Index Des Descriptions Des Objets De Messier Dans Le Guide Du Ciel

Total Page:16

File Type:pdf, Size:1020Kb

Index Des Descriptions Des Objets De Messier Dans Le Guide Du Ciel Index des descriptions des objets de Messier dans le Guide du Ciel objet Guide du Ciel date constellation type Messier 1 GC03-04 20040123 Taureau nébuleuse Messier 2 GC03-04 20030905 Verseau amas globulaire Messier 3 GC04-05 20040723 Chiens de Chasse amas globulaire Messier 4 GC06-07 20060623 Scorpion amas globulaire Messier 5 GC03-04 20030801 Serpent amas globulaire Messier 6 GC07-08 20070608 Scorpion amas ouverts Messier 7 GC07-08 20070608 Scorpion amas ouverts Messier 8 GC07-08 20070615 Sagittaire nébuleuse Messier 9 GC06-07 20070330 Ophiuchus amas globulaire Messier 10 GC05-06 20050610 Ophiuchus amas globulaire Messier 11 GC03-04 20030704 Écu amas du Canard sauvage Messier 12 GC05-06 20050701 Ophiuchus amas globulaire Messier 13 GC03-04 20030912 Hercule amas globulaire Messier 13 GC06-07 20060818 Hercule amas globulaire Messier 14 GC05-06 20050708 Ophiuchus amas globulaire Messier 15 GC03-04 20031205 Pégase amas globulaire Messier 16 GC07-08 20070713 Serpent nébuleuse Messier 17 GC06-07 20060602 Sagittaire nébuleuse Messier 18 GC07-08 20070706 Sagittaire amas ouvert Messier 19 GC05-06 20050805 Ophiuchus amas globulaire Messier 20 GC03-04 20030815 Sagittaire nébuleuse Trifide Messier 21 GC07-08 20070622 Sagittaire amas ouvert Messier 22 GC05-06 20050729 Sagittaire galaxie Messier 23 GC07-08 20070803 Sagittaire amas ouvert Messier 24 GC07-08 20070720 Sagittaire amas ouvert Messier 25 GC04-05 20040806 Sagittaire amas globulaire Messier 26 GC04-05 20041001 Aigle amas ouvert Messier 27 GC03-04 20030919 Flèche nébuleuse Dumbell Messier 28 GC07-08 20070622 Sagittaire amas globulaire Messier 29 GC06-07 20060811 Cygne amas ouvert Messier 30 GC04-05 20040903 Capricorne amas globulaire Messier 31 GC03-04 20030926 Andromède galaxie Messier 32 GC07-08 20070914 Andromède galaxie Messier 33 GC03-04 20031219 Triangle galaxie + comète Messier 34 GC03-04 20040109 Persée amas ouvert Messier 35 GC04-05 20050325 Gémeaux amas ouvert Messier 36 GC04-05 20041119 Cocher amas ouvert Messier 37 GC05-06 20060106 Cocher amas ouvert Messier 38 GC06-07 20061110 Cocher amas ouvert Messier 39 GC06-07 20060908 Cygne amas ouvert Messier 40 GC07-08 20071005 Grande Ourse étoile Messier 41 GC04-05 20050128 Grand Chien amas ouvert Messier 42 GC03-04 20040312 Orion nébuleuse Messier 43 GC07-08 20071109 Orion nébuleuse Messier 44 GC05-06 20060203 Cancer amas ouvert Messier 45 GC03-04 20040305 Taureau Pléiades Messier 46 GC04-05 20050225 Poupe amas ouvert Messier 47 GC03-04 20040227 Poupe amas ouvert Messier 48 GC07-08 20071228 Hydre femelle amas ouvert Messier 49 GC06-07 20061201 Vierge galaxies Messier 50 GC06-07 20070202 Licorne amas ouvert Messier 51 GC07-08 20080111 Chiens de Chasse galaxie spirale Messier 52 GC04-05 20041008 Cassiopée amas ouvert Messier 53 GC04-05 20040702 Chevelure de Bérénice amas globulaire Messier 54 GC06-07 20060728 Sagittaire amas globulaires Messier 55 GC05-06 20050923 Sagittaire amas globulaire Messier 56 GC04-05 20041203 Lyre amas globulaire