Cranial Nerve Palsies in Childhood
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pupillary Disorders LAURA J
13 Pupillary Disorders LAURA J. BALCER Pupillary disorders usually fall into one of three major cat- cortex generally do not affect pupillary size or reactivity. egories: (1) abnormally shaped pupils, (2) abnormal pupillary Efferent parasympathetic fibers, arising from the Edinger– reaction to light, or (3) unequally sized pupils (anisocoria). Westphal nucleus, exit the midbrain within the third nerve Occasionally pupillary abnormalities are isolated findings, (efferent arc). Within the subarachnoid portion of the third but in many cases they are manifestations of more serious nerve, pupillary fibers tend to run on the external surface, intracranial pathology. making them more vulnerable to compression or infiltration The pupillary examination is discussed in detail in and less susceptible to vascular insult. Within the anterior Chapter 2. Pupillary neuroanatomy and physiology are cavernous sinus, the third nerve divides into two portions. reviewed here, and then the various pupillary disorders, The pupillary fibers follow the inferior division into the orbit, grouped roughly into one of the three listed categories, are where they then synapse at the ciliary ganglion, which lies discussed. in the posterior part of the orbit between the optic nerve and lateral rectus muscle (Fig. 13.3). The ciliary ganglion issues postganglionic cholinergic short ciliary nerves, which Neuroanatomy and Physiology initially travel to the globe with the nerve to the inferior oblique muscle, then between the sclera and choroid, to The major functions of the pupil are to vary the quantity of innervate the ciliary body and iris sphincter muscle. Fibers light reaching the retina, to minimize the spherical aberra- to the ciliary body outnumber those to the iris sphincter tions of the peripheral cornea and lens, and to increase the muscle by 30 : 1. -
The Official Scientific Journal of the Delhi Ophthalmologycal Society DJO Vol
DJO Vol.20, No. 2, October-December 09 DJO Vol.20, No. 2, October-December 09 October-December 2, No. Vol.20, DJO The Official Scientific Journal of the Delhi Ophthalmologycal Society DJO Vol. 20, No. 2, October-December, 2009 Delhi Journal of Ophthalmology Editor Editorial Board Rohit Saxena Rajvardhan Azad Ramanjit Sihota Managing Editor Vimla Menon Divender Sood Rajesh Sinha Atul Kumar Rishi Mohan Ashok K Grover Namrata Sharma Editorial Committee Mahipal S Sachdev Tanuj Dada Parijat Chandra M.Vanathi Lalit Verma Rajinder K hanna Tushar Agarwal Prakash Chand Agarwal Sharad Lakhotia Harbans Lal Chandrashekhar Kumar Swati Phuljhele P V Chaddha Amit Khosla Shibal Bhartiya Reena Sharma Dinesh Talwar B Ghosh Munish Dhawan Twinkle Parmar K.P.S Malik Kirti Singh Harinder Sethi Varun Gogia Pradeep Sharma B P Guliani Raghav Gupta Sashwat Ray V P Gupta S P Garg Ashish Kakkar Saptrishi Majumdar S. Bharti Arun Baweja General Information Delhi Journal of Ophthalmology (DJO), once called Visiscan, is a quarterly journal brought out by the Delhi Opthalmological Society. The journal aims at providing a platform to its readers for free exchange of ideas and information in accordance with the rules laid out for such publication. The DJO aims to become an easily readable referenced journal which will provide the specialists with up to date data and the residents with articles providing expert opinions supported with references. Contribution Methodology Delhi Journal of Opthalmology (DJO) is a quarterly journal. Author/Authors must have made significant contribution in carrying out the work and it should be original. It should be accompanied by a letter of transmittal. -
Cranial Nerve Palsy
