Energy Conservation by a Hydrogenase-Dependent Chemiosmotic Mechanism in an Ancient Metabolic Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Energy Conservation by a Hydrogenase-Dependent Chemiosmotic Mechanism in an Ancient Metabolic Pathway Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway Marie Charlotte Schoelmericha,1 and Volker Müllera,2 aMolecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved February 12, 2019 (received for review October 29, 2018) The ancient reductive acetyl-CoA pathway is employed by aceto- (THF), followed by a reduction of the formyl group to a meth- genic bacteria to form acetate from inorganic energy sources. enyl group via methenyl-THF and methylene-THF (12–15). A Since the central pathway does not gain net ATP by substrate-level second molecule of CO2 is reduced by the CO dehydrogenase/ phosphorylation, chemolithoautotrophic growth relies on the addi- acetyl CoA synthase (CODH/Acs) to enzyme-bound CO that tional formation of ATP via a chemiosmotic mechanism. Genome combines with the methyl group and CoA on the CODH/Acs analyses indicated that some acetogens only have an energy-converting, to acetyl-CoA (12, 16). Acetyl-CoA is then converted via acetyl ion-translocating hydrogenase (Ech) as a potential respiratory enzyme. phosphate to acetate and ATP. Although the Ech-encoding genes are widely distributed in nature, CO metabolism follows the same principle but involves oxi- the proposed function of Ech as an ion-translocating chemiosmotic dation of CO to CO2 according to: coupling site has neither been demonstrated in bacteria nor has it been demonstrated that it can be the only energetic coupling sites 4CO + 4H2O → 4CO2 + 4H2ðΔG0′ = −20 kJ=molÞ. [2] in microorganisms that depend on a chemiosmotic mechanism for energy conservation. Here, we show that the Ech complex of the In sum, CO is oxidized to acetate according to: thermophilic acetogenic bacterium Thermoanaerobacter kivui is MICROBIOLOGY indeed a respiratory enzyme. Experiments with resting cells prepared 4CO + 2H2O → 1CH3COOH + 2CO2ðΔG0′ = −165.6 kJ=molÞ. from T. kivui cultures grown on carbon monoxide (CO) revealed CO [3] oxidation coupled to H2 formation and the generation of a trans- membrane electrochemical ion gradient (Δμ~ion). Inverted membrane The net yield of ATP by substrate level phosphorylation (SLP) is vesicles (IMVs) prepared from CO-grown cells also produced H2 and zero, but since the bacteria do grow under lithotrophic condi- ATP from CO (via a loosely attached CO dehydrogenase) or a chemical tions, additional ATP synthesis must occur by a chemiosmotic reductant. Finally, we show that Ech activity led to the translocation mechanism (11). of both H+ and Na+ across the membrane of the IMVs. The H+ gradient How the WLP can be coupled to the synthesis of ATP has was then used by the ATP synthase for energy conservation. These been solved only recently for a mesophilic acetogen. Aceto- data demonstrate that the energy-converting hydrogenase in concert bacterium woodii, which grows optimally at 30 °C, has a simple with an ATP synthase may be the simplest form of respiration; it com- respiratory chain consisting of a ferredoxin-oxidizing, NAD- bines carbon dioxide fixation with the synthesis of ATP in an ancient reducing respiratory enzyme encoded by the rnf genes and an pathway. ATP synthase that are connected by a sodium ion circuit across acetogenesis | bioenergetics | energy-converting hydrogenase | respiratory Significance mechanism | chemiosmosis Acetogenic bacteria are the most primordial living organisms. he pioneer organism in a primordial world was probably a They can live solely on inorganic compounds by using carbon Tchemolithoautotrophic thermophilic anaerobe that employed monoxide or molecular hydrogen as energy sources to fix the reductive