Constraints: a Uniform Approach to Aliasing and Typing

Total Page:16

File Type:pdf, Size:1020Kb

Constraints: a Uniform Approach to Aliasing and Typing Constraints: A Uniform Approach to Aliasing and Typing Leslie Lamport * Fred B. Schneider+ SRI International Cornell University Abstract between the values of variables, with no implication about storage allocation, allows more general kinds of aliasing and A constraint is a relation among program variables that is leads to a simple method for reasoning about aliasing. maintained throughout execution. Type declarations and To express a more general form of aliasing, we introduce a very general form of aliasing can be expressed as con- the var statement. To illustrate its use, suppose a pro- straints. A proof system based upon the interpretation of gram computes a temperature, and that some times it is Hoare triples as temporal logic formulas is given for rea- convenient to refer to that temperature in degrees Fahren- soning about programs with constraints. The proof system heit and other times in degrees Celsius. We will write the is shown to be sound and relatively complete, and example statement program proofs are given. var f, c : real constraints / = 9 * c/5 + 32 in S 1 Introduction which declares variables / and c within statement S to be of type real and to be oliosed, so that if the value of f is Type declarations and aliasing relations have traditionally a temperature in degrees Fahrenheit, then the value of c been thought of as unrelated concepts. However, both is that t,emperature in degrees Celsius. Changing / causes can be viewed as specifying properties that do not change a corresponding change to c, and vice-versa. Notice that during program execution. This view leads to a uniform this more general form of aliasing cannot be implemented method for reasoning about types and aliasing in which simply by allocating overlapping memory locations to j and the usual Hoare logic triples are regarded as temporal logic c. formulas. The constraints clause of a var statement is a directive Aliasing two variables z and y means they always have that a specified predicate-in our example, the aliasing re- the same value. This is usually implemented by allocating lation / = 9*c/5+32-b e maintained as an invariant, which the same memory location to z and y, thereby ensuring means that execution is aborted if the predicate becomes that both variables are changed whenever either is assigned false. a new value. However, they could be allocated separate A type declaration can also be viewed as an invariant., so memory locations and both updated on an assignment to it can be specified in a constraints clause. If we take the either. viewing aliasing as defining certain relationships view that the type of a variable defines the set of values *Work supported in part by the National Science Foundationunder that variable can have, then declaring a variable ,* to be of grant numberMCS-8104459 and by the Army ResearchOffice under type real is the same as requiring that the prerlicate / E R grant number DAAG29-83-K-0119. Current address: SRI Intcrna- be true throughout execution, where R is the set of real tional, 333 Ravenswood Ave., Menlo Park, CA 94025. numbers.’ Thus, we could eliminate the “: real” from the ‘Research supported in part by NSF grant DCR-8320274and by a above var statement and add the constraint 2, y E R. Since Faculty Development Award from IBM Corp. Current address: De- doing so would make the statement less readable, we will partment of Computer Science, Cornell University, Ithaca, NY 14853. retain the customary syntax for type declarations. Aliasing and typing can be viewed in terms of constraints Permission to copy without fee all or part of this materialis granted because they are static properties. While dynamic proper- provided that the topics arc not made or distributed for direct commercialadvantage, the ACM copyright notice and the title of the ties, such as the values of variables, can be changed by publication and its date appear, and notice is given that copying is by execution of a program statement, static properties can- permissionof the Association for Computing Machinery. To copy not. (In most languages, like the one considered here, a otherwise, or to republish, requires a fee and/or specific permission. ‘For simplicity, we assume R is the in6nite set that mathematicians call the real numbers, thereby avoiding tbe problems that round-off “1984 ACM O-89791-147-4/85/001/0205 $00.75 errors would introduce tor reasooing about equality of expressions. ‘Lo5 declaration is not a complete statement but rather part of programming language with primitives to perform buffered a statement.) The methods we develop for reasoning about