In-Depth Proteomic Analysis of Tissue Interstitial Fluid for Hepatocellular Carcinoma Serum Biomarker Discovery

Total Page:16

File Type:pdf, Size:1020Kb

In-Depth Proteomic Analysis of Tissue Interstitial Fluid for Hepatocellular Carcinoma Serum Biomarker Discovery FULL PAPER British Journal of Cancer (2017) 117, 1676–1684 | doi: 10.1038/bjc.2017.344 Keywords: biomarker; tissue interstitial fluid; hepatocellular carcinoma; proteomics; prognosis In-depth proteomic analysis of tissue interstitial fluid for hepatocellular carcinoma serum biomarker discovery Jian Zhang1, Ning Hao1, Wei Liu2, Min Lu3, Longqin Sun1, Ning Chen1, Miantao Wu4, Xiaohang Zhao5, Baocai Xing2,7, Wei Sun*,1,7 and Fuchu He*,1,6,7 1State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing 102206, China; 2Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery I, Peking University Cancer Hospital and Institute, Beijing 100036, China; 3Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; 4State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; 5State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and 6Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China Background: Hepatocellular carcinoma (HCC) is a primary malignancy of the liver. New serum biomarkers for HCC screening are needed, especially for alpha-fetoprotein (AFP) negative patients. As a proximal fluid between body fluids and intracellular fluid, tissue interstitial fluid (TIF) is a suitable source for serum biomarker discovery. Methods: Sixteen paired TIF samples from HCC tumour and adjacent non-tumour tissues were analysed by isobaric tags for relative and absolute quantitation (iTRAQ) method. Two proteins were selected for ELISA validation in serum samples. Results: Totally, 3629 proteins were identified and 3357 proteins were quantified in TIF samples. Among them, 232 proteins were significantly upregulated in HCC-TIF and 257 proteins down-regulated. Two overexpressed extracellular matrix proteins, SPARC and thrombospondin-2 (THBS2) were selected for further validation. ELISA result showed that the serum levels of SPARC and THBS2 in HCC patients were both significantly higher than those in healthy controls. The combination of serum SPARC and THBS2 could distinguish HCC (AUC ¼ 0.97, sensitivity ¼ 86%, specificity ¼ 100%) or AFP-negative HCC (AUC ¼ 0.95, sensitivity ¼ 91%, specificity ¼ 93%) from healthy controls. And the combination of serum SPARC and THBS2 could also distinguish HCC patients from benign liver disease patients (AUC ¼ 0.93, sensitivity ¼ 80%, specificity ¼ 94%). In addition, serum THBS2 was found to be a novel independent indicator for poor prognosis of HCC. Conclusions: Novel HCC candidate serum markers were found through in-depth proteomic analysis of TIF, which demonstrated the successful utility of TIF in cancer serum biomarker discovery. Hepatocellular carcinoma (HCC) is one of the most common regions such as Asia (Mittal and El-Serag, 2013). Alpha-fetoprotein malignancies worldwide. The mortality of HCC is high mainly due (AFP) is recommended for HCC screening and surveillance by to the late diagnosis. Screening programs have improved the early many guidelines from Asia such as the Asian Pacific Association detection of HCC (Sherman, 2005), especially in high-incidence for the Study of the Liver (APASL) (Omata et al, 2010) and the *Correspondence: Dr W Sun; E-mail: [email protected] or Professor F He; E-mail: [email protected] 7These authors share co-last authorship. Received 1 March 2017; revised 25 July 2017; accepted 1 September 2017; published online 12 October 2017 r 2017 Cancer Research UK. All rights reserved 0007 – 0920/17 1676 www.bjcancer.com | DOI:10.1038/bjc.2017.344 Hepatocellular carcinoma biomarker discovery BRITISH JOURNAL OF CANCER Japan Society of Hepatology (JSH) (2010). The elevation of AFP is Table 1. Clinical characteristics of HCC patients involved in a risk factor for HCC and can be used to help define patients at iTRAQ experiment risk. However, the sensitivity of AFP is insufficient (Daniele et al, Clinical characteristics HCC group (N ¼ 16) n (%) 2004). Thus, new biomarkers are urgently needed, especially for AFP-negative HCC patients. Age (year) As a kind of body fluid commonly used in the clinic, blood is an o60 13 (81.2%) X ideal