Les Traces De Pas De Dinosaures Et Autres Archosaures Du Lias Inferieur Des Grands Causses, Sud De La France

Total Page:16

File Type:pdf, Size:1020Kb

Les Traces De Pas De Dinosaures Et Autres Archosaures Du Lias Inferieur Des Grands Causses, Sud De La France LES TRACES DE PAS DE DINOSAURES ET AUTRES ARCHOSAURES DU LIAS INFERIEUR DES GRANDS CAUSSES, SUD DE LA FRANCE par Georges DEMATHIEU*, Georges GAND*, Jacques SCIAU** et Pierre FREYTET*** avec la contribution de Jacques GARRIC**** SOMMAIRE Page Résumé, Abstract 3,4 Introduction 5 1. Situation, organisation et âges des formations ichnitifères .................. , ... , ..... 6 A. Situation géographique ..................................................... 6 B. Localisation des niveaux d'ichnites dans la série du Lias inférieur .......... , .... , . , .. 6 C. Ages de la série à ichnites ................................................... 9 II. Les gîtes à ichnites : présentation et détermination des empreintes ..................... Il A. Définitions relatives aux empreintes et aux pistes ................................. Il 1. Morphologies et statistiques descriptives ...................................... 12 2. Analyses multivariées (ACP, AD et AFC) des variables-caractères des ichnoespèces de référence ................................................. 12 a. ACP, AD et AFC des variables-caractères (valeurs brutes) ....................... 15 b. ACP, AD et AFC des rapports des variables-caractères .......................... 17 C. Résultats .................................................................. 18 1. A l'échelle de chaque site ................ " .................................. 18 2. A l'échelle des Causses ..................................................... 63 a. Données des analyses multivariées. Comparaison avec les critères morphologiques 63 L'AFC et l'AD ....................................................... 65 * UMR 5561 du CNRS: Biogéosciences, Université de Bourgogne, Centre des Sciences de la Terre, 6 Bd Gabriel, 21000 Dijon (France); e-mail: [email protected] ** 643 avenue Kennedy, 12100 Millau (France). *** Laboratoire de Paléobotanique et de Paléoécologie, Université Pierre et Marie Curie, Paris VI, 75005 Paris et 41 rue des Vaux Mourants, 91370 Verrières-les-Buissons. **** 16 rue des Azalées, la Chamberte, 34070 Montpellier. Mots-clés: Traces dinosauroïdes, analyses statistiques, Stratigraphie, paléoenvironnements, Hettango­ Sinémurien, Grands-Causses, France Key-words: Dinosauroid footprints, statistical results, ichnostratigraphy, paleoenvironments, Hettangian­ Sinemurian. Grands-Causses, France Palaeovertebrata, Montpellier, 31 (1-4): 1-143,69 fig., 30 tabL. 20 pl. (Reçu le 14 Décembre 2001, accepté le 25 Juillet 2002, publié le 15 Décembre 2002) b. Données concernant les intervalles de confiance des moyennes des rapports de longueurs. 68 c. Bilan .............................................. , . 71 D. Comparaison avec les autres gîtes du Lias inférieur , ........ , , ..... , .. ' .......... , . 71 1. Lias français .................................. , ........... , . 7 1 2. Autres contrées ......... , ........... , .................... , . , . 74 a. Hettangien du Massachusetts et du Connecticut .... , ................... , . 74 b. Lias inférieur du Colorado, de Hongrie, d'Iran, du Maroc, d'Italie et de Pologne 75 III. Ichnologie systématique et attributions paléontologiques . 77 A. Ichnologie ................................... , ....................... , . 77 1. Traces crocodiloïdes; ichnogenre Batrachopl/s HITCHCOCK, 1845 . 77 2. Traces dinosauroïdes ....... , . , .... , . 78 a. Ichnogenre Grallator HITCHCOCK, 1858, émendé dans ce travail .................. , 78 al. Grallator variabilis LAPPARENT de & MONTENAT, 1967 . 79 a2. Gral/ator sallclierensis DEMATHIEU & SCIAU, 1992 ' . 79 a3. Grallator lescl/rei DEMATHIEU, 1990 .. , ......... , ............ , ..... , . 80 a4. Grallator minl/scl/ll/s (HITCHCOCK, 1858), émendé dans ce travail . 81 b. Ichnogeme Dilophosal/ripl/s WELLES, 1971 . , . 82 c. Ichnogenre El/brontes HITCHCOCK, 1845 ........................ , ........... , 83 Ichnoespèce-type : EubrollIes gigante//S (HITCHCOCK, 1845) . 83 d. cf. Moraesichnium . 84 e. Principaux caractères permettant de différencier les ichnoespèces G. variabilis, G. sauclierensis, G. Lescurei, G. miullsculus, E. gigallteus et Dilophosauripus williams; 85 3, traces ornithoïdes .............................. , ...... , ..... , ........ , . 86 a. Omithopl/sjabrei nov. ichnosp.; Omithoplls sp. 86 b. cf. Trisauropodiscus et/ou cf. Anomoepus . 87 4. Incertae Sedis ................................. , . 87 B. Essais d'attribution paléontologique ... , ...................... , . 87 1. Les auteurs des traces de pieds pentadactyles: Batrachopus delVeyi (HITCHCOCK, 1843) .... , ........................... , . 87 2. Les auteurs des traces de pieds tridactyles: Théropodes ou Ornithischiens ? ....... , . 88 a. Cas des traces tridactyles Gral/ator, Dilophosauripl/s et Elibrontes . 88 al. Comparaison entre la structure osseuse des squelettes du Lias et celle déduites des ichnites, structure des griffes et angulation des orteils II-IV ......... , . 88 a2. Comparaison ostéométrique des phalanges pédieuses déduites des traces et mesurés sur les squelettes , ....... , , . , ...... , ..... , . 90 b. Les auteurs de Gral/ator, d'El/brontes et de Dilophosallriplls des Causses appartenaient-ils à une même espèce? . 95 c. Cas de cf. Moraesicllllillm . .. .. .. .. .. ....... ,......................... 96 3. Les auteurs des traces de pieds tri et/ou tétradactyles Omithoplls jabrei nov ichnosp. : Théropodes aviformes ? ....... , . 97 4. Silhouettes et dimensions des Dinosaures caussenards estimées à partir des éléments de la piste. Comparaisons avec les squelettes ............... , . 97 a. Les Théropodes : ichnopoïètes de Grallator, Dilophosallripus et El/brontes . 97 b. Les ichnopoïètes de Omithopus jabrei nOv ichnosp. 99 IV. Conséquences stratigraphiques, paléoenvironnementales et paléobiologiques . 99 A. Conséquences stratigraphiques ............ , .. , , .................... , .. , . , , . 99 1. Répartition verticale ............... , ...................... , . 99 2. Comparaison avec les ichnozones comprises du Trias supérieur au Pliensbachien . 99 2 B. Conséquences paléozoologiques ............................................. 100 C. Les paléoenvironnements physique et biologique; le climat ........................ lOI 1. Le paysage physique ...................................................... 101 a. Données sédimentologiques ............................................. lOI b. Données déduites de l'étude pétrographique des aires à empreintes .............. lOI 2. Le paysage biologique ............................................... 107 a. Données relatives aux invertébrés et à la végétation .......... , , ........ , ..... 107 b. Données déduites de l'étude des surfaces à traces de Reptiles. Essai de paléobiologie dans le "marais maritime" ......................... , ......................... ,. 108 c. Problème posé par l'absence (actuelle ?) des traces d'herbivores .................. III d. Remarques sur la locomotion des Théropodes ................................ 114 Conclusion ............................................................... 114 Remerciements .. .......................... , ....... , .......................... 118 Références ................................................................... 120 Tableaux ................................................................... 129 Légendes des planches 142 RESUME Les Causses correspondent à Un vaste plateau du sud du Massif Central, de près de 3400 km2. Ils ont fourni, depuis la découverte des premières empreintes de pas de Dinosaures en 1935, un nombre croissant de ces ichnites atteignant présentement plus de 500 spécimens. Ces traces de pieds tridactyles et tétradactyles, d'animaux majoritairement bipèdes, de longueur allant de 15 à 50 cm, ont été trouvés à la surface de dolomies datées de l'Hettangien inférieur au Sinémurien supérieur. Dans 4 unités stratigraphiques distinctes, les empreintes ont été observées dans 35 sites, essentiellement localisées sur la bordure extérieur du Plateau. Les caractères morphologiques ont permis d'abord de décomposer l'ensemble des traces de bipèdes en 8 ichnoespèces dont les définitions ont été fondées sur une double étude statistique: 1) descriptive avec les paramètres habituels, 2) multivariées avec l'Analyse en Composantes Principales (ACP), l'Analyse Factorielle des Correspondances (AFC) et l'Analyse Discriminante (AD). Les résultats ont conforté les observations morphologiques et les ont complétées. Gral/ator variabilis, G. sal/elierellsis, G. lescl/rei, G. minusculus, Eubrontes giganfeus, Dilophosauripus williams;, OrnitilOpus fabrei nov. ichnosp. ont été ainsi distinguées. Les différences les plus visibles