Modular and Selective Biosynthesis of Gasoline-Range Alkanes

Total Page:16

File Type:pdf, Size:1020Kb

Modular and Selective Biosynthesis of Gasoline-Range Alkanes Modular and selective biosynthesis of gasoline-range alkanes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Sheppard, Micah J., Aditya M. Kunjapur, and Kristala L.J. Prather. “Modular and Selective Biosynthesis of Gasoline-Range Alkanes.” Metabolic Engineering 33 (January 2016): 28–40. As Published http://dx.doi.org/10.1016/j.ymben.2015.10.010 Publisher Elsevier Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/108077 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ 1 Title: Modular and selective biosynthesis of gasoline-range alkanes 2 Authors: Micah J. Sheppard1, 2†, Aditya M. Kunjapur1, 3†, Kristala L. J. Prather1, 3* 3 Affiliations: 4 1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, 5 USA 6 2. Present Address: Ginkgo BioWorks, 27 Drydock Avenue, 8th floor, Boston, Massachusetts 02210, 7 USA 8 3. Synthetic Biology Engineering Research Center (SynBERC), Massachusetts Institute of Technology, 9 Cambridge, MA 02139, USA 10 11 †These authors contributed equally to this work. 12 * Corresponding author: 13 Department of Chemical Engineering 14 77 Massachusetts Avenue 15 Room E17-504G 16 Cambridge, MA 02139 17 Phone: 617.253.1950 18 Fax: 617.258.5042 19 Email: [email protected] 20 Keywords: alkanes, gasoline, biofuel, E. coli, metabolic engineering, synthetic biology 21 1 22 Abstract: 23 Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current 24 infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline 25 (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. 26 Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty 27 acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient 28 alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate 29 that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain- 30 length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad- 31 specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity 32 obtained by different module pairings provides a foundation for tuning alkane product distribution for 33 desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed 34 alkane titer. However, even in an engineered host strain that significantly reduces endogenous 35 conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for 36 all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential 37 opportunities for pathway improvement. 38 2 39 1 Introduction 40 The United States relies heavily on gasoline to fulfill transportation needs. The U.S. consumes 41 roughly 4 billion barrels of gasoline annually, which amounts to 40% of total annual domestic petroleum 42 usage and 47% of all gasoline produced worldwide (International Energy Statistics, 2014; Fichman et 43 al., 2012). Vast gasoline infrastructure exists to facilitate its usage, and prevailing renewable liquid fuel 44 alternatives have limited compatibility. Ethanol requires a different distribution system than gasoline 45 because of its hygroscopicity, corrosivity, and biodegradability (Strogen and Horvath, 2013). Due to 46 dissimilar fuel performance characteristics such as energy density and research octane number (RON) 47 (Table S1), renewable gasoline alternatives are blended with gasoline for use in conventional 48 automobile engines. One approach towards addressing the compatibility of renewable fuels is to 49 metabolically engineer a microbe that converts sugars into a product that mimics the composition of 50 gasoline. An added benefit of such a process would be streamlined product separation from the aqueous 51 phase due to increased product hydrophobicity (Table S1). 52 We began the pathway design process by first looking at published chemical composition studies 53 of gasoline. Typical regular unleaded gasoline is a blend of over 30 aliphatic and aromatic hydrocarbons 54 (Fig. 1A) (Cline et al., 1991; Johansen et al., 1983; Sanders and Maynard, 1968). C3 (propane) to C9 55 (nonane) are the most common alkane components in gasoline with C5 (pentane) species predominating. 56 With such targets in mind, we next examined previously observed natural and engineered enzymes 57 involved in alkane synthesis. Initial work on microbial alkane production elucidated natural routes to 58 C15-C17 alkanes produced via fatty acid synthesis (FAS) (Schirmer et al., 2010). In cyanobacteria, acyl- 59 acyl carrier protein (acyl-ACP) reductases (AAR) and aldehyde decarbonylases (ADs, also known as 60 aldehyde-deformylating oxygenases or ADOs (Aukema et al., 2013)) convert growing acyl-ACP chains 61 to long-chain alkanes. In a natural progression, fatty acid reductases and ADs have been co-expressed 3 62 with acyl-ACP thioesterases in order to terminate FAS at medium-chain lengths and convert the free 63 acids to alkanes (Akhtar et al., 2013; Andre et al., 2013; Harger et al., 2012; Howard et al., 2013; 64 Schirmer et al., 2010). The C12 and longer alkanes reported may serve as alternatives for diesel fuels but 65 not for gasoline. 