acetyl-CoA pathway (1, 2). This pathway is also carbon dioxide to acetate and rely on a chemiosmotic mecha- called Wood–Ljungdahl pathway (WLP), in dedication to its nism for energy conservation. Most microorganisms possess a discoverers, and encompasses CO2 fixation to acetyl CoA, CO2 complex respiratory chain that is composed of many different assimilation into biomass, and energy conservation (3, 4). The components to establish the chemiosmotic gradient. Here, we WLP has prevailed in three groups of strictly anaerobic organ- dissect the bioenergetics in a chemolithoautotrophic thermo- isms: methanogenic archaea, sulfate reducing bacteria, and philic acetogenic bacterium. This living fossil uses a simple acetogenic bacteria. respiration comprising only a hydrogenase and an ATP syn- Acetogenic bacteria are ubiquitous in nature and occupy an in- thase for energy conservation. This two-module respiration system is sufficient to sustain primordial microbial life. creasingly important role in biotechnological and industrial applica- – tions (5 8). They can grow heterotrophically on, for example, sugars, Author contributions: M.C.S. and V.M. designed research; M.C.S. performed research; alcohols, and aldehydes but also chemolithoautotrophically on M.C.S. and V.M. analyzed data; and M.C.S. and V.M. wrote the paper. hydrogen plus carbon dioxide or on carbon monoxide (3, 9–11). The authors declare no conflict of interest. Lithotrophic metabolism involves reduction of two mol CO2 to This article is a PNAS Direct Submission. acetate with electrons derived from H2 according to: Published under the PNAS license. 1Present address: Microbiology & Biotechnology, Institute of Plant Sciences and Microbi- 4H2 + 2CO2 → 1CH3COOH + 2H2O ðΔG0′ = −95 kJ=molÞ. ology, Universität Hamburg, 22609 Hamburg, Germany. [1] 2To whom correspondence should be addressed. Email: [email protected]. This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. One molecule of CO2 is reduced to formate, the formate is then 1073/pnas.1818580116/-/DCSupplemental. bound in an ATP-dependent reaction to formyl-tetrahydrofolate www.pnas.org/cgi/doi/10.1073/pnas.1818580116 PNAS Latest Articles | 1of6 Downloaded by guest on October 3, 2021 the cytoplasmic membrane (17, 18): The Rnf complex uses redox grown on CO or glucose, and resting cells were prepared. After + energy to generate a transmembrane electrochemical Na gra- addition of CO, glucose-grown cells produced only little H2,whereas −1 −1 dient across the cytoplasmic membrane that then drives ATP CO-grown cells produced H2 at a rate of 584 ± 3nmol·min ·mg + synthesis by a Na F1FO ATP synthase. rnf genes are not present protein (n = 2, SD) (Fig. 1A), indicating that the ability to oxidize in every acetogen and, thus, a second mode of energy conser- CO was induced during growth on CO. Concomitant with H2 vation must exist in acetogenic bacteria. Interestingly, inspection formation, the intracellular ATP content increased (Fig. 1B). ATP of genome sequences led to the detection of genes encoding synthesis depended on an energized membrane as evident from the energy-converting, possibly ion-translocating, membrane-bound inhibition by the protonophore 3,3′,4′,5-tetrachlorosalicylanilide hydrogenases (Ech) in Rnf-free acetogens, leading to the pos- (TCS) or sodium ionophore N,N,N′,N′-tetracyclohexyl-1,2- tulate that in these acetogens Rnf is replaced by Ech (15). phenylenedioxydiacetamide (ETH2120) and NaCl (SI Appendix, Ech belongs to the group 4 [NiFe] hydrogenases (respiratory Fig. S1). To address whether CO oxidation is coupled to the hydrogenases), which comprise a very diverse and still largely generation of an electrical field across the membrane (due to ion enigmatic group of H2-evolving, possibly ion-translocating, translocation), we tested the effect of ionophores