Light Scalars and the Cosmos: Nambu-Goldstone and Otherwise

Total Page:16

File Type:pdf, Size:1020Kb

Light Scalars and the Cosmos: Nambu-Goldstone and Otherwise Light Scalars and the Cosmos: Nambu-Goldstone and Otherwise Michael Dine Department of Physics University of California, Santa Cruz Nambu Memorial Symposium, University of Chicago, 2016 Work with P. Draper, L. Stevenson-Haskins, D. Xu, Francesco D’Eramo. Important input from N. Seiberg Michael Dine Light Scalars and the Cosmos: Nambu-Goldstone and Otherwise Michael Dine Light Scalars and the Cosmos: Nambu-Goldstone and Otherwise From my graduate student days, when I first encountered his work on symmetry breaking in the strong interactions, Nambu has been one of my intellectual heroes. This was reinforced during my years at City College, where I regularly heard stories of Nambu from Bunji Sakita, who himself was an admirer. While somewhat younger, Sakita often regaled me with stories of the War years in Japan, and both his experiences and Nambu’s. I finally got to know Nambu in the 1980’s, and all of my interactions with him were intellectually stimulating and enhanced by his charm and wit. I remember many conversations at Chicago, but remarks he made at the 1984 Argonne meeting on String Theory, which were thoughtful but cautionary, particularly stand out. My final interactions came shortly after his Nobel Prize. Like many, I sent him a congratulatory note, only to receive a "mailbox is full" message. A year later, though, I received the most thoughtful note reply. Michael Dine Light Scalars and the Cosmos: Nambu-Goldstone and Otherwise In my own work, Nambu’s influence is perhaps heaviest in the area of string theory and in the appearance of light scalars in the case of continuous global symmetry breaking. His work with Jona-Lasinio is instructive in that it takes a model which in detail cannot be taken too seriously, but extracts important, universal features. Some of what I say today I hope can be viewed as a modest effort in this style. While much of my discussion will center on Nambu-Goldstone bosons, I will also consider some questions in strong dynamics, where fermionic condensates will play important roles. Michael Dine Light Scalars and the Cosmos: Nambu-Goldstone and Otherwise P H YSI CAL R EVI EW VOLUME &22, NUMBER AI RII, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. P Y. NAMBU AND G. JONA-LASINIoj' The Enrico terms Institute for Nuclear StuCkes and the Department of Physics, The University of Chicago, Chicago, Illinois (Received October 27, 1960) It is suggested that the nucleon mass arises largely as a self-energy of some primary fermion field through the same mechanism as the appearance of energy gap in the theory of superconductivity. The idea can be put into a mathematical formulation utilizing a generalized Hartree-Fock approximation which regards real nucleons as quasi-particle excitations. We consider a simplified model of nonlinear four-fermion interaction which allows a p5-gauge group. An interesting consequence of the symmetry is that there arise automatically pseudoscalar zero-mass bound states of nucleon-antinucleon pair which may be regarded as an idealized pion. In addition, massive bound states of nucleon number zero and two are predicted in a simple approximation. The theory contains two parameters which can be explicitly related to observed nucleon mass and the pion-nucleon coupling constant. Some paradoxical aspects of the theory in connection with the p5 trans- formation are discussed in detail. I. INTRODUCTION equations' 4: " 'N this paper we are going to develop a dynamical E4~= e lto~+40 (1.1 - theory of elementary particles in which nucleons and E0 ~*= eA ~*—+44~, mesons are derived in a unified way from a fundamental near the Fermi surface. is the component of the spinor field. In basic physical ideas, it has thus the 11„+ excitation corresponding to an electron state of mo- characteristic features of a compound-particle model, mentum and corresponding to but unlike most of the existing theories, dynamical P spin +(up), andri ~* a hole state of momentum and spin which means treatment of the interaction makes up an essential part p +, an absence of an electron of momentum — and spin of the theory. Strange particles are not yet considered. p —(down). is the kinetic energy measured from the The scheme is motivated by the observation of an eo Fermi surface; is a constant. There will also be an interesting analogy between the properties of Dirac g equation complex conjugate to describing particles and the quasi-particle excitations that appear Eq. (1), another of excitation. in the theory of superconductivity, which was originated type Equation gives the eigenvalues