66 Recent efforts have also targeted the production of short-chain alkanes (< C10). Using a similar 67 FAS termination strategy, introduction of a plant AD, CER1At from Arabidopsis thaliana, resulted in 68 production of alkanes as short as nonane from glucose in E. coli (Choi and Lee, 2013). Nonane and the 69 longer alkanes produced collectively constitute less than one weight percent of typical regular unleaded 70 gasoline. Other short-chain acyl-ACP thioesterases have been described (Jing et al., 2011), and recently 71 two thioesterases were used to synthesize heptane and propane via FAS (Kallio et al., 2014). Synthesis 72 of these alkanes relied on the use of an AD from Prochlorococcus marinus MIT9313 (ADPm), which has 73 a solved crystal structure (Andre et al., 2013; Khara et al., 2013). Kallio and colleagues achieved 74 increases in titer from < 1 mg/L to 32 mg/L propane by varying process conditions to improve oxygen 75 availability. Like nonane, propane also constitutes less than one weight percent of typical regular 76 unleaded gasoline. 77 Although the report detailing propane production describes a notable achievement in the ability 78 to produce short alkanes, there are drawbacks that provide motivation for additional approaches. One is 79 the limited ability of propane to serve as a drop-in or blended gasoline replacement. As shown in Fig. 80 1A, the range of alkanes bounded in carbon chain length between propane and nonane (C4-C8) 81 constitute a much greater fraction of gasoline. All gasoline-range alkanes (C3-C9) can separate rapidly 82 from aqueous cultures due to their hydrophobicity and volatility, but alkanes longer than propane have 83 greater energy density (Table S1). Longer alkanes also require less energy than propane to store and 84 transport in the liquid phase. Given that the number of vehicles that can be powered solely on propane is 4 85 significantly smaller than the gasoline powered automobile fleet, production of gasoline-range alkanes 86 addresses a larger problem in the transportation fuels sector. 87 Previously published approaches to alkane synthesis have also been dependent on FAS for 88 carbon chain elongation as compared to the use of CoA-dependent, reverse β-oxidation (RBO) pathways 89 (Dekishima et al., 2013; Dellomonaco et al., 2011). RBO routes provide greater theoretical efficiency 90 than FAS for alkane production, in terms of co-factor balancing and energy consumption. The vast 91 majority of FAS reductases that have been described and predicted are likely to strongly prefer an 92 NADPH cofactor (Handke et al., 2011; Javidpour et al., 2014; Ratledge, 2004). In contrast, canonical 93 CoA-dependent pathways contain beta-oxidation enzymes, which are NADH dependent (Kunau et al., 94 1995; Schulz, 1991). Barring the use of an efficient transhydrogenase to rapidly interconvert reducing 95 equivalents, the increased requirement for NADPH in FAS-based chain elongation necessitates greater 96 carbon flux to the pentose phosphate pathway, which lowers carbon efficiency of alkane production. 97 Furthermore, the carboxylation of acetyl-CoA to produce malonyl-CoA in FAS pathways leads to a 98 higher net ATP consumption than in RBO pathways (Handke et al., 2011) (see Discussion for a more 99 detailed analysis). 100 In addition to pathway energetics, the reliance of RBO on the universal CoA molecule rather 101 than the reliance of FAS on organism specific ACPs provides RBO platforms with increased 102 transferability into alternative host organisms. Every reaction in the FAS pathway, including the release 103 of a free acid by the thioesterase, requires the enzyme to interact with an acyl-ACP substrate. While 104 ACP is highly conserved across many organisms, sequence diversity exists which may influence the 105 efficiency of interactions between ACP and FAS enzymes derived from different sources (Byers and 106 Gong, 2007; De Lay and Cronan, 2007). This may already be manifested in the differing performance 107 of thioesterases expressed in E. coli (Jing et al., 2011; Lennen and Pfleger, 2012). Differences in 5 108 productivity may depend to some degree on the efficiency of interaction between E. coli acyl-ACP and 109 the given plant acyl-ACP thioesterase. Additionally, transfer of such a pathway to a yeast strain is 110 complicated by the fused structure of the type I FAS of yeast which includes an ACP domain 111 (Schweizer and Hofmann, 2004). Growing acyl chains are linked to the complex and released via a 112 transferase as palmitoyl-CoA. Instead, RBO pathways rely on a universal cofactor, CoA.