immédiatement, portent essentiellement sur l'angle interdigital II-IV, la largeur des doigts, les griffes, le rapport de la longueur à la largeur. A cette liste, il faut ajouter Batrachopus deweyi et des formes évoquant Trisauropodiscus et/ou Allomoepus. Parmi toutes les associations d'ichnites décrites dans le Lias inférieur, c'est avec celle des USA que la nôtre a le plus d'affinités. Elle partage les taxons Grallator-Dilophosauripus-Eubrontes-Batrachichllus, sans oublier Omithopus labrei nov. ichnosp. proche d'Omithopl/s gallillacells des bassins du Connecticut et du Massachusets. Si l'on compare l'ichnofaune du Jurassique basal des Causses à celle des Formations du Trias Moyen et Supérieur de la bordure orientale du Massif Central, on constate que dans celles-ci, les empreintes de Dinosaures tridactyles font une timide apparition par de faibles effectifs de petite taille. Ceux-ci augmentent rapidement, en nombre et
Recommended publications
  • Download the Article
    A couple of partially-feathered creatures about the The Outside Story size of a turkey pop out of a stand of ferns. By the water you spot a flock of bigger animals, lean and predatory, catching fish. And then an even bigger pair of animals, each longer than a car, with ostentatious crests on their heads, stalk out of the heat haze. The fish-catchers dart aside, but the new pair have just come to drink. We can only speculate what a walk through Jurassic New England would be like, but the fossil record leaves many hints. According to Matthew Inabinett, one of the Beneski Museum of Natural History’s senior docents and a student of vertebrate paleontology, dinosaur footprints found in the sedimentary rock of the Connecticut Valley reveal much about these animals and their environment. At the time, the land that we know as New England was further south, close to where Cuba is now. A system of rift basins that cradled lakes ran right through our region, from North Carolina to Nova Scotia. As reliable sources of water, with plants for the herbivores and fish for the carnivores, the lakes would have been havens of life. While most of the fossil footprints found in New England so far are in the lower Connecticut Valley, Dinosaur Tracks they provide a window into a world that extended throughout the region. According to Inabinett, the By: Rachel Marie Sargent tracks generally fall into four groupings. He explained that these names are for the tracks, not Imagine taking a walk through a part of New the dinosaurs that made them, since, “it’s very England you’ve never seen—how it was 190 million difficult, if not impossible, to match a footprint to a years ago.
    [Show full text]
  • A Dinosaur Track from New Jersey at the State Museum in Trenton
    New Jersey Geological and Water Survey Information Circular What's in a Rock? A Dinosaur Track from New Jersey at the State Museum in Trenton Introduction a large dinosaur track (fig. 2) on the bottom. Most of the rock is sedimentary, sandstone from the 15,000-foot-thick Passaic A large, red rock in front of the New Jersey State Museum Formation. The bottom part is igneous, lava from the 525-foot- (NJSM) in Trenton (fig. 1) is more than just a rock. It has a thick Orange Mountain Basalt, which overspread the Passaic fascinating geological history. This three-ton slab, was excavated Formation. (The overspreading lava was originally at the top of from a construction site in Woodland Park, Passaic County. It the rock, but the rock is displayed upside down to showcase the was brought to Trenton in 2010 and placed upside down to show dinosaur footprint). The rock is about 200 million years old, from the Triassic footprints Period of geologic time. It formed in a rift valley, the Newark Passaic Formation Basin, when Africa, positioned adjacent to the mid-Atlantic states, began to pull eastward and North America began to pull westward contact to open the Atlantic Ocean. The pulling and stretching caused faults to move and the rift valley to subside along border faults including the Ramapo Fault of northeastern New Jersey, about 8 miles west of Woodland Park. Sediments from erosion of higher Collection site Orange Mountain Basalt top N Figure 1. Rock at the New Jersey State Museum. Photo by W. Kuehne Adhesion ripples DESCRIPTION OF MAP UNITS 0 1 2 mi Orange Mountain Basalt L 32 cm Jo (Lower Jurassic) 0 1 2 km W 25.4 cm contour interval 20 feet ^p Passaic Formation (Upper Triassic) Figure 3.
