Long-Term Effects of the Harvesting of Trapa Natans on Local Water Quality and Aquatic Macrophyte Community in Lake Erhai, China

Total Page:16

File Type:pdf, Size:1020Kb

Long-Term Effects of the Harvesting of Trapa Natans on Local Water Quality and Aquatic Macrophyte Community in Lake Erhai, China ORIGINAL RESEARCH published: 09 July 2021 doi: 10.3389/fenvs.2021.706746 Long-Term Effects of the Harvesting of Trapa natans on Local Water Quality and Aquatic Macrophyte Community in Lake Erhai, China Changbo Yuan 1†, Xiaohu Bai 2,3,4,5†, Tianshun Zhu 6, Zihao Wen 1, Te Cao 1, Xiaolin Zhang 1* and Leyi Ni 1 1Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China, 2Xinjiang Academy of Environmental Protection Science, Urumqi, China, 3Xinjiang Key Laboratory for Environmental Pollution Monitoring and Risk Warning, Urumqi, China, 4Xinjiang Engineering Technology Research Center for Cleaner Production, Urumqi, China, 5Junggar Desert-oasis Ecotone Station for Scientific Observation and Research of National Environmental Protection, Urumqi, China, 6College of Life Sciences, Zaozhuang University, Edited by: Zaozhuang, China Peng Bao, Institute of Urban Environment (CAS), China Trapa natans is one of the main species causing the swamping in the littoral zones of Erhai Reviewed by: Lake. It commonly forms a dense canopy on the water surface in the growing season Guorong Zhu, (June–September), which hampers the local water quality and habitat of submerged Henan Normal University, China Yibo Wu, macrophytes, and releases nutrients to the water after death in autumn and winter, Ningbo University, China resulting in the deterioration of local water quality. At present, there are many and positive *Correspondence: research studies on the short-term effects of harvesting water chestnut on water quality Xiaolin Zhang [email protected] and aquatic plants, but long-term observation results are lacking. In response to the above †These authors have contributed problems, we studied responses of water quality and aquatic plant community to the equally to this work and share first removal of Trapa in littoral zone of a northern bay in Erhai from August 2014 to January authorship 2017. This could be the first attempt to discover the long-term effects of floating-leaved fi Specialty section: vegetation management in the freshwater ecosystem. The results showed that the arti cial This article was submitted to removal of Trapa significantly improved the local water quality in the growing season, for Freshwater Science, example, the concentrations of total nitrogen (TN), dissolved nitrogen (DN), total a section of the journal Frontiers in Environmental Science phosphorus (TP), and dissolved phosphorus (DP) in the non-Trapa zone (NTZ) were Received: 08 May 2021 much lower than the concentrations of those in the adjacent Trapa zone (TZ). And the Accepted: 18 June 2021 biomass of aquatic macrophyte community (BAMC) was significantly increased in the NTZ, Published: 09 July 2021 up to the maximum value of about 21 kg/m2 in fresh weight. However, the diversity indexes Citation: of the community in the NTZ declined. Therefore, we suggested that although the removal Yuan C, Bai X, Zhu T, Wen Z, Cao T, Zhang X and Ni L (2021) Long-Term of Trapa improved the water quality and increased the productivity of the submerged Effects of the Harvesting of Trapa aquatic plant community, it reduced the species diversity of the aquatic plant community in natans on Local Water Quality and Aquatic Macrophyte Community in the long run. This is another issue that we need to pay attention to in the later management Lake Erhai, China. in Erhai Lake. Front. Environ. Sci. 9:706746. doi: 10.3389/fenvs.2021.706746 Keywords: harvesting, water quality, aquatic plant community, Lake Erhai, Trapa natans Frontiers in Environmental Science | www.frontiersin.org 1 July 2021 | Volume 9 | Article 706746 Yuan et al. Long-Term Effects of Vegetation Harvesting INTRODUCTION actual aquatic plant management because the stabilization of aquatic plant community composition requires a long-term Trapa species are typical floating-leaved aquatic plants. The process. As Scheffer et al. (2003) indicated by the model floating-leaved plants are obviously superior for light approach, the competition relationship between floating and competition than submersed plants, and the only limited submersed plants can cause alternative attractors. However, factor which could prevent their growth is nutrients. As such a hypothesis still needs a useful complementary type of aggravation of the water eutrophication, floating-leaved species evidence through large-scale field experiments (Scheffer et al., would quickly outcompete other aquatic plants and become 2003). dominant species in many shallow water bodies (Kociˇ c´ et al., Therefore, in order to explore the long-term response of water 2009; Chen and Wang, 2019). As the water temperature and the quality and aquatic vegetation to harvesting of the Trapa input of external nutrients increase, their biomass will further population, we conducted a 30-month study in the northern increase, leading to the deepening of the eutrophication of the bay of Erhai Lake. Our research could be the first attempt to ecosystem and threatening the ecological balance of the habitat experimentally evaluate the ecological functions of floating- (Markovic et al., 2015). leaved plant management through long-term and large-scale On the one hand, Trapa has serious negative effects on water field experiment. And our results will provide a valuable and bodies during the growing season and the decline season. In the practicable management strategy in the large-scale ecological growing season, Trapa can reach a high biomass, for example, restoration. 