Recommended publications
  • A Low Temperature Structure of Nonane-1,9-Diaminium Chloride Chloroacetate: Hydroxyacetic Acid (1:1)
    J Chem Crystallogr (2011) 41:703–707 DOI 10.1007/s10870-010-9957-6 ORIGINAL PAPER A Low Temperature Structure of Nonane-1,9-Diaminium Chloride Chloroacetate: Hydroxyacetic Acid (1:1) Agnieszka Paul • Maciej Kubicki Received: 24 February 2010 / Accepted: 31 December 2010 / Published online: 14 January 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract The crystal structure of nonane-1,9-diaminium protons and to form salts with both, organic and inorganic chloride chloroacetate–hydroxyacetic acid (1:1) was deter- acids, together with a significant flexibility of the chain mined by X-ray diffraction at 100(1)K. The asymmetric fragment and tendency towards creation of the highly unit is composed of diaminium dication, chloroacetate and symmetric networks, can be used in so-called crystal chloride anions, and neutral hydroxyacetic acid molecule. engineering [2], i.e. in designing new materials with The aliphatic chain of 1,9-diamine is fully extended and it expected features. Such a predictable motifs in the crystal deviates only slightly from the perfect all-trans confor- structures, giving rise to a layer structure, were already mation. The two acidic residues are also nearly planar. The investigated in the series of hexane-1,6-diamine and layer structure is obtained as a consequence of hydrogen butane-1,4-diamine salts [3, 4]. bond interactions of a different lengths, with N–H and O–H Only five structures deposited in the Cambridge Struc- groups playing the role of donors and oxygen atoms and tural Database [5] (no multiple determinations, herein and chloride cations as acceptors.
    [Show full text]
  • SAFETY DATA SHEET 1,9-Dibromo-Nonane-2,8-Dione According to Regulation (EC) No 1907/2006, Annex II, As Amended
    Revision date: 03/01/2020 Revision: 1 SAFETY DATA SHEET 1,9-Dibromo-nonane-2,8-dione According to Regulation (EC) No 1907/2006, Annex II, as amended. Commission Regulation (EU) No 2015/830 of 28 May 2015. SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product name 1,9-Dibromo-nonane-2,8-dione Product number FD173289 CAS number 91492-76-1 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Laboratory reagent. Manufacture of substances. Research and development. 1.3. Details of the supplier of the safety data sheet Supplier Carbosynth Ltd 8&9 Old Station Business Park Compton Berkshire RG20 6NE UK +44 1635 578444 +44 1635 579444 [email protected] 1.4. Emergency telephone number Emergency telephone +44 7887 998634 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (EC 1272/2008) Physical hazards Not Classified Health hazards Not Classified Environmental hazards Not Classified Additional information Caution. Not fully tested. 2.2. Label elements Hazard statements NC Not Classified 2.3. Other hazards No data available. SECTION 3: Composition/information on ingredients 3.1. Substances Product name 1,9-Dibromo-nonane-2,8-dione 1/8 Revision date: 03/01/2020 Revision: 1 1,9-Dibromo-nonane-2,8-dione CAS number 91492-76-1 Chemical formula C₉H₁₄Br₂O₂ SECTION 4: First aid measures 4.1. Description of first aid measures General information Get medical advice/attention if you feel unwell. Inhalation Remove person to fresh air and keep comfortable for breathing.