message-passing, messages sent but not yet delivered are aliasing and types can be used to reason about any static part of the state that must be described by implicit vari- property. ables. (The p and u multisets of 1181 are such variables.) Returning to aliasing, consider a more complicated ex- Implicit variables often involve complex aliasing relations. ample in which a program refers a point in terms of both For some message-passing schemes, a channel is modelled its Cartesian coordinates z, y and its polar coordinates t‘, 0. by having an implicit variable in a sender aliased to an im- variables z, y, r, and 0 are declared as follows. plicit variable in the receiver. Even more complex aliasing occurs when a channel emanating from a network is aliased var 2,y,t: real, B : [O, 2 * 7r) to the union of the channels emanating from its compo- constraints z = r * cos(6) and y = r * sin(B) nents. The CSP language [IO] supports such a hierarchical in S channel-naming scheme. (The type declaration for 6’ states that it is a real in the In the Generalized Hoare Logic (GHL) [ 12,141, a logic for range 0 5 6 < 27r.) We would like this declaration to mean concurrent programs, one must reason about state compo- that when z is changed, r and 8 are changed according nents that describe the control state. In the original pre- to the constraints, but y is not. However, the fact that y sentation of GHL, the control state was modelled by al, in, should not change is based upon the knowledge that z and and alter predicates, where at(S) is true when control is y are independent coordinates, which is not something dis- at the entry point of statement S, after(S) is true when cernible in the above statement. An additional constraint control is at the exit point of statement S, and in(S) is is needed to specify that assigning to z should not change true when at(S) is true or control is at a component of S. the value of y and vice-versa; we write this constraint as Axioms were given to describe the relations among these 2 I y. Similarly, r and B should be independent, so as- predicates. Thus, if S is the statement Sr; S’s, the axioms signing a value to either r or 8 does not change the other. of GHL state: Hence, the additional constraint r I B is needed. The fol- at(S) I at(&) lowing declaration of 2, y, r, and 8 gives the desired aliasing relations. alter(S) E a/ter(Sz) in(S) E at(S) V in($) V in(&) var z, y,r : real, e : [0,2* n) ajter(St) i at(&) constraints z = r * cos(8) and y = r * sin(e) andzIyandrl0 GHL included ad hoc rules for reasoning about these control in S predicates. However, by viewing the control predicates as Finally, observe that the var statement can express forms implicit variables, and considering the above relations not of aliasing traditionally implemented by overlapping stor- as equality of predicates but as aliasing relations among age. The statement variables, we can reason about the control state with ex- actly the same rules used to reason about the values of ordi- var full, right-4 : natural nary program variables. This is described in detail in [i5]. constraints righf.4 = jufl mod 16 in S 2 Primitives for Constrained aliases variable righf-4 to the right-most four bits of jull, where natural denotes the nonnegative integers. Moreover, Execution the decl:lration ensures the desired semantics even on a A var statement, like the one for the Cartesian/polar co- computer where integers are not stored in binary. ordinate example, specifies three things: It is probably impossible for a compiler to handle our form of aliasing in all its generality. W’hile the Fahren- l The names of new variables-z, y, r, and 0 in the heit/Celsius and jufl/righf.4 examples do not pose difficult example. compiling problems, consider what happens if the follow- ing statements appear in the body of the above var 2, y, r, B l Constraints the new variables must satisfy, including statement: those given explicitly by the constraints clause and those implicit in the type declarations. In the example, read(z, y) ; write(O) the constraints are: Input. values a,6 with a # 0 produce the output value XER 2 = r t c0s(e) arctan(b/a)-something no present-day compiler is likely YCR y = t * sin(l) to figure out. rcR ZlY We are interested in our general form of aliasing in order ee hose<2f de to reason about implicit rariables-variables representing portions of the program state that are not directly vis- l Other independence constraints invohing the new vari- ible to the programmer. For example, in a roncurrrnt ables. In the example, there is the implicit assumption that z, y, r, and B are not abased to any other vari- z = r * cc@) and y = r * sin(e) ables, except perhaps variables declared in the body andzIyandrlB of the var statement.
