Improving MCTS and Neural Network Communication in Computer Go
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FUEGO—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Segal
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 4, DECEMBER 2010 259 FUEGO—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard Segal Abstract—FUEGO is both an open-source software framework with new algorithms that would not be possible otherwise be- and a state-of-the-art program that plays the game of Go. The cause of the cost of implementing a complete state-of-the-art framework supports developing game engines for full-information system. Successful previous examples show the importance of two-player board games, and is used successfully in a substantial open-source software: GNU GO [19] provided the first open- number of projects. The FUEGO Go program became the first program to win a game against a top professional player in 9 9 source Go program with a strength approaching that of the best Go. It has won a number of strong tournaments against other classical programs. It has had a huge impact, attracting dozens programs, and is competitive for 19 19 as well. This paper gives of researchers and hundreds of hobbyists. In Chess, programs an overview of the development and current state of the UEGO F such as GNU CHESS,CRAFTY, and FRUIT have popularized in- project. It describes the reusable components of the software framework and specific algorithms used in the Go engine. novative ideas and provided reference implementations. To give one more example, in the field of domain-independent planning, Index Terms—Computer game playing, Computer Go, FUEGO, systems with publicly available source code such as Hoffmann’s man-machine matches, Monte Carlo tree search, open source soft- ware, software frameworks. -
Reinforcement Learning of Local Shape in the Game of Go
Reinforcement Learning of Local Shape in the Game of Go David Silver, Richard Sutton, and Martin Muller¨ Department of Computing Science University of Alberta Edmonton, Canada T6G 2E8 {silver, sutton, mmueller}@cs.ualberta.ca Abstract effective. They are fast to compute; easy to interpret, modify and debug; and they have good convergence properties. We explore an application to the game of Go of Secondly, weights are trained by temporal difference learn- a reinforcement learning approach based on a lin- ing and self-play. The world champion Checkers program ear evaluation function and large numbers of bi- Chinook was hand-tuned by expert players over 5 years. nary features. This strategy has proved effective When weights were trained instead by self-play using a tem- in game playing programs and other reinforcement poral difference learning algorithm, the program equalled learning applications. We apply this strategy to Go the performance of the original version [7]. A similar ap- by creating over a million features based on tem- proach attained master level play in Chess [1]. TD-Gammon plates for small fragments of the board, and then achieved world class Backgammon performance after train- use temporal difference learning and self-play. This ingbyTD(0)andself-play[13]. A program trained by method identifies hundreds of low level shapes with TD(λ) and self-play outperformed an expert, hand-tuned ver- recognisable significance to expert Go players, and sion at the card game Hearts [11]. Experience generated provides quantitive estimates of their values. We by self-play was also used to train the weights of the world analyse the relative contributions to performance of champion Othello and Scrabble programs, using least squares templates of different types and sizes. -
Curriculum Guide for Go in Schools
Curriculum Guide 1 Curriculum Guide for Go In Schools by Gordon E. Castanza, Ed. D. October 19, 2011 Published By: Rittenberg Consulting Group 7806 108th St. NW Gig Harbor, WA 98332 253-853-4831 © 2005 by Gordon E. Castanza, Ed. D. Curriculum Guide 2 Table of Contents Acknowledgements ......................................................................................................................... 4 Purpose and Rationale..................................................................................................................... 5 About this curriculum guide ................................................................................................... 7 Introduction ..................................................................................................................................... 8 Overview ................................................................................................................................. 9 Building Go Instructor Capacity ........................................................................................... 10 Developing Relationships and Communicating with the Community ................................. 10 Using Resources Effectively ................................................................................................. 11 Conclusion ............................................................................................................................ 11 Major Trends and Issues .......................................................................................................... -