    [Show full text]
  • Chapter 2: Alkanes Alkanes from Carbon and Hydrogen
    Chapter 2: Alkanes Alkanes from Carbon and Hydrogen •Alkanes are carbon compounds that contain only single bonds. •The simplest alkanes are hydrocarbons – compounds that contain only carbon and hydrogen. •Hydrocarbons are used mainly as fuels, solvents and lubricants: H H H H H H H H H H H H C H C C H C C C C H H C C C C C H H H C C H H H H H H CH2 H CH3 H H H H CH3 # of carbons boiling point range Use 1-4 <20 °C fuel (gasses such as methane, propane, butane) 5-6 30-60 solvents (petroleum ether) 6-7 60-90 solvents (ligroin) 6-12 85-200 fuel (gasoline) 12-15 200-300 fuel (kerosene) 15-18 300-400 fuel (heating oil) 16-24 >400 lubricating oil, asphalt Hydrocarbons Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H C H eth- -ane ethane 2 6 H3C CH3 C3H8 prop- -ane propane C4H10 but- -ane butane C5H12 pent- -ane pentane C6H14 hex- -ane hexane C7H16 hept- -ane heptane C8H18 oct- -ane octane C9H20 non- -ane nonane C10H22 dec- -ane decane Hydrocarbons Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H H H C2H6 eth- -ane ethane H C C H H H H C H prop- -ane propane 3 8 H3C C CH3 or H H H C H 4 10 but- -ane butane H3C C C CH3 or H H H C H 4 10 but- -ane butane? H3C C CH3 or CH3 HydHrydorcocaarrbobnos ns Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H H H C2H6 eth- -ane ethane H C C H H H H C3H8 prop- -ane propane H3C C CH3 or H H H C H 4 10 but- -ane butane H3C C C CH3 or H H H C H 4 10 but- -ane iso-butane H3C C CH3 or CH3 HydHrydoroccarbrobnsons Formula Prefix Suffix Name Structure H H
    [Show full text]
  • Organic Nomenclature: Naming Organic Molecules
    Organic Nomenclature: Naming Organic Molecules Mild Vegetable Alkali Aerated Alkali What’s in a name? Tartarin Glauber's Alkahest Alkahest of Van Helmot Fixed Vegetable Alkali Russian Pot Ash Cendres Gravellees Alkali Mild Vegetable Oil of Tartar Pearl Ash Tartar Alkahest of Reapour K2CO3 Alkali of Reguline Caustic Sal Juniperi Potassium Carbonate Ash ood Alkali of Wine Lees Salt of Tachenius W Fixed Sal Tartari Sal Gentianae Alkali Salt German Ash Salt of Wormwood Cineres Clavellati Sal Guaiaci exSal Ligno Alkanus Vegetablis IUPAC Rules for naming organic molecules International Union of Pure and Applied Chemists 3 Name Molecular Prefix Formula Methane CH4 Meth Ethane C2H6 Eth Alkanes Propane C3H8 Prop Butane C4H10 But CnH2n+2 Pentane C5H12 Pent Hexane C6H14 Hex Heptane C7H16 Hept Octane C8H18 Oct Nonane C9H20 Non Decane C10H22 Dec 4 Structure of linear alkanes propane butane pentane hexane heptane octane nonane decane 5 Constitutional Isomers: molecules with same molecular formula but differ in the way in which the atoms are connected to each other 6 Physical properties of constiutional isomers 7 Isomers n # of isomers 1 1 2 1 The more carbons in a 3 1 molecule, the more 4 2 possible ways to put 5 3 them together. 6 5 7 9 8 18 9 35 10 75 15 4,347 25 36,797,588 8 Naming more complex molecules hexane C6H14 9 Naming more complex molecules Step 1: identify the longest continuous linear chain: this will be the root name: this is the root name 2 4 6 longest chain = 6 (hexane) 1 3 5 2 4 3 4 3 2 2 1 5 4 1 3 5 correct 1 incorrect longest chain = 5 (pentane) longest chain = 5 (pentane) 1 3 1 2 2 3 4 4 longest chain = 4 (butane) longest chain = 4 (butane) 10 Naming more complex molecules Step 2: identify all functional group (the groups not part of the “main chain”) CH3 2 4 4 3 2 1 5 1 3 5 CH3 main chain: pentane main chain: pentane CH3 1 3 1 2 2 3 4 4 CH3 CH3 CH3 main chain: butane main chain: butane 11 Alkyl groups: fragments of alkanes H H empty space (point where it H C H H C attaches to something else) H H methane methyl CH4 CH3 12 More generally..