on electron energy-conserving membrane-associated hydrogenases (19, 20). transport (H2 formation). The protonophore TCS or the sodium The first described complex of this kind was the formate- ionophore ETH2120 and NaCl (Fig. 1C) both stimulated H2 hydrogen lyase (FHL), discovered in the most common micro- formation [84 ± 30% or 69 ± 2% (n = 2, SD), respectively]. This bial model organism Escherichia coli (21). To date, however, is reminiscent of “respiratory control” as observed in mitochon- FHL complexes have never been demonstrated to translocate dria: Charge translocation leads to the build-up of an electrical ions across the cytoplasmic membrane in bacteria. More complex field that slows down further electron transport; disruption of the Ech complexes with 6 to 14 subunits are present in archaea, and electrical field then stimulates electron transport. Thus, the ex- evidence has been presented for ion transport for the enzymes periments described above are consistent with the hypothesis that – from Methanosarcina, Pyrococcus, and Thermococcus (22 24). H2 formation from CO in T. kivui is coupled to the generation of a The six-subunit complex as found in the methanogen Meth- transmembrane electrochemical ion gradient. + + anosarcina mazei is H -translocating and the first enzyme in a To investigate whether Na might be the chemiosmotic coupling + chain of respiratory enzymes. The 14-subunit complex of Pyro- ion, we analyzed the effect of Na on H2 evolution from CO. H2 coccus was described as proton translocating, but the recent formation from CO was already quite high at the lowest (con- + high-resolution cryo-EM structure revealed a row of potential taminating) Na concentration (90 μM), and addition of NaCl + + Na /H antiporter modules leading to the assumption that the (0.25–10 mM) only slightly increased H2 formation (SI Appendix, + + + enzyme translocates both H and Na
Recommended publications
  • Group a Streptococcus Produce Pilus-Like Structures Containing Protective Antigens and Lancefield T Antigens
    Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens Marirosa Mora*†, Giuliano Bensi*†, Sabrina Capo*, Fabiana Falugi*, Chiara Zingaretti*, Andrea G. O. Manetti*, Tiziana Maggi*, Anna Rita Taddei‡, Guido Grandi*, and John L. Telford*§ *Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy; and ‡Centro Interdipartimentale di Microscopia Elettronica, University of Tuscia, 01100 Viterbo, Italy Communicated by Rino Rappuoli, Chiron Corporation, Siena, Italy, September 8, 2005 (received for review July 29, 2005) Although pili have long been recognized in Gram-negative patho- extensively characterized and despite five decades of study, there gens as important virulence factors involved in adhesion and is still very little known about the structure and variability of T invasion, very little is known about extended surface organelles in antigens, although a gene of unknown function has been shown Gram-positive pathogens. Here we report that Group A Strepto- to code for the antigen recognized by T6 sera (9). Here we show coccus (GAS), a Gram-positive human-specific pathogen that that four of the 20 T antigens correspond to trypsin-resistant pili causes pharyngitis, impetigo, invasive disease, necrotizing fasciitis, composed of putative adhesion proteins and that recombinant and autoimmune sequelae has long, surface-exposed, pilus-like pilus proteins confer protection against lethal GAS challenge in structures composed of members of a family of extracellular a mouse model of infection and invasive disease. matrix-binding proteins. We describe four variant pili and show that each is recognized by a specific serum of the Lancefield Materials and Methods T-typing system, which has been used for over five decades to Bacterial Strains, Media, and Growth Conditions.