FUEGO – an Open-Source Framework for Board Games and Go Engine Based on Monte-Carlo Tree Search
FUEGO – An Open-source Framework for Board Games and Go Engine Based on Monte-Carlo Tree Search Markus Enzenberger, Martin Muller,¨ Broderick Arneson and Richard Segal Abstract—FUEGO is both an open-source software frame- available source code such as Hoffmann’s FF [20] have had work and a state of the art program that plays the game of a similarly massive impact, and have enabled much followup Go. The framework supports developing game engines for full- research. information two-player board games, and is used successfully in UEGO a substantial number of projects. The FUEGO Go program be- F contains a game-independent, state of the art came the first program to win a game against a top professional implementation of MCTS with many standard enhancements. player in 9×9 Go. It has won a number of strong tournaments It implements a coherent design, consistent with software against other programs, and is competitive for 19 × 19 as well. engineering best practices. Advanced features include a lock- This paper gives an overview of the development and free shared memory architecture, and a flexible and general current state of the FUEGO project. It describes the reusable components of the software framework and specific algorithms plug-in architecture for adding domain-specific knowledge in used in the Go engine. the game tree. The FUEGO framework has been proven in applications to Go, Hex, Havannah and Amazons. I. INTRODUCTION The main innovation of the overall FUEGO framework may lie not in the novelty of any of its specific methods and Research in computing science is driven by the interplay algorithms, but in the fact that for the first time, a state of of theory and practice. -
Go Books Detail
Evanston Go Club Ian Feldman Lending Library A Compendium of Trick Plays Nihon Ki-in In this unique anthology, the reader will find the subject of trick plays in the game of go dealt with in a thorough manner. Practically anything one could wish to know about the subject is examined from multiple perpectives in this remarkable volume. Vital points in common patterns, skillful finesse (tesuji) and ordinary matters of good technique are discussed, as well as the pitfalls that are concealed in seemingly innocuous positions. This is a gem of a handbook that belongs on the bookshelf of every go player. Chapter 1 was written by Ishida Yoshio, former Meijin-Honinbo, who intimates that if "joseki can be said to be the highway, trick plays may be called a back alley. When one masters the alleyways, one is on course to master joseki." Thirty-five model trick plays are presented in this chapter, #204 and exhaustively analyzed in the style of a dictionary. Kageyama Toshiro 7 dan, one of the most popular go writers, examines the subject in Chapter 2 from the standpoint of full board strategy. Chapter 3 is written by Mihori Sho, who collaborated with Sakata Eio to produce Killer of Go. Anecdotes from the history of go, famous sayings by Sun Tzu on the Art of Warfare and contemporary examples of trickery are woven together to produce an entertaining dialogue. The final chapter presents twenty-five problems for the reader to solve, using the knowledge gained in the preceding sections. Do not be surprised to find unexpected booby traps lurking here also. -
Cognitive Reflection and Theory of Mind of Go Players Marc Oliver Rieger1and Mei Wang2
RESEARCH ARTICLE ADVANCES IN COGNITIVE PSYCHOLOGY Cognitive Reflection and Theory of Mind of Go Players Marc Oliver Rieger1and Mei Wang2 1 University of Trier 2 WHU – Otto Beisheim School of Management ABSTRACT Go is a classical Chinese mind game and a highly popular intellectual pursuit in East Asia. In a survey KEYWORDS at two Go tournaments (one of them the largest in Europe), we measured cognitive reflection and cognitive reflection test decision in strategic games (using the classical “beauty contest” game) (N = 327). We found that Go theory of mind players in our survey had outstanding average cognitive reflection test (CRT) scores: 2.51 among all patience participants and 2.80 among players of high master level (dan). This value easily outperforms previ- board games ous measurements, for example, of undergraduates at top universities. The CRT score was closely Go related to the playing strength, but not to the frequency of playing. On the other hand, frequent weiqi players tended to have higher theory of mind, regardless of their playing strengths. However, self- baduk reported patience was not statistically significantly correlated with Go strength or playing frequency. chess INTRODUCTION Human behavior is influenced by cognitive ability. Traditionally, these playing strategic games that require adopting the other person’s point abilities have been summarized in one dimension, intelligence, but of view, for example, the famous “beauty contest game or “Keynesian subsequent research focused on finding more and more facets of intel- beauty contest” (Nagel, 1995).1 The name of this game is inspired by ligence that are important for specific tasks. -