with great success by Bardeen, Cooper, and Schrieffer, ' (1) and subsequently given an elegant mathematical forlnu- E„=a (e,'+y')-*'. (1.2) ' lation by Bogoliubov. The characteristic feature of the The two states of this quasi-particle are separated in BCS theory is that it produces an energy gap between 2 In the ground state of the system all energy by ~ E„~. the ground state and the excited states of a supercon- the quasi-particles should be in the lower (negative) w'hich ductor, a fact has been confirmed experimentally. energy states of Eq. (2), and it would take a finite The is caused due to the fact that the attractive gap energy 2)E„~ )~2~&~ to excite a particle to the upper phonon-mediated interaction between electrons produces state. The situation bears a remarkable resemblance to correlated pairs of electrons with opposite momenta and the case of a Dirac particle. The four-component Dirac spin near the Fermi surface, and it takes a finite amount equation can be split into two sets to read of energy to break this correlation. can be EP,=o"Pter+ res, Elementary excitations in a superconductor — conveniently described by means of a coherent mixture Egs ——o"Pigs+ nell r, of electrons and holes, which obeys the following E„=W (p'+nt') l, * Supported by the U. S. Atomic Energy Commission. where tPt and Ps are the two eigenstates of the chirality f' Fulbright Fellow, on leave of absence from Instituto di Fisica operator ys —y jy2y3y4. dell Universita, Roma, Italy and Istituto Nazionale di Fisica According to Dirac's original interpretation, the Nucleare, Sezione di Roma, Italy. world has all the electrons 'A preliminary version of the work was presented at the ground state (vacuum) of the Midwestern Conference on Theoretical Physics, April, 1960 (un- in the negative energy states, and to create excited published). See also Y. Nambu, Phys. Rev. Letters 4, 380 (1960); states (with zero particle number) we have to supply an and Proceedings of the Tenth Annual Rochester Conference on High-Energy Nuclear Physics, 1960 (to be published). energy &~2m. ' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, In the BCS-Bogoliubov theory, the gap parameter @, 162 (1957). which is absent for free electrons, is determined es- 3 N. N. Bogoliubov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 58, self-consistent (Hartree-Fock) representa- 73 (1958) Ltranslation: Soviet Phys. -JETP 34, 41, 51 (1958)g; sentially as a N. N. Sogoliubov, V. V. Tolmachev, and D. V. Shirkov, A %em tion of the electron-electron interaction eGect. Methodin the Theory of Supercondlctivity (Academy of Sciences of 4 U, S.S.R., Moscow, 1958). J. G. Valatin, Nuovo cimento 7, 843 (1958). 345 Michael Dine Light Scalars and the Cosmos: Nambu-Goldstone and Otherwise Y. NAM BU AN 9 G. JONA —LASI NIO tendency for partial cancellation between contributions which lead to q'= 0, and C:D= 1 —2m'I (0):mI (0). from diferent mesons or nucleon pairs. From Eq. (4.8), we have 0(2m'I(0) (-.', . We already remarked before that the model treated here is not realistic enough to be compared with the (b) Put r„5—(iv„vs+2mv, q„/q')Fi(q') was show that actual nucleon problem. Our purpose to + (iv.v~ —iv qvnq. /q')F2(q') (A 3) a new possibility exists for 6eld theory to be richer and more complex than has been hitherto envisaged, even This is seen. to satisfy the integral equation if though the mathematics is marred by the unresolved divergence problem. In the subsequent paper we will attempt to generalize — the model to allow for isospin and finite pion mass, and F2= J~(q')/[I »(q')), (A.4) draw various consequences regarding strong as well as »(q') = 2m'I(q') —J'v(q') weak interactions. where J(q') was defined in Eq. (4.13). APPENDIX On the mass shell, F„5 reduces to We treat here, for completeness, the problem created by the coupling of pseudoscalar and pseudovector terms (iv„vg+ 2mv Sq„/q') F(q'), encountered in the text. As we have seen, such an effect F(q') = 1+F2 (q') = 1/[1 —» (q')). is not essential for the discussion of y~ invariance, but rather adds to complication, which however naturally For q'=0, we have J(q') =0 so that 1&F(0)=1/ appears in the ladder approximation. [1—2m'I(0)) &2. First let us write down the integral equation for a (c) From the structure of the inhomogeneous term, vertex part j. : it is clear that the scattering matrix is given by I'(p+ :q, p :q)-—— 2go(P )f(v ) +go(P')f(iv v ) 2zgp where I"5 is the pseudoscalar vertex function. =v(p+ ,q, p lq)+--v. Trl v.&(p'+ :q)- (2~)4 Again, from Eq. (A.1), I'6 is determined as k—)-)d'p'— x(lp'+ 'qp 'q)&-i:(p I'& —VS[1—2m'I(q'))/q'I(q') miV —qV5/q', (A.6) Sgo v~v. )»[vip(p'+kq) which has an entirely different behavior from the bare (2a-)4 y5 for small q'.