    [Show full text]
  • Biodiversity and the Reconstruction of Early Jurassic Flora from the Mecsek
    Acta Palaeobotanica 51(2): 127–179, 2011 Biodiversity and the reconstruction of Early Jurassic fl ora from the Mecsek Mountains (southern Hungary) MARIA BARBACKA Hungarian Natural History Museum, Department of Botany, H-1476, P.O. Box 222, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] Received 15 June 2011; accepted for publication 27 October 2011 ABSTRACT. Rich material from Hungary’s Early Jurassic (the Mecsek Mts.) was investigated in a palaeoen- vironmental context. The locality (or, more precisely, area with a number of fossiliferous sites) is known as a delta plain, showing diverse facies, which suggest different landscapes with corresponding plant assemblages. Taphonomical observations proved that autochthonous and parautochthonous plant associations were present. The reconstruction of the biomes is based on the co-occurrence of taxa and their connection with the rock matrix and sites in the locality, as well as the environmental adaptation of the plants expressed in their morphology and cuticular structure. The climatic parameters were confi rmed as typical for the Early Jurassic by resolution of a palaeoatmospheric CO2 level based on the stomatal index of one of the common species, Ginkgoites mar- ginatus (Nathorst) Florin. Plant communities were differentiated with the help of Detrended Correspondence Analysis (DCA); the rela- tionship between taxa and sites and lithofacies and sites, were analysed by Ward’s minimal variance and cluste- red with the help
    [Show full text]
  • ) Baieiicanjizseum
    )SovitatesbAieiicanJizseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 1901 JULY 22, 1958 Coelurosaur Bone Casts from the Con- necticut Valley Triassic BY EDWIN HARRIS COLBERT1 AND DONALD BAIRD2 INTRODUCTION An additional record of a coelurosaurian dinosaur in the uppermost Triassic of the Connecticut River Valley is provided by a block of sandstone bearing the natural casts of a pubis, tibia, and ribs. This specimen, collected nearly a century ago but hitherto unstudied, was brought to light by the junior author among the collections (at present in dead storage) of the Boston Society of Natural History. We are much indebted to Mr. Bradford Washburn and Mr. Chan W. Wald- ron, Jr., of the Boston Museum of Science for their assistance in mak- ing this material available for study. The source and history of this block of stone are revealed in brief notices published at the time of its discovery. The Proceedings of the Boston Society of Natural History (vol. 10, p. 42) record that on June 1, 1864, Prof. William B. Rogers "presented an original cast in sand- stone of bones from the Mesozoic rocks of Middlebury, Ct. The stone was probably the same as that used in the construction of the Society's Museum; it was found at Newport among the stones used in the erec- tion of Fort Adams, and he owed his possession of it to the kindness of Capt. Cullum." S. H. Scudder, custodian of the museum, listed the 1 Curator of Fossil Reptiles and Amphibians, the American Museum of Natural History.