Recommended publications
  • Using the GNU Compiler Collection (GCC)
    Using the GNU Compiler Collection (GCC) Using the GNU Compiler Collection by Richard M. Stallman and the GCC Developer Community Last updated 23 May 2004 for GCC 3.4.6 For GCC Version 3.4.6 Published by: GNU Press Website: www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 59 Temple Place Suite 330 Tel 617-542-5942 Boston, MA 02111-1307 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being \GNU General Public License" and \Funding Free Software", the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Programming Languages Supported by GCC ............ 3 2 Language Standards Supported by GCC ............... 5 3 GCC Command Options .........................
    [Show full text]
  • Memory Tagging and How It Improves C/C++ Memory Safety Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich, Dmitry Vyukov Google February 2018
    Memory Tagging and how it improves C/C++ memory safety Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich, Dmitry Vyukov Google February 2018 Introduction 2 Memory Safety in C/C++ 2 AddressSanitizer 2 Memory Tagging 3 SPARC ADI 4 AArch64 HWASAN 4 Compiler And Run-time Support 5 Overhead 5 RAM 5 CPU 6 Code Size 8 Usage Modes 8 Testing 9 Always-on Bug Detection In Production 9 Sampling In Production 10 Security Hardening 11 Strengths 11 Weaknesses 12 Legacy Code 12 Kernel 12 Uninitialized Memory 13 Possible Improvements 13 Precision Of Buffer Overflow Detection 13 Probability Of Bug Detection 14 Conclusion 14 Introduction Memory safety in C and C++ remains largely unresolved. A technique usually called “memory tagging” may dramatically improve the situation if implemented in hardware with reasonable overhead. This paper describes two existing implementations of memory tagging: one is the full hardware implementation in SPARC; the other is a partially hardware-assisted compiler-based tool for AArch64. We describe the basic idea, evaluate the two implementations, and explain how they improve memory safety. This paper is intended to initiate a wider discussion of memory tagging and to motivate the CPU and OS vendors to add support for it in the near future. Memory Safety in C/C++ C and C++ are well known for their performance and flexibility, but perhaps even more for their extreme memory unsafety. This year we are celebrating the 30th anniversary of the Morris Worm, one of the first known exploitations of a memory safety bug, and the problem is still not solved.
    [Show full text]
  • Statically Detecting Likely Buffer Overflow Vulnerabilities
    Statically Detecting Likely Buffer Overflow Vulnerabilities David Larochelle [email protected] University of Virginia, Department of Computer Science David Evans [email protected] University of Virginia, Department of Computer Science Abstract Buffer overflow attacks may be today’s single most important security threat. This paper presents a new approach to mitigating buffer overflow vulnerabilities by detecting likely vulnerabilities through an analysis of the program source code. Our approach exploits information provided in semantic comments and uses lightweight and efficient static analyses. This paper describes an implementation of our approach that extends the LCLint annotation-assisted static checking tool. Our tool is as fast as a compiler and nearly as easy to use. We present experience using our approach to detect buffer overflow vulnerabilities in two security-sensitive programs. 1. Introduction ed a prototype tool that does this by extending LCLint [Evans96]. Our work differs from other work on static detection of buffer overflows in three key ways: (1) we Buffer overflow attacks are an important and persistent exploit semantic comments added to source code to security problem. Buffer overflows account for enable local checking of interprocedural properties; (2) approximately half of all security vulnerabilities we focus on lightweight static checking techniques that [CWPBW00, WFBA00]. Richard Pethia of CERT have good performance and scalability characteristics, identified buffer overflow attacks as the single most im- but sacrifice soundness and completeness; and (3) we portant security problem at a recent software introduce loop heuristics, a simple approach for engineering conference [Pethia00]; Brian Snow of the efficiently analyzing many loops found in typical NSA predicted that buffer overflow attacks would still programs.
