a non-homeomorphic change of coordinates translating between dissimilar systems. This translation is natural to the concepts of dynamical systems in that it matches the systems within the language of their orbit structures. We introduce methods to compare nonequivalent sys- tems by quantifying how much the commuter functions fails to be a homeomorphism, an approach that gives more respect to the dynamics than the traditional comparisons based on normed linear spaces, such as L2. Our discussion includes fundamental issues as a principled understanding of the degree to which a “toy model” might be representative of a more complicated system, an important concept to clarify since it is often used loosely throughout science.
    [Show full text]