    [Show full text]
  • The Early Jurassic Ornithischian Dinosaurian Ichnogenus Anomoepus
    19 The Early Jurassic Ornithischian Dinosaurian Ichnogenus Anomoepus Paul E. Olsen and Emma C. Rainforth nomoepus is an Early Jurassic footprint genus and 19.2). Because skeletons of dinosaur feet were not produced by a relatively small, gracile orni- known at the time, he naturally attributed the foot- A thischian dinosaur. It has a pentadactyl ma- prints to birds. By 1848, however, he recognized that nus and a tetradactyl pes, but only three pedal digits some of the birdlike tracks were associated with im- normally impressed while the animal was walking. The pressions of five-fingered manus, and he gave the name ichnogenus is diagnosed by having the metatarsal- Anomoepus, meaning “unlike foot,” to these birdlike phalangeal pad of digit IV of the pes lying nearly in line with the axis of pedal digit III in walking traces, in combination with a pentadactyl manus. It has a pro- portionally shorter digit III than grallatorid (theropod) tracks, but based on osteometric analysis, Anomoepus, like grallatorids, shows a relatively shorter digit III in larger specimens. Anomoepus is characteristically bi- pedal, but there are quadrupedal trackways and less common sitting traces. The ichnogenus is known from eastern and western North America, Europe, and southern Africa. On the basis of a detailed review of classic and new material, we recognize only the type ichnospecies Anomoepus scambus within eastern North America. Anomoepus is known from many hundreds of specimens, some with remarkable preservation, showing many hitherto unrecognized details of squa- mation and behavior. . Pangea at approximately 200 Ma, showing the In 1836, Edward Hitchcock described the first of what areas producing Anomoepus discussed in this chapter: 1, Newark we now recognize as dinosaur tracks from Early Juras- Supergroup, eastern North America; 2, Karoo basin; 3, Poland; sic Newark Supergroup rift strata of the Connecticut 4, Colorado Plateau.
    [Show full text]
  • General Index Vols. XLI-L, Third Series
    GENERAL INDEX OF VOLUMES XLI-L OF THE THIRD SERIES. WInthe references to volumes xli to I, only the numerals i to ir we given. NOTE.-The names of mineral8 nre inaerted under the head ol' ~~IBERALB:all ohitllary notices are referred to under OBITUARY. Under the heads BO'PANY,CHK~I~TRY, OEOLO~Y, Roo~s,the refereuces to the topics in these department8 are grouped together; in many cases, the same references appear also elsewhere. Alabama, geological survey, see GEOL. REPORTSand SURVEYS. Abbe, C., atmospheric radiation of Industrial and Scientific Society, heat, iii, 364 ; RIechnnics of the i. 267. Earth's Atmosphere, v, 442. Alnska, expedition to, Russell, ii, 171. Aberration, Rayleigh, iii, 432. Albirnpean studies, Uhler, iv, 333. Absorption by alum, Hutchins, iii, Alps, section of, Rothpletz, vii, 482. 526--. Alternating currents. Bedell and Cre- Absorption fipectra, Julius, v, 254. hore, v, 435 ; reronance analysis, ilcadeiny of Sciences, French, ix, 328. Pupin, viii, 379, 473. academy, National, meeting at Al- Altitudes in the United States, dic- bany, vi, 483: Baltimore, iv, ,504 : tionary of, Gannett, iv. 262. New Haven, viii, 513 ; New York, Alum crystals, anomalies in the ii. 523: Washington, i, 521, iii, growth, JIiers, viii, 350. 441, v, 527, vii, 484, ix, 428. Aluminum, Tvave length of ultra-violet on electrical measurements, ix, lines of, Runge, 1, 71. 236, 316. American Association of Chemists, i, Texas, Transactions, v, 78. 927 . Acoustics, rrsearchesin, RIayer, vii, 1. Geological Society, see GEOL. Acton, E. H., Practical physiology of SOCIETYof AMERICA. plants, ix, 77. Nuseu~nof Sat. Hist., bulletin, Adams, F.
