Table S30. GISTIC 2.0 Significant Regions for All TNBC Cases

Total Page:16

File Type:pdf, Size:1020Kb

Table S30. GISTIC 2.0 Significant Regions for All TNBC Cases Table S30. GISTIC 2.0 Significant Regions for All TNBC Cases Residual q values after removing Unique Name Descriptor Wide Peak Limits Peak Limits Region Limits q values segments shared with higher peaks Amplification Peak 1 1p31.1 chr1:76899465-81393021(probes 14145:15040) chr1:78201746-78349213(probes 14454:14457) chr1:77784763-80054162(probes 14353:14768) 1.11E-01 1.11E-01 Amplification Peak 2 1q23.3 chr1:163166677-164240150(probes 25446:25683) chr1:163174427-163502325(probes 25447:25537) chr1:157283480-173865585(probes 24065:27911) 3.57E-05 1.08E-03 Amplification Peak 3 1q31.2 chr1:187749448-192099776(probes 30222:30892) chr1:191836317-191928252(probes 30855:30871) chr1:183785175-200139349(probes 29601:32116) 4.42E-12 1.92E-10 Amplification Peak 4 1q41 chr1:216403500-216618219(probes 35668:35702) chr1:216454484-216613760(probes 35677:35701) chr1:214556083-223904594(probes 35275:37052) 7.77E-10 1.23E-07 Amplification Peak 5 1q43 chr1:238540227-239597344(probes 40367:40633) chr1:239336072-239341527(probes 40584:40586) chr1:223929087-249250621(probes 37063:42843) 2.34E-07 1.12E-05 Amplification Peak 6 2p16.3 chr2:50171659-53114774(probes 54212:55006) chr2:51345516-51479169(probes 54533:54554) chr2:49400347-53722594(probes 54040:55163) 3.29E-04 6.30E-04 Amplification Peak 7 2p12 chr2:76242646-84330302(probes 59548:61200) chr2:78870454-78927327(probes 60115:60119) chr2:75878655-84432299(probes 59477:61215) 2.77E-03 5.97E-03 Amplification Peak 8 2q32.1 chr2:184954001-189883165(probes 77451:78098) chr2:185188573-185459543(probes 77495:77550) chr2:184954426-189904673(probes 77452:78100) 5.56E-02 5.56E-02 Amplification Peak 9 3p26.3 chr3:1-3276427(probes 88315:89512) chr3:2472786-2480437(probes 89135:89135) chr3:1-3280818(probes 88315:89516) 3.16E-02 3.16E-02 Amplification Peak 10 3p11.1 chr3:89191310-89497081(probes 107054:107085) chr3:89309407-89379934(probes 107069:107075) chr3:87949734-95795275(probes 106896:107356) 2.20E-02 2.72E-02 Amplification Peak 11 3q24 chr3:144500133-146653362(probes 116188:116562) chr3:145583562-146091890(probes 116364:116450) chr3:142889136-183339095(probes 115777:123011) 2.44E-06 2.81E-03 Amplification Peak 12 3q26.1 chr3:165852208-166522846(probes 119878:119962) chr3:165858272-166202006(probes 119879:119921) chr3:142889136-183339095(probes 115777:123011) 8.75E-17 1.60E-12 Amplification Peak 13 3q26.31 chr3:175607877-175635149(probes 121774:121776) chr3:175619644-175630352(probes 121775:121775) chr3:142889136-183339095(probes 115777:123011) 9.48E-11 1.17E-06 Amplification Peak 14 4q28.3 chr4:131097851-138482972(probes 148571:149601) chr4:134439151-135741791(probes 149015:149169) chr4:131104360-138371814(probes 148572:149585) 7.29E-02 7.29E-02 Amplification Peak 15 5p14.3 chr5:22024388-23861063(probes 164332:164634) chr5:23065166-23164030(probes 164504:164521) chr5:17776870-31302287(probes 163711:165872) 3.26E-07 3.26E-07 Amplification Peak 16 6p24.3 chr6:8378610-9558459(probes 196058:196280) chr6:8410537-8717286(probes 196067:196109) chr6:8273874-10245759(probes 196033:196503) 1.61E-02 1.73E-01 Amplification Peak 17 6p22.3 chr6:20438662-20663334(probes 198930:199003) chr6:20481826-20625633(probes 198940:198984) chr6:17483876-23872684(probes 198273:199856) 2.91E-03 2.91E-02 Amplification Peak 18 6p21.1 chr6:44946464-45358322(probes 205387:205427) chr6:44953787-45349508(probes 205388:205424) chr6:44651736-51799901(probes 