    [Show full text]
  • Structural Changes in the Oral Microbiome of the Adolescent
    www.nature.com/scientificreports OPEN Structural changes in the oral microbiome of the adolescent patients with moderate or severe dental fuorosis Qian Wang1,2, Xuelan Chen1,4, Huan Hu2, Xiaoyuan Wei3, Xiaofan Wang3, Zehui Peng4, Rui Ma4, Qian Zhao4, Jiangchao Zhao3*, Jianguo Liu1* & Feilong Deng1,2,3* Dental fuorosis is a very prevalent endemic disease. Although oral microbiome has been reported to correlate with diferent oral diseases, there appears to be an absence of research recognizing any relationship between the severity of dental fuorosis and the oral microbiome. To this end, we investigated the changes in oral microbial community structure and identifed bacterial species associated with moderate and severe dental fuorosis. Salivary samples of 42 individuals, assigned into Healthy (N = 9), Mild (N = 14) and Moderate/Severe (M&S, N = 19), were investigated using the V4 region of 16S rRNA gene. The oral microbial community structure based on Bray Curtis and Weighted Unifrac were signifcantly changed in the M&S group compared with both of Healthy and Mild. As the predominant phyla, Firmicutes and Bacteroidetes showed variation in the relative abundance among groups. The Firmicutes/Bacteroidetes (F/B) ratio was signifcantly higher in the M&S group. LEfSe analysis was used to identify diferentially represented taxa at the species level. Several genera such as Streptococcus mitis, Gemella parahaemolysans, Lactococcus lactis, and Fusobacterium nucleatum, were signifcantly more abundant in patients with moderate/severe dental fuorosis, while Prevotella melaninogenica and Schaalia odontolytica were enriched in the Healthy group. In conclusion, our study indicates oral microbiome shift in patients with moderate/severe dental fuorosis.
    [Show full text]
  • Oral Microbiota Features in Subjects with Down Syndrome and Periodontal Diseases: a Systematic Review
    International Journal of Molecular Sciences Review Oral Microbiota Features in Subjects with Down Syndrome and Periodontal Diseases: A Systematic Review Maria Contaldo 1,* , Alberta Lucchese 1, Antonio Romano 1 , Fedora Della Vella 2 , Dario Di Stasio 1 , Rosario Serpico 1 and Massimo Petruzzi 2 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; [email protected] (A.L.); [email protected] (A.R.); [email protected] (D.D.S.); [email protected] (R.S.) 2 Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; [email protected] (F.D.V.); [email protected] (M.P.) * Correspondence: [email protected] or [email protected]; Tel.: +39-3204876058 Abstract: Down syndrome (DS) is a genetic disorder associated with early-onset periodontitis and other periodontal diseases (PDs). The present work aimed to systematically review the scientific literature reporting studies in vivo on oral microbiota features in subjects with DS and related periodontal health and to highlight any correlation and difference with subjects not affected by DS, with and without PDs. PubMed, Web of Science, Scopus and Cochrane were searched for relevant studies in May 2021. The participants were subjects affected by Down syndrome (DS) with and without periodontal diseases; the study compared subjects with periodontal diseases but not affected by DS, and DS without periodontal diseases; the outcomes were the differences in oral microbiota/periodontopathogen bacterial composition among subjects considered; the study Citation: Contaldo, M.; Lucchese, A.; design was a systematic review.
    [Show full text]
  • D086p093.Pdf
    Vol. 86: 93–106, 2009 DISEASES OF AQUATIC ORGANISMS Published September 23 doi: 10.3354/dao02132 Dis Aquat Org OPENPEN ACCESSCCESS Streptococcosis in farmed Litopenaeus vannamei: a new emerging bacterial disease of penaeid shrimp Ken W. Hasson*, Ernesto Matheu Wyld, Yaping Fan, Sonia W. Lingsweiller, Stephanie J. Weaver, Jinling Cheng, Patricia W. Varner Texas Veterinary Medical Diagnostic Lab, 1 Sippel Rd, College Station, Texas 77843, USA ABSTRACT: Presumptive systemic streptococcal infections were detected histologically in farmed Litopenaeus vannamei juveniles submitted from a Latin American country and the bacteria isolated. Characterization work demonstrated that the Gram-positive cocci form chains, grow aerobically and anaerobically, are oxidase- and catalase-negative, non-hemolytic, non-motile, Lancefield Group B positive and PCR positive when amplified with a universal streptococcal primer set. Differing Strep- tococcus identifications were obtained using API 20 Strep and Biolog systems, the former identifying the isolate as S. uberis and the latter as S. parauberis. Injection of specific pathogen-free (SPF) L. van- namei with the bacteria resulted in 100% mortality by 3 d post-injection with successful recovery of the agent from moribund test shrimp hemolymph samples. The recovered isolate was used in per os and waterborne exposure studies of SPF L. vannamei with mortalities ranging from 40 to 100% and 80 to 100%, respectively. Histologic analysis of 5 to 8 moribund shrimp from each exposure method demonstrated that all contained a severe bacteremia characterized by numerous free cocci within the hemolymph and aggregates of vacuolated hemocytes with notable intravacuolar cocci. This unique lesion type was most pronounced within the lymphoid organ and considered pathodiagnostic for this disease.