Cranial Nerve Palsy What is a cranial nerve? Cranial nerves are nerves that lead directly from the brain to parts of our head, face, and trunk. There are 12 pairs of cranial nerves and some are involved in special senses (sight, smell, hearing, taste, feeling) while others control muscles and glands. Which cranial nerves pertain to the eyes? The second cranial nerve is called the optic nerve. It sends visual information from the eye to the brain. The third cranial nerve is called the oculomotor nerve. It is involved with eye movement, eyelid movement, and the function of the pupil and lens inside the eye. The fourth cranial nerve is called the trochlear nerve and the sixth cranial nerve is called the abducens nerve. They each innervate an eye muscle involved in eye movement. The fifth cranial nerve is called the trigeminal nerve. It provides facial touch sensation (including sensation on the eye). What is a cranial nerve palsy? A palsy is a lack of function of a nerve. A cranial nerve palsy may cause a complete or partial weakness or paralysis of the areas served by the affected nerve. In the case of a cranial nerve that has multiple functions (such as the oculomotor nerve), it is possible for a palsy to affect all of the various functions or only some of the functions of that nerve. What are some causes of a cranial nerve palsy? A cranial nerve palsy can occur due to a variety of causes. It can be congenital (present at birth), traumatic, or due to blood vessel disease (hypertension, diabetes, strokes, aneurysms, etc). -
Duane Retraction Syndrome
Med. J. Cairo Univ., Vol. 78, No. 1, June: 331-336, 2010 www.medicaljournalofcairouniversity.com Duane Retraction Syndrome KARIMA L. SHALABY, M.D.* and MOSTAFA BAHGAT, M.D.** The Pediatric Ophthalmology Section*, Tripoli Eye Hospital and the Department of Ophthalmology**, Faculty of Medicine, Cairo University. Abstract Electromyography studies have shown paradox- ical innervations of Lateral rectus muscle and Purpose of Study: To evaluate and to manage if manage- anomalous synergistic innervations of medial rec- ment indicated for cases of Duane retraction syndrome. tus, inferior rectus, superior rectus and oblique Patients and Methods: 15 Duane retraction syndrome muscles [7,8] . (DRS) patients seen in Pediatric clinic in Tripoli Eye Hospital in period from January 2006-December 2006. Complete In most cases of DRS the entire 6 th nerve atro- ophthalmic examination including ortho-optic assessment for phy instead of post half of 6 th nerve (without all cases. specific teratogenic stimulus) 95% of DRS cases Results: Patients age ranged 1 year to 20 years in this this is the only initial abnormality. In about 5% of group of study, females were affected more than males with cases other abnormalities seen (e.g. nerve deafness). 2 to 1 ratio. Type 1 (esotropic) is the most common 80% of cases. Left eye was affected more than right eye. Bilateral in Most cases of DRS are sporadic [5,9] . 13.3% of cases. DRS clinical picture varies widely, surgical intervention will not eliminate the abnormality but will lessen Etiology: it. Two cases were operated upon to improve alignment in Etiology of DRS has been proposed by several primary position. -
Complex Strabismus and Syndromes
Complex Strabismus & Syndromes Some patients exhibit complex combinations of vertical, horizontal, and torsional strabismus. Dr. Shin treats patients with complex strabismus arising from, but not limited to, thyroid-related eye disease, stroke, or brain tumors as well as strabismic disorders following severe orbital and head trauma. The following paragraphs describe specific ocular conditions marked by complex strabismus. Duane Syndrome Duane syndrome represents a constellation of eye findings present at birth that results from an absent 6th cranial nerve nucleus and an aberrant branch of the 3rd cranial nerve that innervates the lateral rectus muscle. Duane syndrome most commonly affects the left eye of otherwise healthy females. Duane syndrome includes several variants of eye movement abnormalities. In the most common variant, Type I, the eye is unable to turn outward to varying degrees from the normal straight ahead position. In addition, when the patient tries to look straight ahead, the eyes may cross. This may lead a person with Duane syndrome to turn his/her head toward one side while viewing objects in front of them in order to better align the eyes. When the involved eye moves toward the nose, the eye retracts slightly back into the eye socket causing a narrowing of the opening between the eyelids. In Type II, the affected eye possesses limited ability to turn inward and is generally outwardly turning. In Type III, the eye has limited inward and outward movement. All three types are characterized by anomalous co-contraction of the medial and lateral rectus muscles, so when the involved eye moves towards the nose, the globe pulls back into the orbit and the vertical space between the eyelids narrows. -