    [Show full text]
  • Aliasing Restrictions of C11 Formalized in Coq
    Aliasing restrictions of C11 formalized in Coq Robbert Krebbers Radboud University Nijmegen December 11, 2013 @ CPP, Melbourne, Australia int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x *p; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias It can still be called with aliased pointers: x union { int x; float y; } u; y u.x = 271; return h(&u.x, &u.y); &u.x &u.y C89 allows p and q to be aliased, and thus requires it to return 271 C99/C11 allows type-based alias analysis: I A compiler
    [Show full text]
  • Teach Yourself Perl 5 in 21 Days
    Teach Yourself Perl 5 in 21 days David Till Table of Contents: Introduction ● Who Should Read This Book? ● Special Features of This Book ● Programming Examples ● End-of-Day Q& A and Workshop ● Conventions Used in This Book ● What You'll Learn in 21 Days Week 1 Week at a Glance ● Where You're Going Day 1 Getting Started ● What Is Perl? ● How Do I Find Perl? ❍ Where Do I Get Perl? ❍ Other Places to Get Perl ● A Sample Perl Program ● Running a Perl Program ❍ If Something Goes Wrong ● The First Line of Your Perl Program: How Comments Work ❍ Comments ● Line 2: Statements, Tokens, and <STDIN> ❍ Statements and Tokens ❍ Tokens and White Space ❍ What the Tokens Do: Reading from Standard Input ● Line 3: Writing to Standard Output ❍ Function Invocations and Arguments ● Error Messages ● Interpretive Languages Versus Compiled Languages ● Summary ● Q&A ● Workshop ❍ Quiz ❍ Exercises Day 2 Basic Operators and Control Flow ● Storing in Scalar Variables Assignment ❍ The Definition of a Scalar Variable ❍ Scalar Variable Syntax ❍ Assigning a Value to a Scalar Variable ● Performing Arithmetic ❍ Example of Miles-to-Kilometers Conversion ❍ The chop Library Function ● Expressions ❍ Assignments and Expressions ● Other Perl Operators ● Introduction to Conditional Statements ● The if Statement ❍ The Conditional Expression ❍ The Statement Block ❍ Testing for Equality Using == ❍ Other Comparison Operators ● Two-Way Branching Using if and else ● Multi-Way Branching Using elsif ● Writing Loops Using the while Statement ● Nesting Conditional Statements ● Looping Using
    [Show full text]
  • User-Directed Loop-Transformations in Clang
    User-Directed Loop-Transformations in Clang Michael Kruse Hal Finkel Argonne Leadership Computing Facility Argonne Leadership Computing Facility Argonne National Laboratory Argonne National Laboratory Argonne, USA Argonne, USA [email protected] hfi[email protected] Abstract—Directives for the compiler such as pragmas can Only #pragma unroll has broad support. #pragma ivdep made help programmers to separate an algorithm’s semantics from popular by icc and Cray to help vectorization is mimicked by its optimization. This keeps the code understandable and easier other compilers as well, but with different interpretations of to optimize for different platforms. Simple transformations such as loop unrolling are already implemented in most mainstream its meaning. However, no compiler allows applying multiple compilers. We recently submitted a proposal to add generalized transformations on a single loop systematically. loop transformations to the OpenMP standard. We are also In addition to straightforward trial-and-error execution time working on an implementation in LLVM/Clang/Polly to show its optimization, code transformation pragmas can be useful for feasibility and usefulness. The current prototype allows applying machine-learning assisted autotuning. The OpenMP approach patterns common to matrix-matrix multiplication optimizations. is to make the programmer responsible for the semantic Index Terms—OpenMP, Pragma, Loop Transformation, correctness of the transformation. This unfortunately makes it C/C++, Clang, LLVM, Polly hard for an autotuner which only measures the timing difference without understanding the code. Such an autotuner would I. MOTIVATION therefore likely suggest transformations that make the program Almost all processor time is spent in some kind of loop, and return wrong results or crash.