    [Show full text]
  • Bacteriology
    SECTION 1 High Yield Microbiology 1 Bacteriology MORGAN A. PENCE Definitions Obligate/strict anaerobe: an organism that grows only in the absence of oxygen (e.g., Bacteroides fragilis). Spirochete Aerobe: an organism that lives and grows in the presence : spiral-shaped bacterium; neither gram-positive of oxygen. nor gram-negative. Aerotolerant anaerobe: an organism that shows signifi- cantly better growth in the absence of oxygen but may Gram Stain show limited growth in the presence of oxygen (e.g., • Principal stain used in bacteriology. Clostridium tertium, many Actinomyces spp.). • Distinguishes gram-positive bacteria from gram-negative Anaerobe : an organism that can live in the absence of oxy- bacteria. gen. Bacillus/bacilli: rod-shaped bacteria (e.g., gram-negative Method bacilli); not to be confused with the genus Bacillus. • A portion of a specimen or bacterial growth is applied to Coccus/cocci: spherical/round bacteria. a slide and dried. Coryneform: “club-shaped” or resembling Chinese letters; • Specimen is fixed to slide by methanol (preferred) or heat description of a Gram stain morphology consistent with (can distort morphology). Corynebacterium and related genera. • Crystal violet is added to the slide. Diphtheroid: clinical microbiology-speak for coryneform • Iodine is added and forms a complex with crystal violet gram-positive rods (Corynebacterium and related genera). that binds to the thick peptidoglycan layer of gram-posi- Gram-negative: bacteria that do not retain the purple color tive cell walls. of the crystal violet in the Gram stain due to the presence • Acetone-alcohol solution is added, which washes away of a thin peptidoglycan cell wall; gram-negative bacteria the crystal violet–iodine complexes in gram-negative appear pink due to the safranin counter stain.
    [Show full text]
  • Gram Positive Cocci (GPC) Gram Neg (Rods = GNR) Anaerobes
    Gram Positive Cocci (GPC) Gram Neg (rods = GNR) Anaerobes Atypicals Classification Antibiotic Cluster Streptococcus Entero- Resp Enteric Non- Bacteroides, Mycoplasma = Staph β↓ & α-hemolytic↓ coccus (cocci) GI flora enteric Clostridium Legionella Beta-Lactams General Spectrum MSSA Group pneumo, faecalis H. flu, E. coli, Pseud- (non-dfficile) Chlamydia Penicillins of Activity → only A / B Viridans only M. cat Klebsiella omonas Peptostrep. (pneumonia) Natural Penicillin G IV/ PenVK PO +/- ++ + + 0 0 0 + 0 Anti- Oxacillin/Nafcillin IV, ++ ++ + 0 0 0 0 0 0 Staphylococcal Dicloxacillin PO Aminopenicillins Amp/Amoxicillin IV/PO 0 ++ + ++ +R +/- 0 + 0 Anti-Pseudomonal Piperacillin/Ticarcillin IV 0 + + + + + ++R + 0 Beta-Lactamase Clavulanate IV/PO, sulbactam Increase Inc by Increase