May Clinical-Sharma (Pdf 143KB)
CLINICAL New-onset ptosis initially diagnosed as conjunctivitis Neil Sharma, Ju-Lee Ooi, Rebecca Davie, Palvi Bhardwaj Case Question 2 divides into superior and inferior branches, Joe, 66 years of age, was referred with What are the causes of an isolated which enter the orbit through the superior a 2-week history of a right upper eyelid oculomotor nerve palsy? orbital fissure. abnormality. He complained of associated The superior division innervates diplopia initially, but this subjectively Question 3 the levator palpebrae superioris and improved after a few days as the eye What clinical features raise the index of superior rectus, while the inferior division became more difficult to open. He had a suspicion of a compressive lesion? mild, intermittent headache for 4 weeks, relieved with oral paracetamol. There Question 4 were no other neurological symptoms. What investigation does this patient He had no other symptoms of giant cell urgently require? arteritis. His past medical history included hypercholesterolaemia for which he was Case continued taking regular statin therapy. He was an Joe was referred for an urgent CT ex-smoker with a 40 pack-year history. angiogram. This showed a large Initially, Joe’s general practitioner (GP) unruptured posterior communicating diagnosed conjunctivitis and prescribed artery aneurysm (Figure 1). He was chloramphenicol drops four times daily. admitted under the neurosurgical team. One week later the symptoms had not improved and Joe was referred to the eye Question 5 Figure 1. 3-dimensional reconstruction image clinic complaining of increasing right What are the surgical options for dealing of the CT-angiogram showing an unruptured periocular pain. -
Sixth Nerve Palsy
COMPREHENSIVE OPHTHALMOLOGY UPDATE VOLUME 7, NUMBER 5 SEPTEMBER-OCTOBER 2006 CLINICAL PRACTICE Sixth Nerve Palsy THOMAS J. O’DONNELL, MD, AND EDWARD G. BUCKLEY, MD Abstract. The diagnosis and etiologies of sixth cranial nerve palsies are reviewed along with non- surgical and surgical treatment approaches. Surgical options depend on the function of the paretic muscle, the field of greatest symptoms, and the likelihood of inducing diplopia in additional fields by a given procedure. (Comp Ophthalmol Update 7: xx-xx, 2006) Key words. botulinum toxin (Botox®) • etiology • sixth nerve palsy (paresis) Introduction of the cases, the patients had hypertension and/or, less frequently, Sixth cranial nerve (abducens) palsy diabetes; 26% were undetermined, is a common cause of acquired 5% had a neoplasm, and 2% had an horizontal diplopia. Signs pointing aneurysm. It was noted that patients toward the diagnosis are an who had an aneurysm or neoplasm abduction deficit and an esotropia had additional neurologic signs or increasing with gaze toward the side symptoms or were known to have a of the deficit (Figure 1). The diplopia cancer.2 is typically worse at distance. Measurements are made with the Anatomical Considerations uninvolved eye fixing (primary deviation), and will be larger with the The sixth cranial nerve nuclei are involved eye fixing (secondary located in the lower pons beneath the deviation). A small vertical deficit may fourth ventricle. The nerve on each accompany a sixth nerve palsy, but a side exits from the ventral surface of deviation over 4 prism diopters the pons. It passes from the posterior Dr. O’Donnell is affiliated with the should raise the question of cranial fossa to the middle cranial University of Tennessee Health Sci- additional pathology, such as a fourth fossa, ascends the clivus, and passes ence Center, Memphis, TN. -
Management of Vith Nerve Palsy-Avoiding Unnecessary Surgery