    [Show full text]
  • Towards Restrict-Like Aliasing Semantics for C++ Abstract
    Document Number: N3988 Date: 2014-05-23 Authors: Hal Finkel, [email protected] Hubert Tong, [email protected] Chandler Carruth, [email protected], Clark Nelson, [email protected], Daveed Vandevoode, [email protected], Michael Wong, [email protected] Project: Programming Language C++, EWG Reply to: [email protected] Revision: 1 Towards restrict-like aliasing semantics for C++ Abstract This paper is a follow-on to N3635 after a design discussion with many compiler implementers at Issaquah, and afterwards by telecon, and specifically proposes a new alias_set attribute as a way to partition type-based aliasing to enable more fine grain control, effectively giving C++ a more complete restrict-like aliasing syntax and semantics. Changes from previous papers: N3988: this paper updates with syntax and semantics N3635: Outlined initial idea on AliasGroup which became alias_set. The alternative of newType was rejected as too heavy weight of a solution. 1. Problem Domain There is no question that the restrict qualifier benefits compiler optimization in many ways, notably allowing improved code motion and elimination of loads and stores. Since the introduction of C99 restrict, it has been provided as a C++ extension in many compilers. But the feature is brittle in C++ without clear rules for C++ syntax and semantics. Now with the introduction of C++11, functors are being replaced with lambdas and users have begun asking how to use restrict in the presence of lambdas. Given the existing compiler support, we need to provide a solution with well-defined C++ semantics, before use of some common subset of C99 restrict becomes widely used in combination with C++11 constructs.
    [Show full text]
  • Autotuning for Automatic Parallelization on Heterogeneous Systems
    Autotuning for Automatic Parallelization on Heterogeneous Systems Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften von der KIT-Fakultät für Informatik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Philip Pfaffe ___________________________________________________________________ ___________________________________________________________________ Tag der mündlichen Prüfung: 24.07.2019 1. Referent: Prof. Dr. Walter F. Tichy 2. Referent: Prof. Dr. Michael Philippsen Abstract To meet the surging demand for high-speed computation in an era of stagnat- ing increase in performance per processor, systems designers resort to aggregating many and even heterogeneous processors into single systems. Automatic paral- lelization tools relieve application developers of the tedious and error prone task of programming these heterogeneous systems. For these tools, there are two aspects to maximizing performance: Optimizing the execution on each parallel platform individually, and executing work on the available platforms cooperatively. To date, various approaches exist targeting either aspect. Automatic parallelization for simultaneous cooperative computation with optimized per-platform execution however remains an unsolved problem. This thesis presents the APHES framework to close that gap. The framework com- bines automatic parallelization with a novel technique for input-sensitive online autotuning. Its first component, a parallelizing polyhedral compiler, transforms implicitly data-parallel program parts for multiple platforms. Targeted platforms then automatically cooperate to process the work. During compilation, the code is instrumented to interact with libtuning, our new autotuner and second com- ponent of the framework. Tuning the work distribution and per-platform execu- tion maximizes overall performance. The autotuner enables always-on autotuning through a novel hybrid tuning method, combining a new efficient search technique and model-based prediction.
    [Show full text]
  • Program Sequentially, Carefully, and Benefit from Compiler Advances For
    Program Sequentially, Carefully, and Benefit from Compiler Advances for Parallel Heterogeneous Computing Mehdi Amini, Corinne Ancourt, Béatrice Creusillet, François Irigoin, Ronan Keryell To cite this version: Mehdi Amini, Corinne Ancourt, Béatrice Creusillet, François Irigoin, Ronan Keryell. Program Se- quentially, Carefully, and Benefit from Compiler Advances for Parallel Heterogeneous Computing. Magoulès Frédéric. Patterns for Parallel Programming on GPUs, Saxe-Coburg Publications, pp. 149- 169, 2012, 978-1-874672-57-9 10.4203/csets.34.6. hal-01526469 HAL Id: hal-01526469 https://hal-mines-paristech.archives-ouvertes.fr/hal-01526469 Submitted on 30 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Program Sequentially, Carefully, and Benefit from Compiler Advances for Parallel Heterogeneous Computing Mehdi Amini1;2 Corinne Ancourt1 B´eatriceCreusillet2 Fran¸coisIrigoin1 Ronan Keryell2 | 1MINES ParisTech/CRI, firstname.lastname @mines-paristech.fr 2SILKAN, firstname.lastname @silkan.com September 26th 2012 Abstract The current microarchitecture trend leads toward heterogeneity. This evolution is driven by the end of Moore's law and the frequency wall due to the power wall. Moreover, with the spreading of smartphone, some constraints from the mobile world drive the design of most new architectures.