Messier 57 GC03-04 20030822 Lyre annulaire Lyre Messier 57 GC06-07 20060922 Lyre nébuleuse planétaire Messier 58 GC04-05 20050318 Vierge galaxie spirale Messier 59 GC04-05 20050429 Vierge galaxie Guillaume Cannat - mars 2007 Index des descriptions des objets de Messier dans le Guide du Ciel Messier 60 GC04-05 20050429 Vierge galaxie Messier 61 GC05-06 20050603 Vierge galaxie Messier 62 GC06-07 20060630 Ophiuchus amas globulaire Messier 63 GC07-08 20080314 Chiens de Chasse galaxie Messier 64 GC06-07 20070216 Chevelure de Bérénice galaxie Messier 65 GC07-08 20080104 Lion galaxies Messier 66 GC07-08 20080104 Lion galaxies Messier 67 GC07-08 20080215 Cancer amas ouvert Messier 68 GC07-08 20080229 Hydre femelle amas globulaire et double Messier 69 GC07-08 20070810 Sagittaire amas globulaire Messier 70 GC07-08 20070817 Sagittaire amas globulaire Messier 71 GC03-04 20031107 Flèche amas globulaire Messier 72 GC05-06 20050617 Verseau amas globulaire Messier 73 GC07-08 20070907 Verseau amas ouvert Messier 74 GC05-06 20050909 Poissons galaxie Messier 75 GC04-05 20040709 Sagittaire amas globulaire Messier 76 GC05-06 20050902 Persée nébuleuse planétaire Messier 77 GC03-04 20031114 Baleine galaxie Messier 77 + NGC 1055 GC07-08 20071012 Baleine galaxies Seyfert Messier 78 GC06-07 20061020 Orion nébuleuse Messier 79 GC07-08 20071207 Lièvre amas globulaire Messier 80 GC05-06 20050624 Scorpion amas globulaire Messier 81 GC06-07 20070119 Grande Ourse galaxie Messier 81 et 82 GC03-04 20040213 Grande Ourse galaxies Messier 82 GC04-05 20040618 Grande Ourse galaxie irrégulière Messier 83 GC07-08 20080411 Hydre femelle galaxie spirale Messier 84 GC04-05 20050506 Vierge galaxie elliptique Messier 85 + NGC 4394 GC07-08 20080328 Chevelure de Bérénice galaxie lenticulaire Messier 86 GC04-05 20050506 Vierge galaxie elliptique Messier 87 GC04-05 20050513 Vierge galaxie Messier 88 GC06-07 20070511 Chevelure de Bérénice galaxie spirale Messier 89 GC07-08 20080404 Vierge galaxie elliptique Messier 90 GC06-07 20070504 Vierge galaxie spirale Messier 91 GC07-08 20080307 Chevelure de Bérénice galaxie spirale Messier 92 GC03-04 20040528 Hercule amas globulaire Messier 93 GC06-07 20070223 Poupe amas ouvert Messier 94 GC07-08 20071116 Chiens de Chasse galaxie spirale Messier 95 GC03-04 20040319 Lion galaxies Messier 96 GC03-04 20040319 Lion galaxies Messier 97 GC07-08 20080201 Grande Ourse nébuleuse planétaire Messier 98 GC07-08 20080425 Chevelure de Bérénice galaxie spirale Messier 99 GC04-05 20050408 Chevelure de Bérénice galaxie spirale Messier 100 GC04-05 20050415 Chevelure de Bérénice galaxie spirale Messier 101 GC05-06 20060421 Grande Ourse galaxie Messier 102 GC07-08 20080502 Dragon galaxie elliptique Messier 103 GC05-06 20050812 Cassiopée amas ouvert Messier 104 GC03-04 20040514 Vierge galaxie Messier 105 GC07-08 20080118 Lion galaxie elliptique Messier 106 GC07-08 20071214 Chiens de Chasse galaxie spirale Messier 107 GC07-08 20080530 Ophiuchus amas globulaire Messier 108 GC05-06 20060217 Grande Ourse galaxie Messier 109 GC05-06 20060224 Grande Ourse galaxie Messier 110 GC07-08 20070921 Andromède galaxie elliptique Guillaume Cannat - mars 2007.