    [Show full text]
  • Polycyclic Aromatic Compound (PAC) Standards and Standard Mixtures Solutions for a Greener World Introduction
    Polycyclic Aromatic Compound (PAC) Standards and Standard Mixtures Solutions for a Greener World Introduction Polycyclic Aromatic Compound (PAC) Standards and Standard Mixtures isotope.com 13C-Labeled Polycyclic Aromatic Hydrocarbon (PAH) Standards CIL, in cooperation with Cerilliant Corporation, is pleased to In the chromatogram for the deuterated benzo[a]pyrene, the offer 13C-labeled polycyclic aromatic hydrocarbons (PAHs) as a proton losses at M-2, M-4, etc. are supplemented with proton superior alternative to deuterated standards. Although CIL has losses of M-1, M-3, etc. This represents a loss of deuterons traditionally produced high-quality deuterated PAH analogs, from incompletely deuterated species. As a result, the profile of some analysts have observed back-exchange of proton for the deuterated material does not correspond exactly to that of deuterium under harsh extraction conditions and in certain the unlabeled material. 13C-labeled benzo[a]pyrene, however, matrices. If precise quantitation is required, or complete will match the unlabeled material with the 4 AMU shift being recovery information is needed, the non-exchangeable the only difference between the two profiles. 13C isotope label is the right standard to use. Hydroxy PAHs Deuterium Back-Exchange PAH exposure occurs through ingestion, inhalation, and dermal While analysts have been using deuterated PAH standards contact. In the body, these compounds are predominantly for years, labile deuterons are susceptible to back-exchange. metabolized as epoxides, which are converted to phenol The phenomenon is particularly likely to occur in acidic or (hydroxy) and dihydrodiol derivatives. The hydroxylated catalytic matrices, when the importance of a reliable internal metabolites of the PAHs are excreted in human urine both standard is greatest.
    [Show full text]
  • Hydrocarbons, Bp 36°-216 °C 1500
    HYDROCARBONS, BP 36°-216 °C 1500 FORMULA: Table 1 MW: Table 1 CAS: Table 1 RTECS: Table 1 METHOD: 1500, Issue 3 EVALUATION: PARTIAL Issue 1: 15 August 1990 Issue 3: 15 March 2003 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS: cyclohexane n-heptane n-octane (Synonyms in Table 1) cyclohexene n-hexane n-pentane n-decane methylcyclohexane n-undecane n-dodecane n-nonane SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE [1] TECHNIQUE: GAS CHROMATOGRAPHY, FID [1] (coconut shell charcoal, 100 mg/50 mg) ANALYTE: Hydrocarbons listed above FLOW RATE: Table 3 DESORPTION: 1 mL CS2; stand 30 min VOL-MIN: Table 3 -MAX: Table 3 INJECTION VOLUME: 1 µL SHIPMENT: Routine TEMPERATURES SAMPLE -INJECTION: 250 °C STABILITY: 30 days @ 5 °C -DETECTOR: 300 °C -COLUMN: 35 °C (8 min) - 230 °C (1 min) BLANKS: 10% of samples ramp (7.5 °C /min) CARRIER GAS: Helium, 1 mL/min ACCURACY COLUMN: Capillary, fused silica, 30 m x 0.32-mm RANGE STUDIED: Table 3 ID; 3.00-µm film 100% dimethyl polysiloxane BIAS: Table 3 CALIBRATION: Solutions of analytes in CS2 Ö OVERALL PRECISION ( rT): Table 3 RANGE: Table 4 ACCURACY: Table 3 ESTIMATED LOD: Table 4 þ PRECISION ( r): Table 4 APPLICABILITY: This method may be used for simultaneous measurements; however, interactions between analytes may reduce breakthrough volumes and alter analyte recovery. INTERFERENCES: At high humidity, the breakthrough volumes may be reduced. Other volatile organic solvents such as alcohols, ketones, ethers, and halogenated hydrocarbons are potential interferences. OTHER METHODS: This method is an update for NMAM 1500 issued on August 15, 1994 [2] which was based on methods from the 2nd edition of the NIOSH Manual of Analytical Methods: S28, cyclohexane [3]; S82, cyclohexene [3]; S89, heptane [3]; S90, hexane [3]; S94, methylcyclohexane [3]; S378, octane [4]; and S379, pentane [4].