Increase Inhibitor added tazobactam, vaborbactam IV by + + by + by + Cephalosporins Cefazolin IV/ ++ ++ +/- 0 +/- + 0 0 0 1st Generation Cephalexin PO 2nd Generation Cefuroxime IV/PO + ++ + 0 + + 0 +/- 0 Cephamycins Cefoxitin/Cefotetan IV 0 + 0 0 + + 0 + 0 3rd Generation Ceftriaxone/Cefotaxime IV + ++ ++ 0 ++ ++R 0 +/- 0 (PO in between 2nd Ceftazidime IV (+ Avibactam 0 + 0 0 ++ ++R ++R 0 0 and 3rd gen) for Carb-Resistant Enterics) 4th Generation Cefepime IV + ++ ++ 0 ++ ++ ++R 0 0 Novel Ceftolozane-tazo/Cefiderocol 0 + + 0 ++ ++ ++ +/- 0 Carbapenems Imipenem, Meropenem IV + + + +/- ++ ++ ++R ++ 0 (+rele/vaborbactam for CRE) Ertapenem IV + ++ ++ 0 ++ ++ 0 ++ 0 Monobactam Aztreonam IV 0 0 0 0 ++ ++R + 0 0 Non β-Lactams Includes MRSA Both sp. Aminoglycosides Gentamicin,
    [Show full text]
  • Proton-Binding Capacity of Staphylococcus Aureus Wall Teichoic Acid and Its Role in Controlling Autolysin Activity
    Proton-Binding Capacity of Staphylococcus aureus Wall Teichoic Acid and Its Role in Controlling Autolysin Activity Raja Biswas1, Raul E. Martinez2, Nadine Go¨ hring1, Martin Schlag3, Michaele Josten4, Guoqing Xia1, Florian Hegler2, Cordula Gekeler1, Anne-Kathrin Gleske1, Friedrich Go¨ tz3, Hans-Georg Sahl4, Andreas Kappler2, Andreas Peschel1* 1 Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology, University of Tu¨bingen, Tu¨bingen, Germany, 2 Center for Applied Geoscience, Geomicrobiology, University of Tu¨bingen, Tu¨bingen, Germany, 3 Interfaculty Institute of Microbiology and Infection Medicine, Microbial Genetics, University of Tu¨bingen, Tu¨bingen, Germany, 4 Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, Bonn, Germany Abstract Wall teichoic acid (WTA) or related polyanionic cell wall glycopolymers are produced by most Gram-positive bacterial species and have been implicated in various cellular functions. WTA and the proton gradient across bacterial membranes are known to control the activity of autolysins but the molecular details of these interactions are poorly understood. We demonstrate that WTA contributes substantially to the proton-binding capacity of Staphylococcus aureus cell walls and controls autolysis largely via the major autolysin AtlA whose activity is known to decline at acidic pH values. Compounds that increase or decrease the activity of the respiratory chain, a main source of protons in the cell wall, modulated autolysis rates in WTA-producing cells but did not affect the augmented autolytic activity observed in a WTA-deficient mutant. We propose that WTA represents a cation-exchanger like mesh in the Gram-positive cell envelopes that is required for creating a locally acidified milieu to govern the pH-dependent activity of autolysins.