Recommended publications
  • 2018 APS Prize and Award Recipients
    APS Announces 2018 Prize and Award Recipients The APS would like to congratulate the recipients of these APS prizes and awards. They will be presented during APS award ceremonies throughout the year. Both March and April meeting award ceremonies are open to all APS members and their guests. At the March Meeting, the APS Prizes and Awards Ceremony will be held Monday, March 5, 5:45 - 6:45 p.m. at the Los Angeles Convention Center (LACC) in Los Angeles, CA. At the April Meeting, the APS Prizes and Awards Ceremony will be held Sunday, April 15, 5:30 - 6:30 p.m. at the Greater Columbus Convention Center in Columbus, OH. In addition to the award ceremonies, most prize and award recipients will give invited talks during the meeting. Some recipients of prizes, awards are recognized at APS unit meetings. For the schedule of APS meetings, please visit http://www.aps.org/meetings/calendar.cfm. Nominations are open for most 2019 prizes and awards. We encourage members to nominate their highly-qualified peers, and to consider broadening the diversity and depth of the nomination pool from which honorees are selected. For nomination submission instructions, please visit the APS web site (http://www.aps.org/programs/honors/index.cfm). Prizes 2018 APS MEDAL FOR EXCELLENCE IN PHYSICS 2018 PRIZE FOR A FACULTY MEMBER FOR RESEARCH IN AN UNDERGRADUATE INSTITUTION Eugene N. Parker University of Chicago Warren F. Rogers In recognition of many fundamental contributions to space physics, Indiana Wesleyan University plasma physics, solar physics and astrophysics for over 60 years.
    [Show full text]
  • TASI Lectures on Emergence of Supersymmetry, Gauge Theory And
    TASI Lectures on Emergence of Supersymmetry, Gauge Theory and String in Condensed Matter Systems Sung-Sik Lee1,2 1Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton ON L8S4M1, Canada 2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo ON N2L2Y5, Canada Abstract The lecture note consists of four parts. In the first part, we review a 2+1 dimen- sional lattice model which realizes emergent supersymmetry at a quantum critical point. The second part is devoted to a phenomenon called fractionalization where gauge boson and fractionalized particles emerge as low energy excitations as a result of strong interactions between gauge neutral particles. In the third part, we discuss about stability and low energy effective theory of a critical spin liquid state where stringy excitations emerge in a large N limit. In the last part, we discuss about an attempt to come up with a prescription to derive holographic theory for general quantum field theory. arXiv:1009.5127v2 [hep-th] 16 Dec 2010 Contents 1 Introduction 1 2 Emergent supersymmetry 2 2.1 Emergence of (bosonic) space-time symmetry . .... 3 2.2 Emergentsupersymmetry . .. .. 4 2.2.1 Model ................................... 5 2.2.2 RGflow .................................. 7 3 Emergent gauge theory 10 3.1 Model ....................................... 10 3.2 Slave-particletheory ............................... 10 3.3 Worldlinepicture................................. 12 4 Critical spin liquid with Fermi surface 14 4.1 Fromspinmodeltogaugetheory . 14 4.1.1 Slave-particle approach to spin-liquid states . 14 4.1.2 Stability of deconfinement phase in the presence of Fermi surface... 16 4.2 Lowenergyeffectivetheory . .. .. 17 4.2.1 Failure of a perturbative 1/N expansion ...............