The Way to Go Is a Copyrighted Work
E R I C M A N A G F O O N How to U I O N D A T www.usgo.org www.agfgo.org play the Asian game of Go The Way to by Karl Baker American Go Association Box 397 Old Chelsea Station New York, NY 10113 GO Legal Note: The Way To Go is a copyrighted work. Permission is granted to make complete copies for personal use. Copies may be distributed freely to others either in print or electronic form, provided no fee is charged for distribution and all copies contain this copyright notice. The Way to Go by Karl Baker American Go Association Box 397 Old Chelsea Station New York, NY 10113 http://www.usgo.org Cover print: Two Immortals and the Woodcutter A watercolor by Seikan. Date unknown. How to play A scene from the Ranka tale: Immortals playing go as the the ancient/modern woodcutter looks on. From Japanese Prints and the World of Go by William Pinckard at: Asian Game of Go http://www.kiseido.com/printss/cover.htm Dedicated to Ann All in good time there will come a climax which will lift one to the heights, but first a foundation must be laid, INSPIRED BY HUNDREDS broad, deep and solid... OF BAFFLED STUDENTS Winfred Ernest Garrison © Copyright 1986, 2008 Preface American Go Association The game of GO is the essence of simplicity and the ultimate in complexity all at the same time. It is taught earnestly at military officer training schools in the Orient, as an exercise in military strategy. -
1 Introduction
An Investigation of an Evolutionary Approach to the Opening of Go Graham Kendall, Razali Yaakob Philip Hingston School of Computer Science and IT School of Computer and Information Science University of Nottingham, UK Edith Cowan University, WA, Australia {gxk|rby}@cs.nott.ac.uk [email protected] Abstract – The game of Go can be divided into three stages; even told how it had performed in each individual game. the opening, the middle, and the end game. In this paper, The conclusion of Fogel and Chellapilla is that, without evolutionary neural networks, evolved via an evolutionary any expert knowledge, a program can learn to play a game strategy, are used to develop opening game playing strategies at an expert level using a co-evolutionary approach. for the game. Go is typically played on one of three different board sizes, i.e., 9x9, 13x13 and 19x19. A 19x19 board is the Additional information about this work can be found in standard size for tournament play but 9x9 and 13x13 boards [19, 20, 21, 22]. are usually used by less-experienced players or for faster Go is considered more complex than chess or checkers. games. This paper focuses on the opening, using a 13x13 One measure of this complexity is the number of positions board. A feed forward neural network player is played against that can be reached from the starting position which Bouzy a static player (Gondo), for the first 30 moves. Then Gondo and Cazenave estimate to be 10160 [23]. Chess and takes the part of both players to play out the remainder of the checkers are about 1050 and 1017, respectively [23]. -
What Is the Project Title
Artificial Intelligence for Go CIS 499 Senior Design Project Final Report Kristen Ying Advisors: Dr. Badler and Dr. Likhachev University of Pennsylvania PROJECT ABSTRACT Go is an ancient board game, originating in China – where it is known as weiqi - before 600 B.C. It spread to Japan (where it is also known as Go), to Korea as baduk, and much more recently to Europe and America [American Go Association]. This game, in which players take turn placing stones on a 19x19 board in an attempt to capture territory, is polynomial-space hard [Reyzin]. Checkers is also polynomial-space hard, and is a solved problem [Schaeffer]. However, the sheer magnitude of options (and for intelligent algorithms, sheer number of possible strategies) makes it infeasible to create even passable novice AI with an exhaustive pure brute-force approach on modern hardware. The board is 19 x19, which, barring illegal moves, allows for about 10171 possible ways to execute a game. This number is about 1081 times greater than the believed number of elementary particles contained in the known universe [Keim]. Previously investigated approaches to creating AI for Go include human-like models such as pattern recognizers and machine learning [Burmeister and Wiles]. There are a number of challenges to these approaches, however. Machine learning algorithms can be very sensitive to the data and style of play with which they are trained, and approaches modeling human thought can be very sensitive to the designer‟s perception of how one thinks during a game. Professional Go players seem to have a very intuitive sense of how to play, which is difficult to model. -