MANAGEMENT OF VITH NERVE PALSY-AVOIDING UNNECESSARY SURGERY P. RIORDAN-E VA and J. P. LEE London SUMMARY for unrecovered VIth nerve palsy must involve a trans Unresolved Vlth nerve palsy that is not adequately con position procedure3.4. The availability of botulinum toxin trolled by an abnormal head posture or prisms can be to overcome the contracture of the ipsilateral medial rectus 5 very suitably treated by surgery. It is however essential to now allows for full tendon transplantation techniques -7, differentiate partially recovered palsies, which are with the potential for greatly increased improvements in amenable to horizontal rectus surgery, from unrecovered final fields of binocular single vision, and deferment of palsies, which must be treated initially by a vertical any necessary surgery to the medial recti, which is also muscle transposition procedure. Botulinum toxin is a likely to improve the final outcome. valuable tool in making this distinction. It also facilitates This study provides definite evidence, from a large full tendon transposition in unrecovered palsies, which series of patients, of the potential functional outcome from appears to produce the best functional outcome of all the the surgical treatment of unresolved VIth nerve palsy, transposition procedures, with a reduction in the need for together with clear guidance as to the forms of surgery that further surgery. A study of the surgical management of 12 should be undertaken in specific cases. The fundamental patients with partially recovered Vlth nerve palsy and 59 role of botulinum toxin in establishing the degree of lateral patients with unrecovered palsy provides clear guidelines rectus function and hence the correct choice of initial sur on how to attain a successful functional outcome with the gery, and as an adjunct to transposition surgery for unre minimum amount of surgery. -
CN Palsy Update for the Primary Care OD 2018
CN Palsy Update for the Primary Care OD 2018 Christopher Wolfe, OD, FAAO, Dipl. ABO Oculomotor Nerve Palsy (CN 3) Signs and Symptoms The primary symptom is diplopia caused by misalignment of the visual axes, the pattern of image separation (horizontal, vertical, oblique) is the key to diagnosing which particular ocular motor cranial nerve (and extraocular muscle) is involved. With a complete unilateral third cranial nerve palsy, the involved eye is deviated "down and out" with partial or complete ptosis. • Pupillary dilatation (involvement) can cause: • Anisocoria (greater in the light) • Symptomatic glare in bright light • Blurred vision for near objects – due to accommodation deficit A painful pupil-involved oculomotor nerve palsy may result from a life-threatening intracranial aneurysm. Prompt diagnosis of an oculomotor nerve palsy is critical to ensure appropriate evaluation and management. Pathophysiology The clinical features of a CN 3 palsy are due to the anatomical relationship of the various branches of the oculomotor nerve and the location of the problem causing the palsy. These anatomical sites can be broken down into: • Nuclear portion: The axons start on each side of the midbrain. Each of the axon origination within the midbrain that travel to a specific extraocular and intraocular muscle can be further classified into a subnucleus. • Fascicular intraparenchymal midbrain portion: This portion of the oculomotor nerve travels courses ventrally (forward) from the nucleus, through the red nucleus, and emerges medially from the cerebral peduncle. • Subarachnoid portion: The nerve then travels in the subarachnoid space anterior to the midbrain and near the posterior communicating artery. An aneurysm at the INTRAOCULAR junction between the posterior communicating artery and INNERVATION the internal carotid artery is one of the critical reasons to differentiate a pupil involved CN 3 palsy. -
Congenital Oculomotor Palsy: Associated Neurological and Ophthalmological Findings
CONGENITAL OCULOMOTOR PALSY: ASSOCIATED NEUROLOGICAL AND OPHTHALMOLOGICAL FINDINGS M. D. TSALOUMAS1 and H. E. WILLSHA W2 Birmingham SUMMARY In our group of patients we found a high incidence Congenital fourth and sixth nerve palsies are rarely of neurological abnormalities, in some cases asso associated with other evidence of neurological ahnor ciated with abnormal findings on CT scanning. mality, but there have been conflicting reports in the Aberrant regeneration, preferential fixation with literature on the associations of congenital third nerve the paretic eye, amblyopia of the non-involved eye palsy. In order to clarify the situation we report a series and asymmetric nystagmus have all been reported as 1 3 7 of 14 consecutive cases presenting to a paediatric associated ophthalmic findings. - , -9 However, we tertiary referral service over the last 12 years. In this describe for the first time a phenomenon of digital lid series