    [Show full text]
  • Round Table Talk: Conversation with Nathan Seiberg
    Round Table Talk: Conversation with Nathan Seiberg Nathan Seiberg Professor, the School of Natural Sciences, The Institute for Advanced Study Hirosi Ooguri Kavli IPMU Principal Investigator Yuji Tachikawa Kavli IPMU Professor Ooguri: Over the past few decades, there have been remarkable developments in quantum eld theory and string theory, and you have made signicant contributions to them. There are many ideas and techniques that have been named Hirosi Ooguri Nathan Seiberg Yuji Tachikawa after you, such as the Seiberg duality in 4d N=1 theories, the two of you, the Director, the rest of about supersymmetry. You started Seiberg-Witten solutions to 4d N=2 the faculty and postdocs, and the to work on supersymmetry almost theories, the Seiberg-Witten map administrative staff have gone out immediately or maybe a year after of noncommutative gauge theories, of their way to help me and to make you went to the Institute, is that right? the Seiberg bound in the Liouville the visit successful and productive – Seiberg: Almost immediately. I theory, the Moore-Seiberg equations it is quite amazing. I don’t remember remember studying supersymmetry in conformal eld theory, the Afeck- being treated like this, so I’m very during the 1982/83 Christmas break. Dine-Seiberg superpotential, the thankful and embarrassed. Ooguri: So, you changed the direction Intriligator-Seiberg-Shih metastable Ooguri: Thank you for your kind of your research completely after supersymmetry breaking, and many words. arriving the Institute. I understand more. Each one of them has marked You received your Ph.D. at the that, at the Weizmann, you were important steps in our progress.
    [Show full text]
  • SUSY, Landscape and the Higgs
    SUSY, Landscape and the Higgs Michael Dine Department of Physics University of California, Santa Cruz Workshop: Nature Guiding Theory, Fermilab 2014 Michael Dine SUSY, Landscape and the Higgs A tension between naturalness and simplicity There have been lots of good arguments to expect that some dramatic new phenomena should appear at the TeV scale to account for electroweak symmetry breaking. But given the exquisite successes of the Model, the simplest possibility has always been the appearance of a single Higgs particle, with a mass not much above the LEP exclusions. In Quantum Field Theory, simple has a precise meaning: a single Higgs doublet is the minimal set of additional (previously unobserved) degrees of freedom which can account for the elementary particle masses. Michael Dine SUSY, Landscape and the Higgs Higgs Discovery; LHC Exclusions So far, simplicity appears to be winning. Single light higgs, with couplings which seem consistent with the minimal Standard Model. Exclusion of a variety of new phenomena; supersymmetry ruled out into the TeV range over much of the parameter space. Tunings at the part in 100 1000 level. − Most other ideas (technicolor, composite Higgs,...) in comparable or more severe trouble. At least an elementary Higgs is an expectation of supersymmetry. But in MSSM, requires a large mass for stops. Michael Dine SUSY, Landscape and the Higgs Top quark/squark loop corrections to observed physical Higgs mass (A 0; tan β > 20) ≈ In MSSM, without additional degrees of freedom: 126 L 124 GeV H h m 122 120 4000 6000 8000 10 000 12 000 14 000 HMSUSYGeVL Michael Dine SUSY, Landscape and the Higgs 6y 2 δm2 = t m~ 2 log(Λ2=m2 ) H −16π2 t susy So if 8 TeV, correction to Higgs mass-squred parameter in effective action easily 1000 times the observed Higgs mass-squared.