Syllabus & Study Pack Module A
Malaysia Weiqi Association Syllabus & Study Pack Module A 1 Malaysia Weiqi Association Table of Contents A.1 INTRODUCTION A.4 CAPTURING RACE A.1.1 Short historical introduction to the game pg. 03 A.4.1 Capturing Race Pg. 45 A.1.2 Game etiquette and manners pg. 05 A.4.2 Inside liberties vs. outside liberties Pg. 46 A.1.3 Go equipment pg. 06 A.4.3 One eye beats no eyes Pg. 47 A.4.4 Increasing liberties Pg. 48 A.2 GETTING STARTED A.5 ENDGAME A.2.1 How to start? Pg.09 A.2.2 The objective of the Game Pg. 10 A.5.1 How to end a game Pg. 50 A.2.3 How the game ends Pg. 11 A.5.2 Endgame tactics Pg. 53 A.2.4 Building territories Pg. 12 A.2.5 Liberties Pg. 16 A.2.6 Invalid moves Pg. 17 LIST OF BONUS MATERIALS A.2.7 Living and Dead groups Pg. 21 A.2.8 Multiple Eye Space Pg. 27 1. Various Names of Go Pg. 04 2. How to Hold a Go Stone Pg. 08 3. Hikaru No Go Pg. 20 A.3 BASIC TACTICS 4. Ranking and Handicap Pg. 49 5. Resources On the Internet Pg. 58 A.3.1 Connecting and Cutting Pg. 31 6. Three Tips on Improving Pg. 59 A.3.2 Double Atari Pg. 35 A.3.3 Ladders Pg. 36 AUTHOR’S NOTES Pg. 60 A.3.4 Nets Pg. 37 A.3.5 Snapback Pg. 38 A.3.6 Throw-In Pg. -
Active Opening Book Application for Monte-Carlo Tree Search in 19×19 Go
Active Opening Book Application for Monte-Carlo Tree Search in 19×19 Go Hendrik Baier and Mark H. M. Winands Games and AI Group, Department of Knowledge Engineering Maastricht University, Maastricht, The Netherlands Abstract The dominant approach for programs playing the Asian board game of Go is nowadays Monte-Carlo Tree Search (MCTS). However, MCTS does not perform well in the opening phase of the game, as the branching factor is high and consequences of moves can be far delayed. Human knowledge about Go openings is typically captured in joseki, local sequences of moves that are considered optimal for both players. The choice of the correct joseki in a given whole-board position, however, is difficult to formalize. This paper presents an approach to successfully apply global as well as local opening moves, extracted from databases of high-level game records, in the MCTS framework. Instead of blindly playing moves that match local joseki patterns (passive opening book application), knowledge about these moves is integrated into the search algorithm by the techniques of move pruning and move biasing (active opening book application). Thus, the opening book serves to nudge the search into the direction of tried and tested local moves, while the search is able to filter out locally optimal, but globally problematic move choices. In our experiments, active book application outperforms passive book application and plain MCTS in 19×19 Go. 1 Introduction Since the early days of Artificial Intelligence (AI) as a scientific field, games have been used as testbed and benchmark for AI architectures and algorithms. The board game of Go, for example, has stimulated con- siderable research efforts over the last decades, second only to computer chess. -
The Official AGA Tournament Guide
The Official AGA Tournament Guide by Ken Koester Copyright © The American Go Association 2006 Table of Contents Part I: The Tasks Introduction........................................................................................................................................... v Chapter 1. Planning.............................................................................................................................1 Theme and System ................................................................................................................1 Budgeting, or, The Tournament on $15 and $20 a Day .................................................... 6 In Need of Assistance ...........................................................................................................8 Timetables ...............................................................................................................................9 Chapter 2. Preparation .....................................................................................................................11 Time and Place .....................................................................................................................11 Getting the Word Out ..........................................................................................................12 Food for Thought .................................................................................................................15 The Prize Is Right .................................................................................................................16