source for biomarker discovery. However, identification of 60 3 (18.8%) low-abundance proteins in the blood remains a challenge due to Gender the complexity of the blood proteome. Tissue-based proteomic Male 14 (87.5%) studies have also been carried out for biomarker discovery Female 2 (12.5%) (Kikuchi et al, 2012). But only secreted proteins with dysregulated HBV abundance in blood have the potential for clinical application. How Positive 8 (50.0%) to get the tumour-originated proteins which could be released into Negative 8 (50.0%) the blood is an important issue in cancer biomarker discovery. Tumour size (cm) In this regard, proximal fluids have emerged as a novel source. o5 6 (37.5%) Tissue interstitial fluid (TIF), as the proximal liquid surrounding X5 10 (62.5%) the tissue cells, could reflect the microenvironment alterations Microvascular invasion during tumour development. Compared with serum, TIF contains Positive 1 (7.7%) less high abundant proteins and more suitable for mass spectro- Negative 13 (92.3%) metry analysis (Sun et al, 2010). Besides, the concentration of À 1 proteins secreted or shed from the tumour cells is higher in TIF AFP (ng ml ) than that in serum. Those characteristics make TIF a good source o20 12 (75.0%) 20–100 4 (25.0%) for biomarker discovery. In fact, many groups have proved that TIF could be used for biomarker discovery since Celis’ group (Celis TNM stage et al, 2004) established tissue elution method for TIF preparation. I 7 (43.8%) For example, Teng et al (2011) analysed the TIF of renal cell II 4 (25.0%) III 5 (31.2%) carcinoma (RCC) and validated the elevation of enolase 2 in the serum of RCC patients. Xie et al (2016) identified six serine Abbreviation: HCC ¼ hepatocellular carcinoma. proteases in colon cancer TIF and four of them were validated in serum. Our group (Sun et al, 2010) has established the extraction (Supplementary Table S2). Blood samples were centrifuged at method of liver TIF in previous work. In this study, in order to 2000 g for 5 min at 4 1C within 1 h of collection. The supernatant identify serum markers for AFP-negative HCC patients, paired was further centrifuged at 13 500 g for 15 min. The serum was tumour and adjacent non-tumour TIFs from 16 HCC patients with aliquot and stored at À 80 1C until use. HCC samples were from low serum AFP levels were analysed with four batches of 8-plex Peking University Cancer Hospital. Benign liver disease samples iTRAQ. Bioinformatics analysis showed that proteins involved in were from Peking University Cancer Hospital and Sun Yat-sen extracellular matrix (ECM) organisation were significantly University Cancer Center. Healthy samples were from Cancer enriched in HCC TIF and in one subtype of HCC patients with Hospital of Chinese Academy of Medical Sciences. All patients poor prognosis. The ECM is a collection of extracellular molecules, provided informed consents. The use of human samples was which composed primarily of collagens, laminins and various approved by the Ethics Committees of Peking University Cancer glycoproteins. The ECM proteins, which could regulate inter- Hospital, Sun Yat-sen University Cancer Center and Cancer cellular communication, may play an important role in promoting Hospital of Chinese Academy of Medical Sciences. tumour growth and metastasis. Two ECM-associated proteins, SPARC and thrombospondin-2 (THBS2), were selected for further TIF collection. The TIF was collected according to the protocol validation. SPARC is a secreted protein which may support described before (Sun et al, 2010). In brief, fresh tissues were cut tumour-stroma interactions and contribute to cancer progression into 1–3 mm3 pieces and washed carefully with PBS. After in some certain cancers such as lung cancer (Wong and Sukkar, incubation in a CO2 incubator at 37 1C for 2 h, the samples were 2017). THBS2 is a secreted glycoprotein which may have an centrifuged at 1000 g for 3 min to remove cells and the supernatant oncogenic function in lung adenocarcinoma and breast cancer but was transferred to a new tube for further centrifugation at 2000 g may have an anti-angiogenic role in gastric cancer (Weng et al, for 8 min and then 20 000 g for 30 min at 4 1C. TIF samples were 2016). Our study found that SPARC and THBS2 could be aliquot and stored at