    [Show full text]
  • The New Ichnotaxon Eubrontes Nobitai Ichnosp. Nov. and Other
    Xing et al. Journal of Palaeogeography (2021) 10:17 https://doi.org/10.1186/s42501-021-00096-y Journal of Palaeogeography ORIGINAL ARTICLE Open Access The new ichnotaxon Eubrontes nobitai ichnosp. nov. and other saurischian tracks from the Lower Cretaceous of Sichuan Province and a review of Chinese Eubrontes-type tracks Li-Da Xing1,2* , Martin G. Lockley3, Hendrik Klein4, Li-Jun Zhang5, Anthony Romilio6, W. Scott Persons IV7, Guang-Zhao Peng8, Yong Ye8 and Miao-Yan Wang2 Abstract The Jiaguan Formation and the underlying Feitianshan Formation (Lower Cretaceous) in Sichuan Province yield multiple saurischian (theropod–sauropod) dominated ichnofaunas. To date, a moderate diversity of six theropod ichnogenera has been reported, but none of these have been identified at the ichnospecies level. Thus, many morphotypes have common “generic” labels such as Grallator, Eubrontes, cf. Eubrontes or even “Eubrontes- Megalosauripus” morphotype. These morphotypes are generally more typical of the Jurassic, whereas other more distinctive theropod tracks (Minisauripus and Velociraptorichnus) are restricted to the Cretaceous. The new ichnospecies Eubrontes nobitai ichnosp nov. is distinguished from Jurassic morphotypes based on a very well- preserved trackway and represents the first-named Eubrontes ichnospecies from the Cretaceous of Asia. Keywords: Ichnofossils, Dinosaur footprints, Theropod, Myths 1 Introduction are represented by Brontopodus-type tracks. The non- With over 17 track sites documented so far, the Jiaguan avian theropod tracks consist of Eubrontes-type, gralla- Formation and the underlying Feitianshan Formation torid, Yangtzepus, Velociraptorichnus, cf. Dromaeopodus, hold among the richest records of dinosaur tracks in Minisauripus, cf. Irenesauripus, and Gigandipus, while China (Young 1960; Xing and Lockley 2016; Xing et al.
    [Show full text]
  • 40 5.2.1 Terrestrial Palynomorphs Laevigate Trilete Spores
    5.2.1 Terrestrial Palynomorphs Laevigate trilete spores Genus: Aulisporites LESCHIK 1954 Aulisporites astigmosus (LESCHIK 1956a) KLAUS 1960 1956 Calamospora astigmosa sp. nov . – LESCHIK, p. 22, Plate 2 Fig. 17 1960 Aulisporites astigmosus (Leschik) nov. Comb . – K LAUS , p. 119 - 120, Plate 28, fig. 2. Genus: Calamospora SCHOPF , WILSON & B ENTALL 1944 Calamospora tener (LESCHIK 1955) DE JERSEY 1962 1955 Laevigatisporites tener sp. nov. – LESCHIK , p. 13, Plate 1., Fig. 20. 1955 Punctatisporites flavus – LESCHIK , p. 31, Plate 4, Fig. 2. 1958 Calamospora mesozoicus – COUPER , p. 132, Plate 15/3+4. 1960 Calamospora nathorstii – KLAUS , p. 116, Plate 28, Fig. 1. 1962 Calamaospora tener (L ESCHIK ) n. comb. - de Jersey, p. 3-4, Plate 1, fig 9 –10. 1964 Calamospora tener (LESCHIK 1955) n. comb. – MÄDLER (a), p. 92, Plate 8, Fig. 2. Genus: Cingulizonates DYBOVA & J ACHOWICS 1957 Cingulizonates rhaeticus (R HEINHARDT ) S CHULZ 1967 1962 Cingulatizonates rhaeticus sp. nov. – RHEINHARDT , P. 702, P LATE 2 F IG . 3 1964 Anulatisporites drawehni MAEDLER , P. 177, P LATE 2, F IGS . 1 – 2 1966 Cingulatizonates delicatus ORLOWSKA – Z WOLINSKAP I 014, PLATE 7 FIGS 36 - 38 1967 Cingulatizonates rhaeticus – SCHULZ P. 584, PLATE .13, F IG . 6- 7 Genus: Concavisporites THOMSON & P FLUG 1953 p. 49, Plate 1, Fig. 19 1953 Concavisporites gen. nov. – THOMSON & P FLUG , p. 49. 1959 Toroisporites gen. nov. – KRUTZSCH ,, p. 90. Concavisporites crassexinius NILSSON 1958 p.35, Plate 1, Fig. d 1958 Concavisporites crassexinius sp. nov. – NILSSON , p . 35, Plate 1, Fig. 11. Concavisporites mesozoicus sensu BÓNA Comment: Sporomorphs described by Bóna as C. mesozoicus are comparable to Concavisporites variverrucatus described by COUPER 1958.