    [Show full text]
  • Immune Exclusion by Naturally Acquired Secretory Iga Against Pneumococcal Pilus-1
    Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1 Ulrike Binsker, … , Alexandria J. Hammond, Jeffrey N. Weiser J Clin Invest. 2020;130(2):927-941. https://doi.org/10.1172/JCI132005. Research Article Microbiology Successful infection by mucosal pathogens requires overcoming the mucus barrier. To better understand this key step, we performed a survey of the interactions between human respiratory mucus and the human pathogen Streptococcus pneumoniae. Pneumococcal adherence to adult human nasal fluid was seen only by isolates expressing pilus-1. Robust binding was independent of pilus-1 adhesive properties but required Fab-dependent recognition of RrgB, the pilus shaft protein, by naturally acquired secretory IgA (sIgA). Pilus-1 binding by specific sIgA led to bacterial agglutination, but adherence required interaction of agglutinated pneumococci and entrapment in mucus particles. To test the effect of these interactions in vivo, pneumococci were preincubated with human sIgA before intranasal challenge in a mouse model of colonization. sIgA treatment resulted in rapid immune exclusion of pilus-expressing pneumococci. Our findings predict that immune exclusion would select for nonpiliated isolates in individuals who acquired RrgB-specific sIgA from prior episodes of colonization with piliated strains. Accordingly, genomic data comparing isolates carried by mothers and their children showed that mothers are less likely to be colonized with pilus-expressing strains. Our study provides a specific example of immune exclusion involving naturally acquired antibody in the human host, a major factor driving pneumococcal adaptation. Find the latest version: https://jci.me/132005/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1 Ulrike Binsker, John A.
    [Show full text]
  • FACIN, a Double-Edged Sword of The
    FACIN, a Double-Edged Sword of the Emerging Periodontal Pathogen Filifactor alocis : A Metabolic Enzyme Moonlighting as a Complement Inhibitor This information is current as of September 29, 2021. Monika Jusko, Beata Miedziak, David Ermert, Michal Magda, Ben C. King, Ewa Bielecka, Kristian Riesbeck, Sigrun Eick, Jan Potempa and Anna M. Blom J Immunol 2016; 197:3245-3259; Prepublished online 16 September 2016; Downloaded from doi: 10.4049/jimmunol.1600739 http://www.jimmunol.org/content/197/8/3245 http://www.jimmunol.org/ References This article cites 55 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/197/8/3245.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology FACIN, a Double-Edged Sword of the Emerging Periodontal Pathogen Filifactor alocis: A Metabolic Enzyme Moonlighting as a Complement Inhibitor Monika Jusko,* Beata Miedziak,* David Ermert,* Michal Magda,* Ben C.
    [Show full text]
  • Coccus,7 Streptococcus,8 Bacillus,9' 10 Flavobacterium,", 12 And
    414 MICROBIOLOGY: SCHINDLER AND SCHUHARDT PROC. N. A. S. 3Wilt, F. H., Biochem. Biophys. Res. Commun., 11, 447 (1963). 7Brachet, J., et al., Biochim. Biophys. Acta, 72, 662 (1963). 8 Gross, P. R., and G. H. Cousineau, Exptl. Cell Res., in press. I Hultin, T., Exptl. Cell Res., 25, 405 (1961). 10 Wilt, F. H., and T. Hultin, Biochem. Biophys. Res. Commun., 9, 313 (1962). 11 Melton, C. R., Genetics, 48, 901 (1963). 12Tyler, A., Am. Zoologist, 3, 109 (1963). 13 Gross, P. R., W. Spindel, and G. H. Cousineau, Biocheem. Biophys. Res. Commun., 13, 405 (1963). 14 Cavanaugh, G., ed., Formulae and Methods of the Marine Biological Laboratory, IV (Woods Hole, 1956). 15 Herberg, R., Science, 128, 199 (1958). 16Bray, G., Anal. Biochem., 1, 279 (1960). 17 Lowry, O., et al., J. Biol. Chem., 193, 265 (1951). 18 Scherrer, K., and J. Darnell, Biochem. Biophys. Res. Commun., 7, 486 (1962). 19 Fraenkel-Conrat, H., B. Singer, and A. Tsugita, Virology, 14, 54 (1961). 20 Hurwitz, J., et al., these PROCEEDINGS, 48, 1222 (1962). 21 Reich, E., I. H. Goldberg, and M. Rabinowitz, Nature, 196, 743 (1962). 22 Levinthal, C., A. Keynan, and A. Higa, these PROCEEDINGS, 48, 1631 (1962). 23 Monier, R., et al., J. Mol. Biol., 5, 311 (1962). 24 Nemer, M., and S. G. Bard, Science, 140, 664 (1963). 25 Maggio, R., and C. Catalano, in preparation. 26 Hultin, T., Experientia, 7, 410 (1961). 27 Gross, P. R., and G. H. Cousineau, J. Cell Biol., 19, 260 (1963). LYSOSTAPHIN: A NEW BACTERIOLYTIC AGENT FOR THE STAPHYLOCOCCUS BY C.