205339:206578) 1.49E-03 2.99E-02 Amplification Peak 19 6q12 chr6:62059208-66658512(probes 207867:208438) chr6:63452577-64024023(probes 208012:208060) chr6:57685663-71434295(probes 207799:209432) 2.92E-04 2.12E-03 Amplification Peak 20 6q16.1 chr6:93573897-93741419(probes 213599:213645) chr6:93574270-93741038(probes 213600:213644) chr6:91437527-98734647(probes 213161:214476) 2.59E-04 1.40E-03 Amplification Peak 21 6q22.31 chr6:122607311-122667157(probes 218782:218790) chr6:122609877-122663661(probes 218783:218789) chr6:119517984-136393804(probes 218281:221678) 1.85E-03 4.32E-02 Amplification Peak 22 6q23.3 chr6:135315399-135541168(probes 221513:221556) chr6:135325919-135526767(probes 221514:221555) chr6:119517984-136393804(probes 218281:221678) 4.12E-03 8.89E-02 Amplification Peak 23 7p21.2 chr7:8764366-16780008(probes 231806:234164) chr7:15864160-15891803(probes 233913:233917) chr7:8772151-16926860(probes 231807:234235) 1.85E-02 1.85E-02 Amplification Peak 24 7q21.11 chr7:79086120-86097012(probes 245810:247115) chr7:84752426-85077204(probes 246942:246986) chr7:77964668-88080420(probes 245453:247471) 1.25E-03 1.64E-03 Amplification Peak 25 7q31.31 chr7:108258672-126665051(probes 251094:253858) chr7:118928232-119186067(probes 252694:252710) chr7:118342829-119301785(probes 252635:252718) 1.15E-01 1.62E-01 Amplification Peak 26 8p11.22 chr8:39399058-39611991(probes 271865:271900) chr8:39405338-39609625(probes 271866:271899) chr8:35999592-40576178(probes 271471:272131) 3.29E-04 3.29E-04 Amplification Peak 27 8q21.13 chr8:83163528-83991230(probes 278861:279004) chr8:83815084-83985295(probes 278987:279003) chr8:68677338-146364022(probes 275963:291409) 1.04E-06 8.91E-05 Amplification Peak 28 8q23.3 chr8:113545257-116210887(probes 284044:284459) chr8:115084138-115532355(probes 284285:284341) chr8:68677338-146364022(probes 275963:291409) 1.95E-18 7.23E-18 Amplification Peak 29 9p23 chr9:12503843-12726961(probes 295855:295914) chr9:12510516-12712156(probes 295856:295911) chr9:1-16404540(probes 291410:297104) 5.14E-09 5.14E-09 Amplification Peak 30 10p14 chr10:8689004-10524805(probes 320867:321257) chr10:9210501-9878348(probes 320992:321115) chr10:1-10968632(probes 318044:321403) 1.12E-03 1.12E-03 Amplification Peak 31 10q21.1 chr10:53195392-59492515(probes 329378:330856) chr10:55199971-55391608(probes 329947:330003) chr10:53200277-59504546(probes 329382:330858) 4.65E-02 1.46E-01 Amplification Peak 32 10q21.3 chr10:66412920-69330131(probes 332172:332911) chr10:66785647-67227684(probes 332244:332345) chr10:66380567-69378277(probes 332165:332917) 2.60E-02 1.05E-01 Amplification Peak 33 10q23.1 chr10:82737124-84937492(probes 335802:336279) chr10:82914030-83416996(probes 335829:335923) chr10:82670627-85583242(probes 335777:336413) 9.60E-03 1.51E-02 Amplification Peak 34 10q26.13 chr10:123151323-123215088(probes 343901:343918) chr10:123151489-123208880(probes 343902:343917) chr10:123088200-123217599(probes 343876:343920) 1.28E-01 1.28E-01 Amplification Peak 35 11p14.3 chr11:23564844-25230779(probes 353294:353657) chr11:24494466-25229289(probes 353450:353656) chr11:21177160-31740264(probes 352715:354700) 6.60E-03 2.07E-02 Amplification Peak 36 11p12 chr11:37102464-39018278(probes 355939:356214) chr11:38041872-38477540(probes 356083:356146) chr11:36805998-42715835(probes 355873:356873) 7.18E-04 2.74E-03 Amplification Peak 37 11q13.3 chr11:69160994-70118488(probes 360122:360342) chr11:69377671-69814828(probes 360186:360251) chr11:68894992-70327304(probes 360074:360363) 2.02E-02 5.17E-02 Amplification Peak 38 