À 80 1C. The protein concentration of TIF candidate serum screening markers for HCC, including AFP- was measured using the Bradford assay (Bio-Rad Laboratories, negative HCC. THBS2 was also identified to be a candidate serum Hercules, CA, USA). prognostic marker for HCC. iTRAQ analysis of TIF samples. For each TIF sample, 50 mgof proteins were mixed with 200 ml of UA buffer (8 mol l À 1 urea in 0.1 mol l À 1 Tris/HCl pH 8.5) in Amicon Ultra-0.5 Centrifugal MATERIALS AND METHODS Filter (10 kDa; Millipore Corp, Billerica, MA, USA) and centri- fuged at 14 000 g for 20 min. Then samples were treated with Sample preparation. Paired tumour and non-tumour liver tissues 20 mmol l À 1 dithiothreitol at 37 1C for 4 h. After centrifugation, from 16 HCC patients who underwent hepatectomy were collected 50 mmol l À 1 iodoacetamide was added and incubated for 30 min at for TIF extraction. All the patients were with serum room temperature in the dark. After washing with UA buffer, AFPo100 ng ml À 1, including 12 patients with serum triethylammonium bicarbonate buffer (TEAB) was added and the AFPo20 ng ml À 1.
Recommended publications
  • Eradication of ENO1-Deleted Glioblastoma Through Collateral Lethality
    bioRxiv preprint doi: https://doi.org/10.1101/331538; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Eradication of ENO1-deleted Glioblastoma through Collateral Lethality Yu-Hsi Lin1, Nikunj Satani1,2, Naima Hammoudi1, Jeffrey J. Ackroyd1, Sunada Khadka1, Victoria C. Yan1, Dimitra K. Georgiou1, Yuting Sun3, Rafal Zielinski4, Theresa Tran1, Susana Castro Pando1, Xiaobo Wang1, David Maxwell5, Zhenghong Peng6, Federica Pisaneschi1, Pijus Mandal7, Paul G. Leonard8, Quanyu Xu,9 Qi Wu9, Yongying Jiang9, Barbara Czako10, Zhijun Kang10, John M. Asara11, Waldemar Priebe4, William Bornmann12, Joseph R. Marszalek3, Ronald A. DePinho13 and Florian L. Muller#1 1) Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054 2) Institute of Stroke and Cerebrovascular Disease, The University of Texas Health Science Center at Houston, TX 77030 3) Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77054 4) Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054 5) Institutional Analytics & Informatics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 6) Cardtronics, Inc., Houston, TX 77042 7) Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054 bioRxiv preprint doi: https://doi.org/10.1101/331538; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Apoptotic Genes As Potential Markers of Metastatic Phenotype in Human Osteosarcoma Cell Lines
    17-31 10/12/07 14:53 Page 17 INTERNATIONAL JOURNAL OF ONCOLOGY 32: 17-31, 2008 17 Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines CINZIA ZUCCHINI1, ANNA ROCCHI2, MARIA CRISTINA MANARA2, PAOLA DE SANCTIS1, CRISTINA CAPANNI3, MICHELE BIANCHINI1, PAOLO CARINCI1, KATIA SCOTLANDI2 and LUISA VALVASSORI1 1Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna; 2Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli; 3IGM-CNR, Unit of Bologna, c/o Istituti Ortopedici Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy Received May 29, 2007; Accepted July 19, 2007 Abstract. Metastasis is the most frequent cause of death among malignant primitive bone tumor, usually developing in children patients with osteosarcoma. We have previously demonstrated and adolescents, with a high tendency to metastasize (2). in independent experiments that the forced expression of Metastases in osteosarcoma patients spread through peripheral L/B/K ALP and CD99 in U-2 OS osteosarcoma cell lines blood very early and colonize primarily the lung, and later markedly reduces the metastatic ability of these cancer cells. other skeleton districts (3). Since disseminated hidden micro- This behavior makes these cell lines a useful model to assess metastases are present in 80-90% of OS patients at the time the intersection of multiple and independent gene expression of diagnosis, the identification of markers of invasiveness signatures concerning the biological problem of dissemination. and metastasis forms a target of paramount importance in With the aim to characterize a common transcriptional profile planning the treatment of osteosarcoma lesions and enhancing reflecting the essential features of metastatic behavior, we the prognosis.