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Governs the Making of Photocopies Or Other Reproductions of Copyrighted Materials
    Warning Concerning Copyright Restrictions The Copyright Law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research. If electronic transmission of reserve material is used for purposes in excess of what constitutes "fair use," that user may be liable for copyright infringement. University of Nevada, Reno A Photometric Survey and Analysis of the M29 and M52 Open Star Clusters at the University of Nevada, Reno A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics by Matthew N. Tooth Dr. Melodi Rodrigue, Ph.D., Thesis Advisor December, 2012 UNIVERSITY OF NEVADA THE HONORS PROGRAM RENO We recommend that the thesis prepared under our supervision by Matthew N. Tooth entitled A Photometric Survey and Analysis of the M29 and M52 Open Star Clusters at the University of Nevada, Reno be accepted in partial fulfillment of the requirements for the degree of Bachelor of Science, Physics ______________________________________________ Melodi Rodrigue, Ph.D., Thesis Advisor ______________________________________________ David Bennum, Ph.D., Thesis Reader ______________________________________________ Tamara Valentine, Ph.D., Director, Honors Program December, 2012 ! i! Abstract One of the many tools at an astronomer’s disposal is photometry. By measuring the magnitudes of stars in star clusters in various wavelength filters we can obtain data that can provide important pieces of information about groups of stars.
    [Show full text]
  • Desert Skies
    Desert Skies Tucson Amateur Astronomy Association Volume LII, Number 7 July, 2006 Dark globule in the emission nebula IC 1396 contains never-before-seen young stars ♦ Learn about the Spitzer Infrared ♦ Websites: Gimme Shelter Part 4 Telescope ♦ Object of the Month ♦ Star parties and Meetings ♦ Constellation of the month Desert Skies: July, 2006 2 Volume LII, Number 7 Cover Photo: The Spitzer image of this globule is in spectacular contrast to the view seen in visible light. Spitzer's infra- red detectors unveiled the brilliant hidden interior of this opaque cloud of gas and dust for the first time, exposing never- before-seen young stars. Image: http://sscws1.ipac.caltech.edu/Imagegallery/image.php?image_name=ssc2003-06b TAAA Web Page: http://www.tucsonastronomy.org TAAA Phone Number: (520) 792-6414 Office/Position Name Phone E-mail Address President Bill Lofquist 297-6653 [email protected] Vice President Ken Shaver 762-5094 [email protected] Secretary Steve Marten 307-5237 [email protected] Treasurer Terri Lappin 977-1290 [email protected] Member-at-Large George Barber 822-2392 [email protected] Member-at-Large JD Metzger 760-8248 [email protected] Member-at-Large Teresa Plymate 883-9113 [email protected] Chief Observer Wayne Johnson 586-2244 [email protected] AL Correspondent (ALCor) Nick de Mesa 797-6614 [email protected] Astro-Imaging SIG Steve Peterson 762-8211 [email protected] Computers in Astronomy SIG Roger Tanner
    [Show full text]
  • Rules & Requirements for an SBAS Observing Certificate 1. You Must
    Rules & Requirements for an SBAS Observing Certificate 1. You must be a member of the SBAS in good standing to receive a certificate. 2. No Go To or Push To aided attempts will be accepted. Reading charts and star hopping are essential skills in our hobby. (You may use these methods to confirm your findings.) 3. Honor system is in full effect. These lists benefit your knowledge of the sky. Cheating only cheats yourself and the SBAS membership. Observations will be verified against digital planetarium charts. You may be required to answer questions about the objects you observed to verify your work. You may also be asked to show one of these objects at a star party. Once a list is completed, it is assumed you are familiar with every object on that list to the point where you can find it again and describe it to another person. 4. Upon completion of a list, submit the original paper version in person to Coy Wagoner at an SBAS meeting, public star party, or informal observing at the Worley. No digital submissions will be accepted at this time. 5. No observations may overlap. If one object is on two lists, your observations must be done on separate dates/times for credit. Copies of your observing logs will be saved and later compared to additional lists to make sure nothing overlaps. No observations prior to January 1, 2015 will be accepted for credit. 6. Observations should be done on your own. If you observe an object in someone else’s telescope or binoculars, the observation does not count unless you did the work to find it.