11q14.1 chr11:77259436-77367541(probes 361532:361539) chr11:77268461-77350336(probes 361533:361538) chr11:76377820-81879092(probes 361392:362621) 4.71E-04 4.79E-03 Amplification Peak 39 11q22.1 chr11:97222584-98338007(probes 365677:365884) chr11:98105072-98333594(probes 365848:365883) chr11:96192005-101771432(probes 365513:366914) 4.83E-05 3.23E-04 Amplification Peak 40 12p13.2 chr12:10492983-10829002(probes 377109:377179) chr12:10496725-10553266(probes 377111:377121) chr12:7341344-12321180(probes 376480:377537) 7.49E-05 3.34E-04 Amplification Peak 41 12p12.1 chr12:17918926-24453452(probes 378764:380461) chr12:23985380-24006667(probes 380288:380291) chr12:14902094-27698750(probes 378200:381389) 1.50E-04 9.77E-04 Amplification Peak 42 12q11 chr12:34810204-38245751(probes 382920:382926) chr12:34819927-38242028(probes 382921:382925) chr12:33144338-38631078(probes 382742:382942) 1.30E-02 2.16E-02 Amplification Peak 43 13q31.2 chr13:82010206-91047346(probes 414991:416415) chr13:87658987-87971335(probes 415901:415933) chr13:81217492-95022283(probes 414871:417218) 2.48E-03 1.07E-02 Table S30. GISTIC 2.0 Significant Regions for All TNBC Cases Residual q values after removing Unique Name Descriptor Wide Peak Limits Peak Limits Region Limits q values segments shared with higher peaks Amplification Peak 44 13q33.3 chr13:104104377-109878778(probes 419862:421453) chr13:109081999-109452428(probes 421239:421340) chr13:101655224-115169878(probes 419025:422661) 2.84E-04 1.04E-03 Amplification Peak 45 14q12 chr14:27362942-29116115(probes 424575:424881) chr14:28421092-28799517(probes 424759:424825) chr14:27370460-29120381(probes 424576:424883) 3.79E-02 6.42E-02 Amplification Peak 46 14q21.3 chr14:47267653-47377201(probes 428312:428322) chr14:47285767-47367885(probes 428313:428321) chr14:47110306-47730953(probes 428294:428390) 3.61E-02 6.03E-02 Amplification Peak 47 15q26.2 chr15:94423125-100729705(probes 455457:457082) chr15:98084344-98442531(probes 456377:456465) chr15:95769034-98954956(probes 455845:456602) 9.10E-02 9.10E-02 Amplification Peak 48 17q22 chr17:52363380-52637910(probes 483212:483257) chr17:52371644-52433671(probes 483213:483217) chr17:49825434-53273909(probes 482760:483410) 2.74E-05 2.89E-04 Amplification Peak 49 17q24.3 chr17:69075360-69502650(probes 486140:486257) chr17:69142875-69336173(probes 486158:486202) chr17:63285156-70140484(probes 484952:486403) 1.31E-05 1.35E-04 Amplification Peak 50 19q12 chr19:30253999-30587595(probes 510025:510070) chr19:30255091-30458484(probes 510026:510058) chr19:30029437-31047268(probes 509959:510170) 1.48E-02 1.48E-02 Amplification Peak 51 21q21.2 chr21:24253086-25069438(probes
Recommended publications
  • Whole-Genome Landscape of Pancreatic Neuroendocrine Tumours
    Scarpa, A. et al. (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 543(7643), pp. 65-71. (doi:10.1038/nature21063) This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/137698/ Deposited on: 12 December 2018 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Whole-genome landscape of pancreatic neuroendocrine tumours Aldo Scarpa1,2*§, David K. Chang3,4, 7,29,36* , Katia Nones5,6*, Vincenzo Corbo1,2*, Ann-Marie Patch5,6, Peter Bailey3,6, Rita T. Lawlor1,2, Amber L. Johns7, David K. Miller6, Andrea Mafficini1, Borislav Rusev1, Maria Scardoni2, Davide Antonello8, Stefano Barbi2, Katarzyna O. Sikora1, Sara Cingarlini9, Caterina Vicentini1, Skye McKay7, Michael C. J. Quinn5,6, Timothy J. C. Bruxner6, Angelika N. Christ6, Ivon Harliwong6, Senel Idrisoglu6, Suzanne McLean6, Craig Nourse3, 6, Ehsan