    [Show full text]
  • Rabbit Mab A
    Revision 1 C 0 2 - t Enolase-2 (D20H2) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 1 7 Web: [email protected] 1 www.cellsignal.com 8 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, IP H M R Mk Endogenous 47 Rabbit IgG P09104 2026 Product Usage Information Application Dilution Western Blotting 1:1000 Immunoprecipitation 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Enolase-2 (D20H2) Rabbit mAb recognizes endogenous levels of total enolase-2 protein. May cross-react with exogenous levels of enolase-1. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human enolase-2 protein. Background Enolase is a glycolytic enzyme that is involved in the conversion of 2-phosphoglycerate to phosphoenolpyruvate (1). Mammalian enolase has three subunits: α, β, and γ, that can form homo and heterodimers. Homodimers of γ enolase are neuronal-specific (2). Research studies have shown elevated levels of neuro-specific enolase-2 in neuroblastoma (2) and small-cell lung cancer (3,4). 1. Van Obberghen, E. et al. (1988) J Neurosci Res 19, 450-6. 2.
    [Show full text]
  • Neuron Specific Enolase (NSE) ELISA Kit
    Package Insert Neuron Specific Enolase (NSE) ELISA Kit Catalog Number: NSE31-K01 (1 x 96 wells) For Research Use Only. Not for use in diagnostic procedures. v. 1.0 Eagle Biosciences, Inc. 20A Northwest Blvd., Suite 112, Nashua, NH 03063 Phone: 617-419-2019 Fax: 617-419-1110 www.EagleBio.com INTENDED USE The Eagle Biosciences Human Neuron Specific Enolase (NSE) ELISA Assay Kit (enzyme-linked immunoassay kit) is intended for the quantitative determination of human neuron specific enolase (NSE) levels in serum. The Eagle Biosciences Human Neuron Specific (NSE) ELISA Assay Kit is for research use only and not to be used in diagnostic procedures. INTRODUCTION The glycolytic enzyme enolase (2-phospho-D-glycerate hydrolyase) exists as several dimeric isoenzymes (αα, αβ, ββ and γγ) composed of three distinct subunits: α, β, and γ. Three isoenzymes are found in human brain: αα, αβ, and γγ. The heterologous αγ-isoenzyme and the homologous γγ -enolase isoenzymes are known as neuron-specific enolase (NSE) as these isoenzymes initially were detected in neurons and neuroendocrine cells. By using monoclonal antibodies specific to the γ-subunit of the enzyme allow the test to detect both the αγ and the γγ forms. The NSE levels are quite low in normal healthy people and in people with benign disease. Lung cancer is one of the most common cancer forms with incidences about 50-100 per 100,000 population. Approximately 20% of the lung cancer is small cell lung cancer. NSE has been shown to be a valuable tumor marker of neuroendocrine origin, particularly in small cell lung cancer and in neuroblastoma.