504 ± 91 g dry Weight/m2 in Lake Lanca di Po (Bolpagni et al., Based on the limited research studies (Scheffer et al., 2003; Xu 2007), thereby adsorbing a large amount of nutrients, most of et al., 2014), it is reasonable to expect that submersed macrophyte which is from the sediment (Watanabe et al., 2010). At the same community will gradually recover after the removal of Trapa time, it forms an underwater environment of high total populations. But the further community succession and phosphorus concentration (Akabori et al., 2015). In addition, ecosystem management still need to be studied. In this most of the nutrients absorbed by Trapa are released to the water research, we hypothesized that 1) the removal of the Trapa column after their death and decomposition in autumn and population will significantly improve the local water quality, 2) winter, hampering the local water quality (Choi et al., 2016). the submersed macrophytes will reassemble soon after the On the other hand, the existence of Trapa species inhibits the removal of Trapa, and 3) the local biodiversity will be propagation and spread of submerged plants, and threatens the improved dramatically. living environment of other organisms (Caraco and Cole, 2002) by forming water environment of low oxygen concentration (Hummel and Findlay, 2006; Goodwin et al., 2008; Kato et al., MATERIALS AND METHODS 2016; Klancnikˇ et al., 2017), low light intensity (30% coverage can block 74% of the light) (Netten, 2011), and so on, which in turn Study Area affects the service functions of lake ecosystems (Markovic et al., This research was conducted in Haichao Bay, which is in the 2015). The low oxygen content and low underwater light intensity northern part of Erhai Lake (25°52′N, 100°06′E) in subtropical in local waters caused by Trapa species (Caraco and Cole, 2002; Yunnan Plateau, China. It was adjacent to the breeding base of Kara et al., 2010; Klancnikˇ et al., 2017) severely inhibit Erhai aquatic plant seedlings without seasonal pollutant inputs. photosynthesis intensity of submerged macrophytes (Barko Erhai Lake is a mesotrophic lake with a moderate water depth and Smart, 1981). Once the abundance of the floating-leaf (max. 20.5 m, mean. 10.5 m) and has an area of about 250 km2.In plants develops rapidly through its asymmetric competitive the last decades, with the increased eutrophication of the local advantage over submerged macrophytes and exceeds a certain watershed, the littoral zone of Haichao Bay was dominated by T. threshold, submerged macrophytes will face the threat of decay, natans, and the submerged vegetation was seriously threatened which will seriously weaken the health and stability of the lake (Fu et al., 2013). ecosystem (Scheffer et al., 2003; Kagami et al., 2019). At present, there are a few research studies on the harvesting Experiment Design management of Trapa, and they mainly focus on the short-term The experiment was conducted in shallow waters near Baima (within 1 year) effects of reducing the nutrient load of water village on the west bank of Haichao Bay. It was divided into two bodies (Galanti et al., 1990; Xu et al., 2014; Lawniczak and experimental zones (Figure 1). One was enclosed by a Achtenberg, 2018), lacking results of long-term monitoring of polyethylene mesh to an area of about 20,000 m2. In this zone, harvesting Trapa on water quality and the plants. These short- T. natans was repeatedly removed with a sickle from August 16, term results showed that the harvesting of Trapa significantly 2014 to August 25, 2014 as the non-Trapa zone (NTZ) treatment. reduced the concentrations of nitrogen and phosphorus in the The second (control zone) without harvesting was adjacent to the water body, and promotes the growth of some subdominant NTZ with the area of about 10,000 m2 and was treated as the aquatic plants. The removal of Trapa will definitely improve the Trapa zone (TZ) treatment (Figure 1). Monitoring sites were submerged plant community to a certain extent (Xu et al., 2014), deployed as below and were sampled monthly (except December but the recovery of aquatic plant community after Trapa 2016 for the lacking of personnel and sampling tools) from harvesting is a long run, which has also an important effect on August 15, 2014 to January 15, 2017, for measurements of local water quality. Thus, these results are difficult to apply to water quality parameters and aquatic plant community Frontiers in Environmental Science | www.frontiersin.org 2 July 2021 | Volume 9 | Article 706746 Yuan et al.