    [Show full text]
  • TASI Lectures on the Strong CP Problem
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server hep-th/0011376 SCIPP-00/30 TASI Lectures on The Strong CP Problem Michael Dine Santa Cruz Institute for Particle Physics, Santa Cruz CA 95064 Abstract These lectures discuss the θ parameter of QCD. After an introduction to anomalies in four and two dimensions, the parameter is introduced. That such topological parameters can have physical effects is illustrated with two dimensional models, and then explained in QCD using instantons and current algebra. Possible solutions including axions, a massless up quark, and spontaneous CP violation are discussed. 1 Introduction Originally, one thought of QCD as being described a gauge coupling at a particular scale and the quark masses. But it soon came to be recognized that the theory has another parameter, the θ parameter, associated with an additional term in the lagrangian: 1 = θ F a F˜µνa (1) L 16π2 µν where 1 F˜a = F ρσa. (2) µνρσ 2 µνρσ This term, as we will discuss, is a total divergence, and one might imagine that it is irrelevant to physics, but this is not the case. Because the operator violates CP, it can contribute to the neutron electric 9 dipole moment, dn. The current experimental limit sets a strong limit on θ, θ 10− . The problem of why θ is so small is known as the strong CP problem. Understanding the problem and its possible solutions is the subject of this lectures. In thinking about CP violation in the Standard Model, one usually starts by counting the parameters of the unitary matrices which diagonalize the quark and lepton masses, and then counting the number of possible redefinitions of the quark and lepton fields.
    [Show full text]
  • Progress of Theoretical and Experimental Physics Vol. 2016, No
    本会刊行英文誌目次 221 ©2016 日本物理学会 Gravitational positive energy theorems from information inequalities ....................................Nima Lashkari, Jennifer Lin, Hirosi Ooguri, Bogdan Stoica, and Mark Van Raamsdonk A note on the semiclassical formulation of BPS states in four-dimen- sional N=2 theories .....T. Daniel Brennan and Gregory W. Moore Letters Theoretical Particle Physics On the discrepancy between proton and α-induced d-cluster knockout on 16O ....................... B. N. Joshi, M. Kushwaha, and Arun K. Jain Papers General and Mathematical Physics Z2×Z2-graded Lie symmetries of the Lévy-Leblond equations .................... N. Aizawa, Z. Kuznetsova, H. Tanaka, and F. Toppan Theoretical Particle Physics Anomaly and sign problem in =( 2, 2) SYM on polyhedra: Numeri- N cal analysis .............................................Syo Kamata, So Matsuura, Tatsuhiro Misumi, and Kazutoshi Ohta Probing SUSY with 10 TeV stop mass in rare decays and CP violation of kaon .............................Morimitsu Tanimoto and Kei Yamamoto Monopole-center vortex chains in SU(2)gauge theory ..................... Seyed Mohsen Hosseini Nejad, and Sedigheh Deldar LHC 750 GeV diphoton excess in a radiative seesaw model .......................Shinya Kanemura, Kenji Nishiwaki, Hiroshi Okada, Yuta Orikasa, Seong Chan Park, and Ryoutaro Watanabe Coherent states in quantum algebra and qq-character for 5d W1+∞ super Yang-Mills ................ J.-E. Bourgine, M. Fukuda, Y. Matsuo, H. Zhang, and R.-D. Zhu Lorentz symmetry violation in the fermion number anomaly with the Progress of Theoretical and Experimental Physics chiral overlap operator .......... Hiroki Makino and Okuto Morikawa Vol. 2016, No. 12(2016) Fermion number anomaly with the fluffy mirror fermion .............................................Ken-ichi Okumura and Hiroshi Suzuki Special Section Revisiting the texture zero neutrino mass matrices Nambu, A Foreteller of Modern Physics III ..................