    [Show full text]
  • (NSE) ELISA Kit Cat. #. EK-0050
    ELISA kits available from GSI (see details at the web site) #EK-0010 Human Leptin Instruction Manual No. M-EK-0050 # EK-0700 Human Sex Hormone Binding Glob (SHBG) # EK-0900 Human IGF-Binding Protein 1 (IGFBP1) # EK-1000 Human C-Reactive Protein (CRP) # EK-1190 Human Serum Albumin # EK-1200 Human Albumin (Urinary) Human Neuron Specific Enolase (NSE) # EK-1750 Human IgG (total) # EK-1760 Human IgM # EK-1800 Human IgE # EK-1810 Human Ferritin # EK-1210 Human Transferrin (Tf) # EK-0020 Beta-2 microglobulin ELISA Kit Cat. #. EK-0050 # EK-1600 Human Growth Hormone (GH) # EK-0060 Human Pancreatic Colorectal cancer (CA-242) # EK-1820 Human Ovarian Cancer (CA125) # EK-1830 Human CA153 For Quantitative Determination of # EK-1840 Human Pancreatic & GI Cancer (CA199) # EK-1310 Human Pancreatic Lipase Neuron specific enolase In Human Serum # EK-1400 Human Prostatic Acid Phosphatase (PAP) # EK-1500 Human Prostate Specific Antigen (PSA) # EK-1510 free PSA (fPSA) # EK-0500 Human Alpha Fetoprotein (AFP) # EK-0050 Human Neuron Specific Enolase (NSE) For In Vitro Research Use Only # EK-0030 Human Insulin # EK-0040 Human C-peptide # EK-0100 Human Luteinizing Hormone (LH) # EK-0200 Human Follicle Stimulating Hormone (FSH) # EK-0300 Human Prolactin (PRL) # EK-0400 Human Chorionic Gonadotropin (HCG) # EK-0410 HCG-free beta # EK-0600 Human Thyroid Stimulating Hormone (TSH) # EK-1100 Human Total Thyroxine (T4) # EK-1110 Human Free T4 (fT4) # EK-1650 Human free triiodothyronine (fT3) # EK-1700 Human T3 (total) # EK-1850 Human Cortisol # EK-1860 Human Progesterone # EK-1865 Human Pregnolone # EK-1875 Human Aldosterone # EK-1880 Human Testosterone # EK-1885 Human free Testosterone # EK-1910 Human Androstenedione # EK-1920 Human Estradiol # EK-1925 Human Estrone # EK-1940 Dihydrotestosterone (DHT) # EK-1950 Human DHEA-sulphate (DHEA-S) # EK-3400 Human serum Neopterin] # EK-3000 Human Rheumatoid Factors IgM (RF) # EK-3100 Human anti-dsDNA # EK-3200 Anti-Nuclear Antibodies (ANA) Page 7 EK-0050 (ub61222A) Human Neuron Specific Enolase (NSE) ELISA KIT PERFORMANCE CHARACTERISTICS Cat.
    [Show full text]
  • Datasheet (Pdf)
    alpha-Enolase/Enolase 1 Data Sheet Catalog Number: MO22153 Host: Mouse Product Type: Monoclonal IgG1 Species Rat Affinity Purified Antibody Reactivity: Immunogen Sequence: N-terminal 12 amino acids of bovine Format: Liquid, 100 ul aliquot enolase 1 Concentration: 1 mg/ml HGNC name for this protein is ENO1 Applications: Immunofluorescence/Immunocytochemistry: 1:2,000-5,00 Immunohistochemistry: 1:2,000-5,000 Western Blot: 1:5,000-10,000 Dilutions listed as a recommendation. Optimal dilution should be determined by investigator. Storage: Antibody can also be aliquoted and stored frozen at -20° C to -70° C in a manual defrost freezer for six months without detectable loss of activity. The antibody can be stored at 2° - 8° C for 1 month without detectable loss of activity. Avoid repeated freeze-thaw cycles. Application Notes Description/Data: Enolase 1 or α is also known as non-neuronal enolase (NNE) and is expressed in most kinds of tissue, but is absent from neurons. Abnormal expression of NNE is associated with tumor progression in some breast and head and neck cancer (1, 2). Enolase 2 or γ is also known as neuron specific enolase (NSE), (We offer Neuron Specific Enolase (NSE)). A switch from NNE to NSE occurs in the development of neurons (3). Enolase 3 or β is expressed primarily in muscle cells. Monoclonal antibody MO22153 was raised against the N-terminal 12 amino acids of bovine enolase 1 which was synthesized on a 8-amine lysine core using the multiple antigen presentation method. The antibody was tested for binding to expressed bovine enolase 1, 2 and 3 and shown to be specific for only enolase 1.