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • Hubble Views the Globular Cluster M10 26 June 2012
    Hubble views the globular cluster M10 26 June 2012 in the night sky. Messier 10, seen here in an image from the NASA/ESA Hubble Space Telescope, is one of them. Messier described it in the very first edition of his catalog, which was published in 1774 and included the first 45 objects he identified. Messier 10 is a ball of stars that lies about 15,000 light-years from Earth, in the constellation of Ophiuchus (The Serpent Bearer). Approximately 80 light-years across, it should therefore appear about two thirds the size of the moon in the night sky. However, its outer regions are extremely diffuse, and even the comparatively bright core is too dim to see with the naked eye. Hubble, which has no problems seeing faint objects, has observed the brightest part of the center of the cluster in this image, a region which is about 13 light-years across. This image is made up of observations made in Credit: ESA/Hubble & NASA visible and infrared light using Hubble's Advanced Camera for Surveys. The observations were carried out as part of a major Hubble survey of globular clusters in the Milky Way. (Phys.org) -- Like many of the most famous objects in the sky, globular cluster Messier 10 was of little A version of this image was entered into the interest to its discoverer. Charles Messier, the 18th Hubble's Hidden Treasures Image Processing century French astronomer, cataloged over 100 Competition by contestant flashenthunder. Hidden galaxies and clusters, but was primarily interested Treasures is an initiative to invite astronomy in comets.
    [Show full text]
  • Charles Messier (1730-1817) Was an Observational Astronomer Working
    Charles Messier (1730-1817) was an observational Catalogue (NGC) which was being compiled at the same astronomer working from Paris in the eighteenth century. time as Messier's observations but using much larger tele­ He discovered between 15 and 21 comets and observed scopes, probably explains its modern popularity. It is a many more. During his observations he encountered neb­ challenging but achievable task for most amateur astron­ ulous objects that were not comets. Some of these objects omers to observe all the Messier objects. At «star parties" were his own discoveries, while others had been known and within astronomy clubs, going for the maximum before. In 1774 he published a list of 45 of these nebulous number of Messier objects observed is a popular competi­ objects. His purpose in publishing the list was so that tion. Indeed at some times of the year it is just about poss­ other comet-hunters should not confuse the nebulae with ible to observe most of them in a single night. comets. Over the following decades he published supple­ Messier observed from Paris and therefore the most ments which increased the number of objects in his cata­ southerly object in his list is M7 in Scorpius with a decli­ logue to 103 though objects M101 and M102 were in fact nation of -35°. He also missed several objects from his list the same. Later other astronomers added a replacement such as h and X Per and the Hyades which most observers for M102 and objects 104 to 110. It is now thought proba­ would feel should have been included.
    [Show full text]
  • Helen B. Sawyer a Catalogue of 1116 Variable Stars in Globular Star
    PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO Volume I Number 4 A CATALOGUE OF 1116 VARIABLE STARS IN GLOBULAR STAR CLUSTERS BY HELEN B. SAWYER 1939 THE UNIVERSITY OF TORONTO PRESS rokoN ni, ( .\\.\h\ A CATALOGUE OF 1116 VARIABLE STARS IN GLOBULAR STAR CLUSTERS by Helen B. Sawyer A. Introduction. It is now fifty years since the discovery of the first variable star was announced in a globular cluster. The Nova which appeared in the cluster Messier 80 in 1860 can hardly be said to be the beginning of variable star astronomy in clusters, as it is still in a class by itself. In 1902 Bailey gave a summary of the variables in all the clusters which he himself had investigated, and published co-ordinates for the variables. Except for this compilation however, no catalogue of the variable stars in globular clusters has ever been published. In 1930 Shapley published in Star Clusters a summary of the variables known in globular clusters. This summary was brought up to date in 1933 in the Ilandbuch der Astrophysik. Considerable knowledge has been added in the interim, with many new variables discovered, and periods determined. In June, 1938, the writer sent a paper to the Ottawa meeting of the American Association for the Advancement of Science summarizing the present state of our knowledge. As a basis for this paper, a catalogue was made giving the magnitudes, positions, and periods of all the individual variables. There was originally no intention of publishing the actual catalogue of variables, but only a summary of the data contained therein.