    [Show full text]
  • The Widespread Distribution of a Late Jurassic Theropod with Well-Padded Feet
    GAIA N°15, LlSBOAlLISBON, DEZEMBRO/DECEMBER 1998, pp. 339-353 (ISSN: 0871-5424) THERANGOSPODUS: TRACKWAY EVIDENCE FOR THE WIDESPREAD DISTRIBUTION OF A LATE JURASSIC THEROPOD WITH WELL-PADDED FEET Martin G. LOCKLEY Geology Department, Campus Box 172, University of Colorado at Denver. P.O. Box 173364, DENVER, COLORADO 80217-3364. USA E-mail: [email protected] Christian A. MEYER Universitat Basel, Geologisch-palaontologisches Institut. Bernoullistrasse, 32, BASEL, CH-4056. SWITZERLAND E-mail: [email protected] Joaquin J. MORATALLA Unidad de Paleontologia, Departamento Biologia, Universidad Aut6noma de Madrid. CANTOBLANCO 28049, MADRID. SPAIN ABSTRACT: Assemblages of distinctive, medium·sized theropod tracks indicative of animals with well-padded feet are known from large Upper Jurassic samples of well-preserved mate­ rial from North America and Asia. These tracks, herein named Therangospodus pandemi­ cus, always reveal a lack of distinct, separate digital pads, regardless of whether they are preserved as casts or molds. We interpret this as consistent ichnological evidence of a fleshy fool. Similar tracks from the ?Upper Jurassic-?Lower Cretaceous of Spain, first na­ med Therangospodus onca/ensis, are also formally described. Although the fleshy nature of the foot of this trackmaker, makes it's individual digits appear comparable with those of ornithopod trackmakers, the elongate track and asymmetric postero-medial indentation and narrow trackway, indicate that it is probably of theropod an affinity. Tracks of this type provide an instructive lesson for ichnologists and paleontologist in general because they reveal that tracks are a record of flesh on foot bones, and need not necessarily be an accura­ te reflection of the morphology of foot skeletons.
    [Show full text]
  • Sauropod and Small Theropod Tracks from the Lower Jurassic Ziliujing Formation of Zigong City, Sichuan, China, with an Overview
    Ichnos, 21:119–130, 2014 Copyright Ó Taylor & Francis Group, LLC ISSN: 1042-0940 print / 1563-5236 online DOI: 10.1080/10420940.2014.909352 Sauropod and Small Theropod Tracks from the Lower Jurassic Ziliujing Formation of Zigong City, Sichuan, China, with an Overview of Triassic–Jurassic Dinosaur Fossils and Footprints of the Sichuan Basin Lida Xing,1 Guangzhao Peng,2 Yong Ye,2 Martin G. Lockley,3 Hendrik Klein,4 W. Scott Persons IV,5 Jianping Zhang,1 Chunkang Shu,2 and Baoqiao Hao2 1School of the Earth Sciences and Resources, China University of Geosciences, Beijing, China 2Zigong Dinosaur Museum, Zigong, Sichuan, China 3Dinosaur Trackers Research Group, University of Colorado, Denver, Colorado, USA 4Saurierwelt Palaontologisches€ Museum, Neumarkt, Germany 5Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada Keywords Grallator, Parabrontopodus, Hejie tracksite, Ma’anshan A dinosaur footprint assemblage from the Lower Jurassic Member, Zigong Ziliujing Formation of Zigong City, Sichuan, China, comprises about 300 tracks of small tridactyl theropods and large sauropods preserved as concave epireliefs (natural molds). The INTRODUCTION theropod footprints show similarities with both the ichnogenera Zigong is famous for the Middle Jurassic Shunosaurus Grallator and Jialingpus. Three different morphotypes are fauna and the Late Jurassic Mamenchisaurus fauna. However, present, probably related to different substrate conditions and extramorphological variation. A peculiar preservational feature fossils from the Early Jurassic and the Late Triassic are com- in a morphotype that reflects a gracile trackmaker with paratively rare. Previously reported Early Jurassic fossils extremely slender digits, is the presence of a convex epirelief that include fragmentary prosauropod and sauropod skeletal occurs at the bottom of the concave digit impressions.