    [Show full text]
  • Human Neuron Specific Enolase (NSE) ELISA Kit Cat. #. 0050
    ELISA kits available from ADI (see details at the web site) #0010 Human Leptin Instruction Manual No. M-0050 #200-120-AGH Human globular Adiponectin (gAcrp30) #0700 Human Sex Hormone Binding Glob (SHBG) #0900 Human IGF-Binding Protein 1 (IGFBP1) Human Neuron Specific Enolase (NSE) #1000 Human C-Reactive Protein (CRP) #100-110-RSH Human Resistin /FIZZ3 #100-140-ADH Human Adiponectin (Acrp30) ELISA Kit Cat. #. 0050 #100-160-ANH Human Angiogenin #100-180-APH Human Angiopoietin-2 (Ang-2) #100-190-B7H Human Bone Morphogenic Protein 7 (BMP-7) For Quantitative Determination of #1190 Human Serum Albumin #1200 Human Albumin (Urinary) Neuron specific enolase In Human Serum #1750 Human IgG (total) #1760 Human IgM #1800 Human IgE #1810 Human Ferritin #1210 Human Transferrin (Tf) #0020 Beta-2 microglobulin #1600 Human Growth Hormone (GH) #0060 Human Pancreatic Colorectal cancer (CA-242) #1820 Human Ovarian Cancer (CA125) #1830 Human CA153 #1840 Human Pancreatic & GI Cancer (CA199) #1310 Human Pancreatic Lipase #1400 Human Prostatic Acid Phosphatase (PAP) #1500 Human Prostate Specific Antigen (PSA) #1510 free PSA (fPSA) #0500 Human Alpha Fetoprotein (AFP) #0050 Human Neuron Specific Enolase (NSE) #0030 Human Insulin #0040 Human C-peptide #0100 Human Luteinizing Hormone (LH) #0200 Human Follicle Stimulating Hormone (FSH) For In Vitro Research Use Only #0300 Human Prolactin (PRL) #0400 Human Chorionic Gonadotropin (HCG) #0410 HCG-free beta #0600 Human Thyroid Stimulating Hormone (TSH) #1100 Human Total Thyroxine (T4) #1110 Human Free T4 (fT4) #1650 Human free triiodothyronine (fT3) #1700 Human T3 (total) #1850 Human Cortisol #1860 Human Progesterone India Contact: #1865 Human Pregnolone #1875 Human Aldosterone Life Technologies (India) Pvt.
    [Show full text]
  • Proteome Profiler Human XL Oncology Array Kit Is a Rapid, Sensitive, and Economical Tool to Detect Differences in Cancer-Related Proteins Between Samples
    Proteome ProfilerTM Array Human XL Oncology Array Kit Catalog Number ARY026 For the parallel determination of the relative levels of selected human cancer-related proteins. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................1 TECHNICAL HINTS .................................................................................................................................................................1 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................2 OTHER SUPPLIES REQUIRED .............................................................................................................................................3 SUPPLIES REQUIRED FOR CELL LYSATE SAMPLES ...................................................................................................3 SUPPLIES REQUIRED FOR TISSUE LYSATE SAMPLES ...............................................................................................3 SAMPLE COLLECTION & STORAGE .................................................................................................................................4
    [Show full text]
  • Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
    cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology.
