bioRxiv preprint doi: https://doi.org/10.1101/182121; this version posted August 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Single-shot super-resolution total internal reflection fluorescence microscopy 2 Min Guo1*, Panagiotis Chandris1,$, John Paul Giannini1, 4, $, Adam J. Trexler2,#, Robert Fischer2, Jiji Chen3, 3 Harshad D. Vishwasrao3, Ivan Rey-Suarez1, 4, Yicong Wu1, Clare M. Waterman2, George H. Patterson5, 4 Arpita Upadhyaya6, Justin Taraska2, Hari Shroff1, 3, 6 5 1. Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and 6 Bioengineering, National Institutes of Health, Bethesda, Maryland, USA. 7 2. National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 8 USA. 9 3. Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, Maryland, 10 USA. 11 4. Biophysics Program, University of Maryland, College Park, Maryland, USA. 12 5. Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National 13 Institutes of Health, Bethesda, Maryland, USA. 14 6. Department of Physics and Institute for Physical Science and Technology, University of 15 Maryland, College Park, Maryland, USA. 16 * Corresponding author,
[email protected] 17 $ equal contribution 18 # Current affiliation: Northrop Grumman Corporation, Monterey, California 19 20 Abstract 21 We demonstrate a simple method for combining instant structured illumination microscopy (SIM) 22 with total internal reflection fluorescence microscopy (TIRF), doubling the spatial resolution of TIRF 23 (down to 115 +/- 13 nm) and enabling imaging frame rates up to 100 Hz over hundreds of time points.