    [Show full text]
  • Messier 1 Messier 2
    Messier 1 { HYPERLINK "http://www.seds.org/messier/nebula.html" } M1 (NGC 1952) in { HYPERLINK "http://www.seds.org/messier/map/Tau.html" } Crab Nebula { HYPERLINK "http://www.seds.org/messier/Jpg/m1.jpg" } Right Ascension 05 : 34.5 (h:m) Declination +22 : 01 (deg:m) Distance 6.3 (kly) Visual Brightness 8.4 (mag) Apparent Dimension 6x4 (arc min) Messier 2 { HYPERLINK "http://www.seds.org/messier/cluster.html" } M2 (NGC 7089) , class II, in { HYPERLINK "http://www.seds.org/messier/map/Aqr.html" } { HYPERLINK "http://www.seds.org/messier/Jpg/m2.jpg" } Right Ascension 21 : 33.5 (h:m) Declination -00 : 49 (deg:m) Distance 37.5 (kly) Visual Brightness 6.5 (mag) Apparent Dimension 16.0 (arc min) Messier 3 { HYPERLINK "http://www.seds.org/messier/cluster.html" } M3 (NGC 5272) , class VI, in { HYPERLINK "http://www.seds.org/messier/map/CVn.html" } { HYPERLINK "http://www.seds.org/messier/Jpg/m3.jpg" } Right Ascension 13 : 42.2 (h:m) Declination +28 : 23 (deg:m) Distance 33.9 (kly) Visual Brightness 6.2 (mag) Apparent Dimension 18.0 (arc min) Messier 4 { HYPERLINK "http://www.seds.org/messier/cluster.html" } M4 (NGC 6121) , class IX, in { HYPERLINK "http://www.seds.org/messier/map/Sco.html" } { HYPERLINK "http://www.seds.org/messier/Jpg/m4.jpg" } Right Ascension 16 : 23.6 (h:m) Declination -26 : 32 (deg:m) Distance 7.2 (kly) Visual Brightness 5.6 (mag) Apparent Dimension 36.0 (arc min) Messier 5 { HYPERLINK "http://www.seds.org/messier/cluster.html" } M5 (NGC 5904) , class V, in { HYPERLINK "http://www.seds.org/messier/map/SerCap.html" } { HYPERLINK
    [Show full text]
  • Messier Objects: Images on the Web a Catalog by Andrew Fraknoi [Dec
    Messier Objects: Images on the Web A Catalog by Andrew Fraknoi [Dec. 2017] NOTE: The images listed are in the public domain, and can thus be used for educational purposes. Under Type: SNR = Supernova Remnant; GSC = Globular Star Cluster; OSC = Open Star Cluster NEB = Nebula; GAL = Galaxy M# Typ Name Picture Address e 1 SNR Crab https://www.nasa.gov/feature/goddard/2017/messier-1-the-crab-nebula Nebula https://www.eso.org/public/images/potw1523a/ 2 GSC https://www.nasa.gov/feature/goddard/2017/messier-2 https://www.noao.edu/image_gallery/html/im0523.html 3 GSC https://www.nasa.gov/feature/goddard/2017/messier-3 https://www.noao.edu/image_gallery/html/im1273.html 4 GSC https://www.nasa.gov/feature/goddard/2017/messier-4 https://www.eso.org/public/images/eso1235a/ 5 GSC https://www.nasa.gov/feature/goddard/2017/messier-5 https://www.noao.edu/image_gallery/html/im0731.html 6 OSC Butterfly https://commons.wikimedia.org/wiki/File:M6a.jpg Cluster https://www.noao.edu/image_gallery/html/im0379.html 7 OSC Ptolemy’s http://www.eso.org/public/images/eso1406a/ Cluster https://www.noao.edu/image_gallery/html/im0584.html 8 NEB Lagoon https://www.nasa.gov/feature/goddard/2017/messier-8-the-lagoon-nebula Nebula https://www.noao.edu/image_gallery/html/im1105.html 9 GSC https://www.nasa.gov/feature/goddard/2017/messier-9 https://www.noao.edu/image_gallery/html/im0573.html 10 GSC https://www.nasa.gov/feature/goddard/2017/messier-10 1 https://www.noao.edu/image_gallery/html/im0648.html 11 OSC Wild Duck https://www.nasa.gov/feature/goddard/2017/messier-11-the-wild-duck-cluster
    [Show full text]