    [Show full text]
  • (ENO2, G-Enolase) Expression in Breast Cancer
    Soh et al. Cancer Cell International 2011, 11:41 http://www.cancerci.com/content/11/1/41 PRIMARYRESEARCH Open Access Arsenic, cadmium and neuron specific enolase (ENO2, g-enolase) expression in breast cancer Maureen A Soh1, Scott H Garrett1, Seema Somji1, Jane R Dunlevy2, Xu Dong Zhou1, Mary Ann Sens1, Chandra S Bathula1, Christina Allen1 and Donald A Sens1* Abstract Background: Neuron specific enolase (ENO2, g-enolase) has been used as a biomarker to help identify neuroendocrine differentiation in breast cancer. The goal of the present study was to determine if ENO2 expression in the breast epithelial cell is influenced by the environmental pollutants, arsenite and cadmium. Acute and chronic exposure of MCF-10A cells to As+3 and Cd+2 sufficient to allow colony formation in soft agar, was used to determine if ENO2 expression was altered by these pollutants. Results: It was shown that both As+3 and Cd+2 exposure caused significant increases in ENO2 expression under conditions of both acute and chronic exposure. In contrast, ENO1, the major glycolytic enolase in non-muscle and neuronal cells, was largely unaffected by exposure to either As+3 or Cd+2. Localization studies showed that ENO2 in the MCF-10A cells transformed by As+3 or Cd+2 had both a cytoplasmic and nuclear localization. In contrast, ENO1 was localized to the cytoplasm. ENO2 localized to the cytoplasm was found to co-localized with ENO1. Conclusion: The results are the first to show that ENO2 expression in breast epithelial cells is induced by acute and chronic exposure to As+3 or Cd+2.
    [Show full text]
  • Neural Cell Markers Neural Cell Markers
    Neural Cell Markers Neural Cell Markers Neurons and glia in neural tissue or cultures are commonly visualized and identified by immunodetection of cell-specific antigenic markers, including transcription factors, enzymes, cytoskeletal proteins, cell surface proteins, and secreted factors. The Bio-Techne brands R&D Systems and Novus Biologicals together offer an unparalleled selection of antibodies directed against these intracellular and cell surface proteins that can be used for the identification and characterization of different neural cell types. R&D Systems also offers a variety of different immunnoassays, including the gold standard Quantikine® ELISA Kits, for detecting secreted molecules. The Bio-Techne brand Tocris offers a novel and exclusive collection of tools, including bioactive small molecules, caged compounds, and fluorescent probes, for the functional identification of neural cells. Table of Contents Neuronal Markers . 1–8 General Markers. .1 Dendritic Markers. 2 Axonal Markers. 2 Presynaptic Markers. 3 Active Zone Markers. 4 Postsynaptic Markers. .4 Growth Cone Markers. .5 Cholinergic Neuron Markers. 6 Dopaminergic Neuron Markers. .6 GABAergic Neuron Markers. 7 Glutamatergic Neuron Markers. .7 Glycinergic Neuron Markers. 8 Serotonergic Neuron Markers. 8 Microglia Markers. 9–12 Steady-State Microglia Markers. .9 M1 Microglia Markers. .10–11 M2 Microglia Markers. 12 Astrocyte Markers. 13 General Markers. 13 Oligodendrocyte Markers. 14–15 Oligodendrocyte Precursor Cell Markers. .14 Immature Oligodendrocyte Markers . 14 Mature, Non-Myelinating Oligodendrocyte Markers. 15 Mature, Myelinating Oligodendrocyte Markers. 15 Additional Tools for Visualizing and Identifying Neural Cells. 16 Conjugated Primary Antibodies. 16 R&D Systems® VisUCyte™ HRP Polymer. 16 R&D Systems® Multiplex Assays . .16 Tocris® Products to Investigate Neural Function.
    [Show full text]