Nourbakhsh6, Peter J. Wilson6, Matthew J. Anderson6, J. Lynn Fink6, Felicity Newell5,6, Nick Waddell6, Oliver Holmes5,6, Stephen H. Kazakoff5,6, Conrad Leonard5,6, Scott Wood5,6, Qinying Xu5,6, Shivashankar Hiriyur Nagaraj6, Eliana Amato1,2, Irene Dalai1,2, Samantha Bersani2, Ivana Cataldo1,2, Angelo P. Dei Tos10, Paola Capelli2, Maria Vittoria Davì11, Luca Landoni8, Anna Malpaga8, Marco Miotto8, Vicki L.J. Whitehall5,12,13, Barbara A. Leggett5,12,14, Janelle L. Harris5, Jonathan Harris15, Marc D. Jones3, Jeremy Humphris7, Lorraine A. Chantrill7, Venessa Chin7, Adnan M. Nagrial7, Marina Pajic7, Christopher J. Scarlett7,16, Andreia Pinho7, Ilse Rooman7†, Christopher Toon7, Jianmin Wu7,17, Mark Pinese7, Mark Cowley7, Andrew Barbour18, Amanda Mawson7†, Emily S.
    [Show full text]
  • Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
    bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Pediatric and Perinatal Pathology (1842-1868)
    VOLUME 33 | SUPPLEMENT 2 | MARCH 2020 MODERN PATHOLOGY ABSTRACTS PEDIATRIC AND PERINATAL PATHOLOGY (1842-1868) LOS ANGELES CONVENTION CENTER FEBRUARY 29-MARCH 5, 2020 LOS ANGELES, CALIFORNIA 2020 ABSTRACTS | PLATFORM & POSTER PRESENTATIONS EDUCATION COMMITTEE Jason L. Hornick, Chair William C. Faquin Rhonda K. Yantiss, Chair, Abstract Review Board Yuri Fedoriw and Assignment Committee Karen Fritchie Laura W. Lamps, Chair, CME Subcommittee Lakshmi Priya Kunju Anna Marie Mulligan Steven D. Billings, Interactive Microscopy Subcommittee Rish K. Pai Raja R. Seethala, Short Course Coordinator David Papke, Pathologist-in-Training Ilan Weinreb, Subcommittee for Unique Live Course Offerings Vinita Parkash David B. Kaminsky (Ex-Officio) Carlos Parra-Herran Anil V. Parwani Zubair Baloch Rajiv M. Patel Daniel Brat Deepa T. Patil Ashley M. Cimino-Mathews Lynette M. Sholl James R. Cook Nicholas A. Zoumberos, Pathologist-in-Training Sarah Dry ABSTRACT REVIEW BOARD Benjamin Adam Billie Fyfe-Kirschner Michael Lee Natasha Rekhtman Narasimhan Agaram Giovanna Giannico Cheng-Han Lee Jordan Reynolds Rouba Ali-Fehmi Anthony Gill Madelyn Lew Michael Rivera Ghassan Allo Paula Ginter Zaibo Li Andres Roma Isabel Alvarado-Cabrero Tamara Giorgadze Faqian Li Avi Rosenberg Catalina Amador Purva Gopal Ying Li Esther Rossi Roberto Barrios Anuradha Gopalan Haiyan Liu Peter Sadow Rohit Bhargava Abha Goyal Xiuli Liu Steven Salvatore Jennifer Boland Rondell Graham Yen-Chun Liu Souzan Sanati Alain Borczuk Alejandro Gru Lesley Lomo Anjali Saqi Elena Brachtel Nilesh Gupta Tamara
    [Show full text]
  • Human Artificial Chromosome (Hac) Vector
    Europäisches Patentamt *EP001559782A1* (19) European Patent Office Office européen des brevets (11) EP 1 559 782 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: C12N 15/09, C12N 1/15, 03.08.2005 Bulletin 2005/31 C12N 1/19, C12N 1/21, C12N 5/10, C12P 21/02 (21) Application number: 03751334.8 (86) International application number: (22) Date of filing: 03.10.2003 PCT/JP2003/012734 (87) International publication number: WO 2004/031385 (15.04.2004 Gazette 2004/16) (84) Designated Contracting States: • KATOH, Motonobu, Tottori University AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Yonago-shi, Tottori 683-8503 (JP) HU IE IT LI LU MC NL PT RO SE SI SK TR • TOMIZUKA, Kazuma, Designated Extension States: Kirin Beer Kabushiki Kaisha AL LT LV MK Takashi-shi, Gunma 370-1295 (JP) • KUROIWA, Yoshimi, (30) Priority: 04.10.2002 JP 2002292853 Kirin Beer Kabushiki Kaisha Takasaki-shi, Gunma 370-1295 (JP) (71) Applicant: KIRIN BEER KABUSHIKI KAISHA • KAKEDA, Minoru, Kirin Beer Kabushiki Kaisha Tokyo 104-8288 (JP) Takasaki-shi, Gunma 370-1295 (JP) (72) Inventors: (74) Representative: HOFFMANN - EITLE • OSHIMURA, Mitsuo, Tottori University Patent- und Rechtsanwälte Yonago-shi, Tottori 683-8503 (JP) Arabellastrasse 4 81925 München (DE) (54) HUMAN ARTIFICIAL CHROMOSOME (HAC) VECTOR (57) The present invention relates to a human arti- ing a cell which expresses foreign DNA. Furthermore, ficial chromosome (HAC) vector and a method for pro- the present invention relates to a method for producing ducing the same.
    [Show full text]
  • Supplemental Data
    1 Supplementary Figure 1. Immunohistochemical distribution of urothelial cells, renal tubular cells, and interstitial cells stained 2 by uroplakin III, kidney specific protein, and vimentin, respectively. Magnification, ×100 (inset x400). Representative 3 micrographs were obtained from normal papillary tissues of CaOx stone formers. 1 Supplementary Table 1. Top 100 upregulated genes in papillary tissue of both Randall’s Plaque and normal mucosa with calcium oxalate stone formers compared to those with control patients. Fold Agilent ID Gene Symbol Description change A_23_P128868 OR11H12 Homo sapiens olfactory receptor, family 11, subfamily H, member 12 (OR11H12), mRNA [NM_001013354] 26.613 Homo sapiens killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 2 (KIR2DS2), mRNA A_23_P130815 KIR2DS2 26.224 [NM_012312] A_24_P402855 PROL1 Homo sapiens proline rich, lacrimal 1 (PROL1), mRNA [NM_021225] 23.733 A_24_P917306 ZNF385D zinc finger protein 385D [Source:HGNC Symbol;Acc:26191] [ENST00000494108] 23.050 A_33_P3260667 OR2T34 Homo sapiens olfactory receptor, family 2, subfamily T, member 34 (OR2T34), mRNA [NM_001001821] 20.948 A_33_P3259440 GOLGA6A Homo sapiens golgin A6 family, member A (GOLGA6A), mRNA [NM_001038640] 20.628 A_33_P3417281 MUC4 Homo sapiens mucin 4, cell surface associated (MUC4), transcript variant 1, mRNA [NM_018406] 20.610 A_24_P239176 MUC4 Homo sapiens mucin 4, cell surface associated (MUC4), transcript variant 1, mRNA [NM_018406] 19.965 A_21_P0006968 SFTA1P Homo sapiens surfactant associated 1, pseudogene
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Time-Series Plasma Cell-Free DNA Analysis Reveals Disease Severity of COVID-19 Patients
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.08.20124305; this version posted June 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Time-series plasma cell-free DNA analysis reveals disease severity of COVID- 19 patients Authors: Xinping Chen1†, Yu Lin2†, Tao Wu1†, Jinjin Xu2†, Zhichao Ma1†, Kun Sun2,5†, Hui Li1†, Yuxue Luo2,3†, Chen Zhang1, Fang Chen2, Jiao Wang1, Tingyu Kuo2,4, Xiaojuan Li1, Chunyu Geng2, Feng Lin1, Chaojie Huang2, Junjie Hu1, Jianhua Yin2, Ming Liu1, Ye Tao2, Jiye Zhang1, Rijing Ou2, Furong Xiao1, Huanming Yang2,6, Jian Wang2,6, Xun Xu2,7, Shengmiao Fu1*, Xin Jin2,3*, Hongyan Jiang1*, Ruoyan Chen2* Affiliations: 1Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou 570311, Hainan, China. 2BGI-Shenzhen, Shenzhen, 518083, Guangdong, China 3School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China 5Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong, China 6James D. Watson Institute of Genome Sciences, Hangzhou 310058, China 7Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China *Correspondence to: [email protected]; [email protected]; [email protected]; [email protected]. †These authors contributed equally to this work. Abstract: Clinical symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death.