    [Show full text]
  • Alias-Free Parameters in C Using Multibodies Medhat Assaad Iowa State University
    Computer Science Technical Reports Computer Science 7-2001 Alias-free parameters in C using multibodies Medhat Assaad Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons, and the Theory and Algorithms Commons Recommended Citation Assaad, Medhat, "Alias-free parameters in C using multibodies" (2001). Computer Science Technical Reports. 301. http://lib.dr.iastate.edu/cs_techreports/301 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Alias-free parameters in C using multibodies Abstract Aliasing may cause problems for both optimization and reasoning about programs. Since static alias analysis is expensive, and sometimes, even impossible, compilers tend to be conservative. This usually leads to missing some optimization opportunities. Furthermore, when trying to understand code, one must consider all possible aliasing patterns. This can make reasonning about code difficult and non-trivial. We have implemented an approach for having alias-free parameters in C. This approach allows aliasing between the arguments at the call site, but guarantees that there will be no aliasing between arguments and between arguments and globals inside procedure bodies. This is done by having multiple bodies, up to one for each aliasing pattern. Procedure calls will be dispatched to the body that matches the aliasing pattern at the call site. By having alias-free parameters in the bodies, good optimization can be achieved.
    [Show full text]
  • Aliasing Contracts, a Novel, Dynamically-Checked Alias Protection Scheme for Object- Oriented Programming Languages
    UCAM-CL-TR-880 Technical Report ISSN 1476-2986 Number 880 Computer Laboratory Access contracts: a dynamic approach to object-oriented access protection Janina Voigt February 2016 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 http://www.cl.cam.ac.uk/ c 2016 Janina Voigt This technical report is based on a dissertation submitted May 2014 by the author for the degree of Doctor of Philosophy to the University of Cambridge, Trinity College. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: http://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Abstract In object-oriented (OO) programming, variables do not contain objects directly but ad- dresses of objects on the heap. Thus, several variables can point to the same object; we call this aliasing. Aliasing is a central feature of OO programming that enables efficient sharing of objects across a system. This is essential for the implementation of many programming idioms, such as iterators. On the other hand, aliasing reduces modularity and encapsulation, making programs difficult to understand, debug and maintain. Much research has been done on controlling aliasing. Alias protection schemes (such as Clarke et al.’s influential ownership types) limit which references can exist, thus guar- anteeing the protection of encapsulated objects. Unfortunately, existing schemes are significantly restrictive and consequently have not been widely adopted by software de- velopers. This thesis makes three contributions to the area of alias protection. Firstly, it pro- poses aliasing contracts, a novel, dynamically-checked alias protection scheme for object- oriented programming languages.
    [Show full text]
  • Flexible Alias Protection
    Flexible Alias Protection James Noble1, Jan Vitek2, and John Potter1 1 Microsoft Research Institute, Macquarie University, Sydney kjx,[email protected] 2 Object Systems Group, Universit´e de Gen`eve, Geneva. [email protected] Abstract. Aliasing is endemic in object oriented programming. Because an object can be modified via any alias, object oriented programs are hard to understand, maintain, and analyse. Flexible alias protection is a conceptual model of inter-object relationships which limits the visibility of changes via aliases, allowing objects to be aliased but mitigating the undesirable effects of aliasing. Flexible alias protection can be checked statically using programmer supplied aliasing modes and imposes no run- time overhead. Using flexible alias protection, programs can incorporate mutable objects, immutable values, and updatable collections of shared objects, in a natural object oriented programming style, while avoiding the problems caused by aliasing. 1 Introduction I am who I am; I will be who I will be. Object identity is the foundation of object oriented programming. Objects are useful for modelling application domain abstractions precisely because an ob- ject's identity always remains the same during the execution of a program | even if an object's state or behaviour changes, the object is always the same object, so it always represents the same phenomenon in the application domain [30]. Object identity causes practical problems for object oriented programming. In general, these problems all reduce to the presence of aliasing | that a par- ticular object can be referred to by any number of other objects [20]. Problems arise because objects' state can change, while their identity remains the same.
    [Show full text]