    [Show full text]
  • R Symmetries, Supersymmetry Breaking, and a Bound on the Superpotential Strings2010
    R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential Strings2010. Texas A&M University Michael Dine Department of Physics University of California, Santa Cruz Work with G. Festuccia, Z. Komargodski. March, 2010 Michael Dine R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential String Theory at the Dawn of the LHC Era As we meet, the LHC program is finally beginning. Can string theory have any impact on our understanding of phenomena which we may observe? Supersymmetry? Warping? Technicolor? Just one lonely higgs? Michael Dine R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential Supersymmetry Virtues well known (hierarchy, presence in many classical string vacua, unification, dark matter). But reasons for skepticism: 1 Little hierarchy 2 Unification: why generic in string theory? 3 Hierarchy: landscape (light higgs anthropic?) Michael Dine R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential Reasons for (renewed) optimism: 1 The study of metastable susy breaking (ISS) has opened rich possibilities for model building; no longer the complexity of earlier models for dynamical supersymmetry breaking. 2 Supersymmetry, even in a landscape, can account for 2 − 8π hierarchies, as in traditional naturalness (e g2 ) (Banks, Gorbatov, Thomas, M.D.). 3 Supersymmetry, in a landscape, accounts for stability – i.e. the very existence of (metastable) states. (Festuccia, Morisse, van den Broek, M.D.) Michael Dine R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential All of this motivates revisiting issues low energy supersymmetry. While I won’t consider string constructions per se, I will focus on an important connection with gravity: the cosmological constant.
    [Show full text]
  • Supersymmetry and the LHC ICTP Summer School
    Supersymmetry and the LHC ICTP Summer School. Trieste 2011 Michael Dine Department of Physics University of California, Santa Cruz June, 2011 Michael Dine Supersymmetry and the LHC Plan for the Lectures Lecture I: Supersymmetry Introduction 1 Why supersymmetry? 2 Basics of Supersymmetry 3 R Symmetries (a theme in these lectures) 4 SUSY soft breakings 5 MSSM: counting of parameters 6 MSSM: features Michael Dine Supersymmetry and the LHC Lecture II: Microscopic supersymmetry: supersymmetry breaking 1 Nelson-Seiberg Theorem (R symmetries) 2 O’Raifeartaigh Models 3 The Goldstino 4 Flat directions/pseudomoduli: Coleman-Weinberg vacuum and finding the vacuum. 5 Integrating out pseudomoduli (if time) – non-linear lagrangians. Michael Dine Supersymmetry and the LHC Lecture III: Dynamical (Metastable) Supersymmetry Breaking 1 Non-renormalization theorems 2 SUSY QCD/Gaugino Condensation 3 Generalizing Gaugino condensation 4 A simple – dumb – approach to Supersymmetry Breaking: Retrofitting. 5 Other types of metastable breaking: ISS (Intriligator, Shih and Seiberg) 6 Retrofitting – a second look. Why it might be right (cosmological constant!). Michael Dine Supersymmetry and the LHC Lecture IV: Mediating Supersymmetry Breaking 1 Gravity Mediation 2 Minimal Gauge Mediation (one – really three) parameter description of the MSSM. 3 General Gauge Mediation 4 Assessment. Michael Dine Supersymmetry and the LHC Supersymmetry Virtues 1 Hierarchy Problem 2 Unification 3 Dark matter 4 Presence in string theory (often) Michael Dine Supersymmetry and the LHC Hierarchy: Two Aspects 1 Cancelation of quadratic divergences 2 Non-renormalization theorems (holomorphy of gauge couplings and superpotential): if supersymmetry unbroken classically, unbroken to all orders of perturbation theory, but can be broken beyond: exponentially large hierarchies.