    [Show full text]
  • Section 2. Hazards Identification OSHA/HCS Status : This Material Is Considered Hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)
    SAFETY DATA SHEET Flammable Liquefied Gas Mixture: 2-Methylpentane / 2,2-Dimethylbutane / 2, 3-Dimethylbutane / 3-Methylpentane / Benzene / Carbon Dioxide / Decane / Dodecane / Ethane / Ethyl Benzene / Heptane / Hexane / Isobutane / Isooctane / Isopentane / M- Xylene / Methane / N-Butane / N-Pentane / Neopentane / Nitrogen / Nonane / O- Xylene / Octane / P-Xylene / Pentadecane / Propane / Tetradecane / Toluene / Tridecane / Undecane Section 1. Identification GHS product identifier : Flammable Liquefied Gas Mixture: 2-Methylpentane / 2,2-Dimethylbutane / 2, 3-Dimethylbutane / 3-Methylpentane / Benzene / Carbon Dioxide / Decane / Dodecane / Ethane / Ethyl Benzene / Heptane / Hexane / Isobutane / Isooctane / Isopentane / M- Xylene / Methane / N-Butane / N-Pentane / Neopentane / Nitrogen / Nonane / O-Xylene / Octane / P-Xylene / Pentadecane / Propane / Tetradecane / Toluene / Tridecane / Undecane Other means of : Not available. identification Product type : Liquefied gas Product use : Synthetic/Analytical chemistry. SDS # : 018818 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Liquefied gas SKIN IRRITATION - Category 2 GERM CELL MUTAGENICITY - Category 1 CARCINOGENICITY - Category 1 TOXIC TO REPRODUCTION (Fertility) - Category 2 TOXIC TO REPRODUCTION (Unborn child) - Category 2 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Narcotic effects) - Category 3 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE) - Category 2 AQUATIC HAZARD (ACUTE) - Category 2 AQUATIC HAZARD (LONG-TERM) - Category 1 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. May form explosive mixtures with air.
    [Show full text]
  • JUN I 13998 Scienct LIBRARIES This Doctoral Thesis Has Been Examined by a Committee of the Department of Chemistry As Follows
    THE DEVELOPMENT OF ORGANOTIN REAGENTS FOR ORGANIC SYNTHESIS by David Scott Hays B. S. Chemistry, University of Illinois Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY at the Massachusetts Institute of Technology June 1998 © Massachusetts Institute of Technology, 1998 All rights reserved Signature of Author Department of Chemistry May 14, 1998 Certified by Gregory C. Fu t' Thesis Supervisor Accepted by Dietmar Seyferth Chairman, Departmental Committee on Graduate Students JUN I 13998 scienct LIBRARIES This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Peter H. Seeberger I_ _ /1 Chairman Professor Gregory C. Fu J _J Thesis Supervisor Professor Rick L. Danheiser THE DEVELOPMENT OF ORGANOTIN REAGENTS FOR ORGANIC SYNTHESIS by David Scott Hays Submitted to the Department of Chemistry on May 14, 1998 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT A method for the intramolecular pinacol coupling of dialdehydes and ketoaldehydes is described. The method was found to be useful for synthesizing 1,2-cyclopentanediols with very high degrees of diastereoselectivity in favor of the cis stereochemistry. 1,2- Cyclohexanediols were generated with lower degrees of stereoselection. This free radical chain process involves as the key steps: 1) an intramolecular addition of a tin ketyl radical to a pendant carbonyl group, followed by 2) a rapid intramolecular homolytic displacement by an oxygen radical at the tin center to liberate an alkyl radical. The development of a Bu 3 SnH-catalyzed carbon-carbon bond forming reaction (the reductive cyclization of enals and enones) is described, followed by a catalytic variant of the Barton-McCombie deoxygenation reaction.