of children, 5 had associated neurological elevation to allow fixation with the affected eye. Two abnormalities, lending support to the view that con children demonstrated this phenomenon and in each genital third nerve palsy is commonly a manifestation of case the accompanying neurological defect was widespread neurological damage. We also describe for profound. the first time a phenomenon of digital lid elevation to allow fixation with the affected eye. Two children demonstrated this phenomenon and in each case the PATIENTS AND METHODS accompanying neurological defect was profound. The Fourteen children (8 boys, 6 girls) with a diagnosis of frequency and severity of associated deficits is analysed, congenital oculomotor palsy presented to our paed and the mechanism of fixation with the affected eye is iatric tertiary referral centre over the 12 years from discussed. -
Canine Red Eye Elizabeth Barfield Laminack, DVM; Kathern Myrna, DVM, MS; and Phillip Anthony Moore, DVM, Diplomate ACVO
PEER REVIEWED Clinical Approach to the CANINE RED EYE Elizabeth Barfield Laminack, DVM; Kathern Myrna, DVM, MS; and Phillip Anthony Moore, DVM, Diplomate ACVO he acute red eye is a common clinical challenge for tion of the deep episcleral vessels, and is characterized general practitioners. Redness is the hallmark of by straight and immobile episcleral vessels, which run Tocular inflammation; it is a nonspecific sign related 90° to the limbus. Episcleral injection is an external to a number of underlying diseases and degree of redness sign of intraocular disease, such as anterior uveitis and may not reflect the severity of the ocular problem. glaucoma (Figures 3 and 4). Occasionally, episcleral Proper evaluation of the red eye depends on effective injection may occur in diseases of the sclera, such as and efficient diagnosis of the underlying ocular disease in episcleritis or scleritis.1 order to save the eye’s vision and the eye itself.1,2 • Corneal Neovascularization » Superficial: Long, branching corneal vessels; may be SOURCE OF REDNESS seen with superficial ulcerative (Figure 5) or nonul- The conjunctiva has small, fine, tortuous and movable vessels cerative keratitis (Figure 6) that help distinguish conjunctival inflammation from deeper » Focal deep: Straight, nonbranching corneal vessels; inflammation (see Ocular Redness algorithm, page 16). indicates a deep corneal keratitis • Conjunctival hyperemia presents with redness and » 360° deep: Corneal vessels in a 360° pattern around congestion of the conjunctival blood vessels, making the limbus; should arouse concern that glaucoma or them appear more prominent, and is associated with uveitis (Figure 4) is present1,2 extraocular disease, such as conjunctivitis (Figure 1). -
Eleventh Edition
SUPPLEMENT TO April 15, 2009 A JOBSON PUBLICATION www.revoptom.com Eleventh Edition Joseph W. Sowka, O.D., FAAO, Dipl. Andrew S. Gurwood, O.D., FAAO, Dipl. Alan G. Kabat, O.D., FAAO Supported by an unrestricted grant from Alcon, Inc. 001_ro0409_handbook 4/2/09 9:42 AM Page 4 TABLE OF CONTENTS Eyelids & Adnexa Conjunctiva & Sclera Cornea Uvea & Glaucoma Viitreous & Retiina Neuro-Ophthalmic Disease Oculosystemic Disease EYELIDS & ADNEXA VITREOUS & RETINA Blow-Out Fracture................................................ 6 Asteroid Hyalosis ................................................33 Acquired Ptosis ................................................... 7 Retinal Arterial Macroaneurysm............................34 Acquired Entropion ............................................. 9 Retinal Emboli.....................................................36 Verruca & Papilloma............................................11 Hypertensive Retinopathy.....................................37 Idiopathic Juxtafoveal Retinal Telangiectasia...........39 CONJUNCTIVA & SCLERA Ocular Ischemic Syndrome...................................40 Scleral Melt ........................................................13 Retinal Artery Occlusion ......................................42 Giant Papillary Conjunctivitis................................14 Conjunctival Lymphoma .......................................15 NEURO-OPHTHALMIC DISEASE Blue Sclera .........................................................17 Dorsal Midbrain Syndrome ..................................45