    [Show full text]
  • Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors
    fncel-11-00003 January 20, 2017 Time: 14:24 # 1 CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 24 January 2017 doi: 10.3389/fncel.2017.00003 Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors Nikolina Jovancevic1*, Kirsten A. Wunderlich2, Claudia Haering1, Caroline Flegel1, Désirée Maßberg1, Markus Weinrich1, Lea Weber1, Lars Tebbe2, Anselm Kampik3, Günter Gisselmann1, Uwe Wolfrum2, Hanns Hatt1† and Lian Gelis1† 1 Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany, 2 Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Mainz, Germany, 3 Department of Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a Edited by: stage for subsequent functional analyses. RNA-Sequencing datasets of three individual Hansen Wang, University of Toronto, Canada neural retinae were generated using Next-generation sequencing and were compared Reviewed by: to previously published but reanalyzed datasets of the peripheral and the macular Ewald Grosse-Wilde, human retina and to reference tissues. The protein localization of several ORs was Max Planck Institute for Chemical Ecology (MPG), Germany investigated by immunohistochemistry. The transcriptome analyses detected an average Takaaki Sato, of 14 OR transcripts in the neural retina, of which OR6B3 is one of the most highly National Institute of Advanced expressed ORs.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,703,482 B2 Oshimura Et Al
    USOO8703482B2 (12) United States Patent (10) Patent No.: US 8,703,482 B2 Oshimura et al. (45) Date of Patent: Apr. 22, 2014 (54) HUMAN ARTIFICIAL CHROMOSOME (HAC) Rasheed et al. “Characterization of a Newly Derived Human Sar VECTOR coma Cell Line (HT-1080).” Cancer, 1974, vol. 33, pp. 1027-1033. R. Moreadith etal, “Gene targeting in embryonic stem cells: the new physiology and metabolism.” J Mol Med, 1997, vol. 75, pp. 208-216. (75) Inventors: Mitsuo Oshimura, Tottori (JP); L. Mullins et al., “Perspective Series: Molecular Medicine in Geneti Motonobu Katoh, Tottori (JP); Kazuma cally Engineered Animals: Transgenesis in the Rat and Larger Ani Tomizuka, Gunma (JP); Yoshimi mals,” Journal of Clinical Investigation, 1996, vol. 97, No. 7, pp. Kuroiwa, Gunma (JP); Minoru 1557-1560. Kakeda, Gunma (JP) M. Pera et al. “Human embryonic stem cells,” Journal of Cell Sci ence, 2000, vol. 113, pp. 5-10. Hattori et al. “The DNA sequence of human chromosome 21.” (73) Assignee: Kyowa Hakko Kirin Co., Ltd., Tokyo Nature, 2000, vol. 405, No. 6784, pp. 311-319. (JP) European Search Report dated May 18, 2006 for counterpart appli cation PCT/JP0312734 to parent U.S. Appl. No. 10/530.207. (*) Notice: Subject to any disclaimer, the term of this Y. Kuroiwa et al. “Efficient modification of a human chromosome by patent is extended or adjusted under 35 telomere-directed truncation in high homologous recombination U.S.C. 154(b) by 176 days. proficient chicken DT40 cells.” Nucleic Acids. Res., 1998, vol. 26, No. 14, pp. 3447-3448. Y. Kuroiwa et al., “Manipulation of human minichromosomes to carry (21) Appl.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]