    [Show full text]
  • Comparison of Chemical Schemes Used in Photochemical Modelling — Swedish Conditions
    VL-oferUriii xvl-B— / 335 Comparison of Chemical Schemes Used in Photochemical Modelling — Swedish Conditions Karin PleijelJohannaAltenstedt and Yvonne Andersson-Skold DmsmmoH of this document is unlimited Goteborg, October 1996 B 1235 IVL SWEDISH ENVIRONMENTAL RESEARCH INSTITUTE________________ Organisation/Organization RAPPORTSAMMANFATTNING Institute! for Vatten- och Luftvardsforskning Report Summary Adress/Address Projekttitel/Project title Box 47086 Forenklad kemisk modeliering for halter av ozon 402 58 GOTEBORG och PAN i Sverige. Telefonnr/Telephone 031-46 00 80 Anslagsgivare for projektet/Project sponsor Naturvardsverket Rapportforfattare, author Karin Pleijel, Johanna Altenstedt and Yvonne Andersson-Skold Rapportens titel och undertitel/Title and subtitle of the report Comparison of Chemical Schemes Used in Photochemical Modelling - Swedish Conditions Sammanfattning/Summary The compressed chemical description used in three internationally well-known models, i.e. the EMEP, CBM-IV and RADM-II models were set up in a model frame being representative for Swedish conditions. The results from the use of these compressed chemical schemes were compared with the results when an explicit scheme with a high level of detail i.e. the IVL model in the 1995 version, was used in the same model set-up. In addition, a new approach to compressed chemical modelling was presented, based on the Photochemical Ozone Creation Potential (POCP), and the results were compared with the results from the well established compressed schemes. The compressed scheme used in the EMEP model (1993 version), including some minor modifications in order to make the models strictly comparable, was seen to be in good to excellent agreement with the results from the IVL model for most of the studied scenarios.
    [Show full text]
  • Chemical Compatibility Chart
    Chemical Compatibility Chart 1 Inorganic Acids 1 2 Organic acids X 2 3 Caustics X X 3 4 Amines & Alkanolamines X X 4 5 Halogenated Compounds X X X 5 6 Alcohols, Glycols & Glycol Ethers X 6 7 Aldehydes X X X X X 7 8 Ketone X X X X 8 9 Saturated Hydrocarbons 9 10 Aromatic Hydrocarbons X 10 11 Olefins X X 11 12 Petrolum Oils 12 13 Esters X X X 13 14 Monomers & Polymerizable Esters X X X X X X 14 15 Phenols X X X X 15 16 Alkylene Oxides X X X X X X X X 16 17 Cyanohydrins X X X X X X X 17 18 Nitriles X X X X X 18 19 Ammonia X X X X X X X X X 19 20 Halogens X X X X X X X X X X X X 20 21 Ethers X X X 21 22 Phosphorus, Elemental X X X X 22 23 Sulfur, Molten X X X X X X 23 24 Acid Anhydrides X X X X X X X X X X 24 X Represents Unsafe Combinations Represents Safe Combinations Group 1: Inorganic Acids Dichloropropane Chlorosulfonic acid Dichloropropene Hydrochloric acid (aqueous) Ethyl chloride Hydrofluoric acid (aqueous) Ethylene dibromide Hydrogen chloride (anhydrous) Ethylene dichloride Hydrogen fluoride (anhydrous) Methyl bromide Nitric acid Methyl chloride Oleum Methylene chloride Phosphoric acid Monochlorodifluoromethane Sulfuric acid Perchloroethylene Propylene dichloride Group 2: Organic Acids 1,2,4-Trichlorobenzene Acetic acid 1,1,1-Trichloroethane Butyric acid (n-) Trichloroethylene Formic acid Trichlorofluoromethane Propionic acid Rosin Oil Group 6: Alcohols, Glycols and Glycol Ethers Tall oil Allyl alcohol Amyl alcohol Group 3: Caustics 1,4-Butanediol Caustic potash solution Butyl alcohol (iso, n, sec, tert) Caustic soda solution Butylene
    [Show full text]
  • Dielectric Constant Chart