    [Show full text]
  • Microbial Co-Occurrence Relationships in the Human Microbiome
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Technology Food Science and Technology Department 7-12-2012 Microbial Co-occurrence Relationships in the Human Microbiome Karoline Faust Vrije Universiteit Brussel J. Fah Sathirapongsasuti Harvard School of Public Health Jacques Izard Forsyth Institute & Harvard School of Dental Medicine Dirk Gevers Broad Institute of MIT and Harvard Jeroen Raes Vrije Universiteit Brussel, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/foodsciefacpub Part of the Food Science Commons Faust, Karoline; Sathirapongsasuti, J. Fah; Izard, Jacques; Gevers, Dirk; Raes, Jeroen; and Huttenhower, Curtis, "Microbial Co-occurrence Relationships in the Human Microbiome" (2012). Faculty Publications in Food Science and Technology. 318. https://digitalcommons.unl.edu/foodsciefacpub/318 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Karoline Faust, J. Fah Sathirapongsasuti, Jacques Izard, Dirk Gevers, Jeroen Raes, and Curtis Huttenhower This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ foodsciefacpub/318 Microbial Co-occurrence
    [Show full text]
  • Microbial Hitchhikers on Intercontinental Dust: Catching a Lift in Chad
    The ISME Journal (2013) 7, 850–867 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej ORIGINAL ARTICLE Microbial hitchhikers on intercontinental dust: catching a lift in Chad Jocelyne Favet1, Ales Lapanje2, Adriana Giongo3, Suzanne Kennedy4, Yin-Yin Aung1, Arlette Cattaneo1, Austin G Davis-Richardson3, Christopher T Brown3, Renate Kort5, Hans-Ju¨ rgen Brumsack6, Bernhard Schnetger6, Adrian Chappell7, Jaap Kroijenga8, Andreas Beck9,10, Karin Schwibbert11, Ahmed H Mohamed12, Timothy Kirchner12, Patricia Dorr de Quadros3, Eric W Triplett3, William J Broughton1,11 and Anna A Gorbushina1,11,13 1Universite´ de Gene`ve, Sciences III, Gene`ve 4, Switzerland; 2Institute of Physical Biology, Ljubljana, Slovenia; 3Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA; 4MO BIO Laboratories Inc., Carlsbad, CA, USA; 5Elektronenmikroskopie, Carl von Ossietzky Universita¨t, Oldenburg, Germany; 6Microbiogeochemie, ICBM, Carl von Ossietzky Universita¨t, Oldenburg, Germany; 7CSIRO Land and Water, Black Mountain Laboratories, Black Mountain, ACT, Australia; 8Konvintsdyk 1, Friesland, The Netherlands; 9Botanische Staatssammlung Mu¨nchen, Department of Lichenology and Bryology, Mu¨nchen, Germany; 10GeoBio-Center, Ludwig-Maximilians Universita¨t Mu¨nchen, Mu¨nchen, Germany; 11Bundesanstalt fu¨r Materialforschung, und -pru¨fung, Abteilung Material und Umwelt, Berlin, Germany; 12Geomatics SFRC IFAS, University of Florida, Gainesville, FL, USA and 13Freie Universita¨t Berlin, Fachbereich Biologie, Chemie und Pharmazie & Geowissenschaften, Berlin, Germany Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bode´le´ Depression in the Republic of Chad has been called the dustiest place on earth.
    [Show full text]