    [Show full text]
  • Cómo Se Formaron? ¿Cuáles Fueron
    DinosaurAH!torium Foundation 2180 East Riverside Drive, St. George. UT 84790 En el museo de SGDS Ud. verá unas rarísimas huellas extraordinarias y otra evidencia de VISITANDO EL SITIO una época de hace 195 -198 millones de años. Esta época se halla al principio de lo que Horas de verano científicos llaman el Período Jurásico. Durante ese tiempo la tierra en estas partes estaba 10 a.m. a 6 p.m. casi al nivel del mar y mucho más cerca del ecuador. Arroyos y lagos cubrían entonces De lunes a domingo partes del sur de Utah y del noroeste de Arizona depositando las rocas que se ven hoy. Las específicas formaciones rocosas representadas aquí se encuentran dentro de la Días de fiesta casi Formación Moenave. La Formación Moenave contiene fajas de piedra de cieno, piedra de siempre abierto barro y esquisto. El Moenave se encuentra sobre la Formación Chinle del Triásico Superior y debajo de la Formación Kayenta del Jurásico Inferior que forma los acantilados rojos Para más información alrededor de St. George. Mientras la Formación Moenave se depositaba en el sur de Utah, visítenos en el internet un gran desierto parecido al Sahara moderno cubría Utah hacia el norte y el este de St. www.UtahDinosaurs.com www.facebook.com/StGeorge George formando los que hoy son los masivos acantilados del Wingate Sandstone DinosaurDiscoveryMuseum [Arenisca Wingate]. La Formación Wingate se reconoce en las ondulaciones de San Rafael Swell, Moab, Capitol Reef y las regiones del lago Powell. Espectaculares moldes de huellas - - ¿Cómo se formaron? El Museo de SGDS incluye no sólo las imprentas de huellas ordinarias halladas en otras localidades de esta región, sino también un gran número de espectaculares moldes naturales de huellas.
    [Show full text]
  • Dinosaur Ichnotaxa from the Lower Jurassic of Hungary
    Geological Quarterly, Vol.40,No.l,1996,p.1l9- 128 Gerard GIERLrNSKI Dinosaur ichnotaxa from the Lower Jurassic of Hungary The Early Jurassic strata of the Mecsek Coal Fonnatioo of southern Hungary revealed new dinosaur tracks. Two ichnospecies of Gralla/or /uberosus (Hitchcock 1836) Weems 1992 and Kayen/aplIS soltykovensis (Gierliriski 1991) comb. nov. have been recognized. The iCMotaxonomy of Kayelilaplis is emended and supplemented by a ichnotaxon previously designated as "Gralla/or (Eubrontes) soltykovensis". INTRODUCTION Occurrence of dinosaur tracks in Hungary is restricted to the Early Liassic deposits of the Mecsek Coal Formation, in the Pecs area. The first discoveries were reported from the Vasas mine and Komlo CA. Tasnadi Kubacska, 1967, 1968. 1970; L. Kordos. 1983). Later. dinosaur tracks were also found in the Pecsbanya mine (K. Hips et aI., i989). New material described herein was collected in September, 1995. in the Vasas and Pecsbanya opencast coal mines. Contrary to L. Kordos (1983), the features of hitherto discovered ichnites from Hungary indicate their theropod affinity (not ornithischian, as L. Kordos postulated). The tracks resemble well known cosmopolitan theropod ichnotaxa of Grallator and Kayentapus. Abbreviation used in the text: te - third digit projection beyond the lateral toes; fl - pes length; fw - pes width; Muz. PIG - Geological Museum of the Polish Geological Institute, Warsaw. Poland; LO - Geological Institute of the Lund University, Lund. Sweden; UCMP - University of California Museum of Paleontology ,Berkeley. California, USA; MNA - Paleontological Locality Files of the Museum of Northern Arizona, Flagstaff. Arizona, USA. 120 Gerard Gidiitski SYSTEMATIC DESCRIPTIONS Suborder Theropoda Marsh 188 1 IchnofarniIy GraIlatoridae Lull 1904 Ichnogenus Graitator Hitchcock 1858 Grallator tuberoxus (Hitchcock 1835) Weems I992 (PI, I, Figs- 2,3) M a r e r i a 1 :Muz.
    [Show full text]