    Dielectric Constants of Common Materials DIELECTRIC MATERIALS DEG. F CONSTANT ABS RESIN, LUMP 2.4-4.1 ABS RESIN, PELLET 1.5-2.5 ACENAPHTHENE 70 3 ACETAL 70 3.6 ACETAL BROMIDE 16.5 ACETAL DOXIME 68 3.4 ACETALDEHYDE 41 21.8 ACETAMIDE 68 4 ACETAMIDE 180 59 ACETAMIDE 41 ACETANILIDE 71 2.9 ACETIC ACID 68 6.2 ACETIC ACID (36 DEGREES F) 36 4.1 ACETIC ANHYDRIDE 66 21 ACETONE 77 20.7 ACETONE 127 17.7 ACETONE 32 1.0159 ACETONITRILE 70 37.5 ACETOPHENONE 75 17.3 ACETOXIME 24 3 ACETYL ACETONE 68 23.1 ACETYL BROMIDE 68 16.5 ACETYL CHLORIDE 68 15.8 ACETYLE ACETONE 68 25 ACETYLENE 32 1.0217 ACETYLMETHYL HEXYL KETONE 66 27.9 ACRYLIC RESIN 2.7 - 4.5 ACTEAL 21 3.6 ACTETAMIDE 4 AIR 1 AIR (DRY) 68 1.000536 ALCOHOL, INDUSTRIAL 16-31 ALKYD RESIN 3.5-5 ALLYL ALCOHOL 58 22 ALLYL BROMIDE 66 7 ALLYL CHLORIDE 68 8.2 ALLYL IODIDE 66 6.1 ALLYL ISOTHIOCYANATE 64 17.2 ALLYL RESIN (CAST) 3.6 - 4.5 ALUMINA 9.3-11.5 ALUMINA 4.5 ALUMINA CHINA 3.1-3.9 ALUMINUM BROMIDE 212 3.4 ALUMINUM FLUORIDE 2.2 ALUMINUM HYDROXIDE 2.2 ALUMINUM OLEATE 68 2.4 1 Dielectric Constants of Common Materials DIELECTRIC MATERIALS DEG. F CONSTANT ALUMINUM PHOSPHATE 6 ALUMINUM POWDER 1.6-1.8 AMBER 2.8-2.9 AMINOALKYD RESIN 3.9-4.2 AMMONIA -74 25 AMMONIA -30 22 AMMONIA 40 18.9 AMMONIA 69 16.5 AMMONIA (GAS?) 32 1.0072 AMMONIUM BROMIDE 7.2 AMMONIUM CHLORIDE 7 AMYL ACETATE 68 5 AMYL ALCOHOL -180 35.5 AMYL ALCOHOL 68 15.8 AMYL ALCOHOL 140 11.2 AMYL BENZOATE 68 5.1 AMYL BROMIDE 50 6.3 AMYL CHLORIDE 52 6.6 AMYL ETHER 60 3.1 AMYL FORMATE 66 5.7 AMYL IODIDE 62 6.9 AMYL NITRATE 62 9.1 AMYL THIOCYANATE 68 17.4 AMYLAMINE 72 4.6 AMYLENE 70 2 AMYLENE BROMIDE 58 5.6 AMYLENETETRARARBOXYLATE 66 4.4 AMYLMERCAPTAN 68 4.7 ANILINE 32 7.8 ANILINE 68 7.3 ANILINE 212 5.5 ANILINE FORMALDEHYDE RESIN 3.5 - 3.6 ANILINE RESIN 3.4-3.8 ANISALDEHYDE 68 15.8 ANISALDOXINE 145 9.2 ANISOLE 68 4.3 ANITMONY TRICHLORIDE 5.3 ANTIMONY PENTACHLORIDE 68 3.2 ANTIMONY TRIBROMIDE 212 20.9 ANTIMONY TRICHLORIDE 166 33 ANTIMONY TRICHLORIDE 5.3 ANTIMONY TRICODIDE 347 13.9 APATITE 7.4 2 Dielectric Constants of Common Materials DIELECTRIC MATERIALS DEG.
    [Show full text]
  • 1 Evaporating Drops of Alkane Mixtures
    Evaporating drops of alkane mixtures G.Guéna, C.Poulard, A.M.Cazabat* Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 Submitted on Septembre 28th 2005 • *Corresponding author Abstract: Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained. keywords Moving contact line, evaporating drops. 1 I. Introduction Heat transfer controlled by the evaporation of liquids on solid substrates, is the subject of many experiments and numerical analyses [1-4]. On the other hand, most industrial coating processes use solutions of the active compounds in volatile solvents. In both cases, surface tension gradients result from thermal and/or concentration gradients. The surface flow may significantly interplay with the heat transfer or coating process, possibly leading to film rupture and dendritic instabilities [1-9]. The behaviour of the contact line is of specific interest from the theoretical point of view, because both the evaporation flux and the dissipation are singular in a hydrodynamic analysis [10-11]. We are interested in situations where the gradients are merely due to the evaporating process, and not driven externally. In that case, there is a significant difference between surface tension gradients induced by thermal or concentration gradients. Thermally induced surface tension gradients are usually weak, and thermal diffusion, which is a stabilising process, is fast. Moreover, thermal exchanges with the substrate come into play.
    [Show full text]