    [Show full text]
  • Fixed Points in Supersymmetric Extensions of the Standard Model
    Lehrstuhl Theoretische Physik IV Fixed Points in Supersymmetric Extensions of the Standard Model Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der TU Dortmund Vorgelegt von Kevin Moch Geboren in Lünen Dortmund Juni 2020 Der Fakultät für Physik der Technischen Universität Dortmund zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften vorgelegte Dissertation. Erstgutachter: Prof. Dr. Gudrun Hiller Zweitgutachter: Prof. Dr. Daniel F. Litim Datum der mündlichen Promotionsprüfung: 14. Juli 2020 Vorsitzender der Prüfungskommission: Prof. Dr. Götz Uhrig Abstract In this work, we are searching for supersymmetric extensions of the Standard Model (SM) of particle physics which are asymptotically safe. Such models are well-defined at all energy scales and provide hints for the scale at which supersymmetry gets broken. The combination of supersymmetry and asymptotic safety hereby turns out to strongly restrict the space of possible models. Within extensions of the minimal supersymmetric SM (MSSM), we perturbatively find candidates which all have a specific field content and low supersymmetry-breaking scales. For extensions of the MSSM with an extended gauge sector, we find models for which these scales appear at much larger energies. We then investigate whether the perturbatively found models are in agreement with non-perturbative results obtained from superconformal field theories. The exact supersymmetric Novikov-Shifman-Vainshtein-Zakharov beta functions suggest that these models are not asymptotically safe beyond perturbation theory. Finally, we present a model for which the non-perturbative results suggests that the SM can be UV-completed by this model. We also study perturbatively whether the fixed point needed for this UV-completion is physical.
    [Show full text]
  • Winter 1999 Vol
    A PERIODICAL OF PARTICLE PHYSICS WINTER 1999 VOL. 29, NUMBER 3 FEATURES Editors 2 GOLDEN STARDUST RENE DONALDSON, BILL KIRK The ISOLDE facility at CERN is being used to study how lighter elements are forged Contributing Editors into heavier ones in the furnaces of the stars. MICHAEL RIORDAN, GORDON FRASER JUDY JACKSON, AKIHIRO MAKI James Gillies PEDRO WALOSCHEK 8 NEUTRINOS HAVE MASS! Editorial Advisory Board The Super-Kamiokande detector has found a PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, GEORGE SMOOT deficit of one flavor of neutrino coming GEORGE TRILLIN G, KARL VAN BIBBER through the Earth, with the likely HERMAN WINICK implication that neutrinos possess mass. Illustrations John G. Learned TERRY AN DERSON 16 IS SUPERSYMMETRY THE NEXT Distribution LAYER OF STRUCTURE? C RYSTAL TILGHMAN Despite its impressive successes, theoretical physicists believe that the Standard Model is The Beam Line is published quarterly by the incomplete. Supersymmetry might provide Stanford Linear Accelerator Center the answer to the puzzles of the Higgs boson. Box 4349, Stanford, CA 94309. Telephone: (650) 926-2585 Michael Dine EMAIL: [email protected] FAX: (650) 926-4500 Issues of the Beam Line are accessible electronically on the World Wide Web at http://www.slac.stanford.edu/pubs/beamline. SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policies of the Stanford Linear Accelerator Center. Cover: The Super-Kamiokande detector during filling in 1996. Physicists in a rubber raft are polishing the 20-inch photomultipliers as the water rises slowly.
    [Show full text]
  • Memories of a Theoretical Physicist
    Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work.
    [Show full text]
  • Parallel Worlds
    www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page i PARALLEL WORLDS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iii Also by Michio Kaku Beyond Einstein Hyperspace Visions Einstein’s Cosmos www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iv MICHIO KAKU DOUBLEDAY New York London Toronto Sydney Auckland www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page v PARALLEL WORLDS A JOURNEY THROUGH CREATION, HIGHER DIMENSIONS, AND THE FUTURE OF THE COSMOS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vi published by doubleday a division of Random House, Inc. doubleday and the portrayal of an anchor with a dolphin are regis- tered trademarks of Random House, Inc. Book design by Nicola Ferguson Illustrations by Hadel Studio Library of Congress Cataloging-in-Publication Data Kaku, Michio. Parallel worlds : a journey through creation, higher dimensions, and the future of the cosmos/Michio Kaku.—1st ed. p. cm. Includes bibliographical references 1. Cosmology. 2. Big bang theory. 3. Superstring theories. 4. Supergravity. I. Title. QB981.K134 2004 523.1—dc22 2004056039 eISBN 0-385-51416-6 Copyright © 2005 Michio Kaku All Rights Reserved v1.0 www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vii This book is dedicated to my loving wife, Shizue. www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page viii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ix CONTENTS acknowledgments xi
    [Show full text]