Recommended publications
  • An Updated Checklist of Aquatic Plants of Myanmar and Thailand
    Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • A Satellite-Based Assessment of the Distribution and Biomass of Submerged Aquatic Vegetation in the Optically Shallow Basin of Lake Biwa
    Article A Satellite-Based Assessment of the Distribution and Biomass of Submerged Aquatic Vegetation in the Optically Shallow Basin of Lake Biwa Shweta Yadav 1, Minoru Yoneda 1, Junichi Susaki 2, Masayuki Tamura 2, Kanako Ishikawa 3 and Yosuke Yamashiki 4,* 1 Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615- 8540, Japan; [email protected] (S.Y.); [email protected] (M.Y.) 2 Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan; [email protected] (J.S.); [email protected] (M.T.) 3 Lake Biwa Environmental Research Institute (LBERI), Otsu 520-0022, Japan; [email protected] 4 Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-762-2080 Received: 15 July 2017; Accepted: 12 September 2017; Published: 18 September 2017 Abstract: Assessing the abundance of submerged aquatic vegetation (SAV), particularly in shallow lakes, is essential for effective lake management activities. In the present study we applied satellite remote sensing (a Landsat-8 image) in order to evaluate the SAV coverage area and its biomass for the peak growth period, which is mainly in September or October (2013 to 2016), in the eutrophic and shallow south basin of Lake Biwa. We developed and validated a satellite-based water transparency retrieval algorithm based on the linear regression approach (R2 = 0.77) to determine the water clarity (2013–2016), which was later used for SAV classification and biomass estimation.
    [Show full text]
  • Differences in Phytoaccumulation of Organic Pollutants in Freshwater Submerged and Emergent Plants
    Environmental Pollution 241 (2018) 247e253 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Differences in phytoaccumulation of organic pollutants in freshwater submerged and emergent plants Senrong Fan a, Hang Liu a, Guomao Zheng a, Yilin Wang b, Shuran Wang c, Yong Liu b, * Xueqin Liu c,YiWana, a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China b Key Laboratory of Water and Sediment Sciences Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China c State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China article info abstract Article history: Plants play an important role as sinks for or indicators of semivolatile organic pollutants, however most Received 7 December 2017 studies have focused on terrestrial plants and insufficient information has been obtained on aquatic Received in revised form plants to clarify the accumulation of organic pollutants via air-to-leaf vs. water-to-leaf pathways. The 16 May 2018 presence of p, pʹ-dichlorodiphenyldichloroethylene (p, pʹ-DDE), hexachlorobenzene (HCB), 15 polycyclic Accepted 21 May 2018 aromatic hydrocarbons (PAHs), and 9 substituted PAHs (s-PAHs), including oxy-PAHs and sulfur-PAHs, in Available online 26 May 2018 10 submerged and emergent plants collected from Lake Dianchi was analyzed in this study. Relatively low concentrations of p, pʹ-DDE (ND to 2.22 ng/g wet weight [ww]) and HCB (0.24e0.84 ng/g ww) and Keywords: e e Aquatic plants high levels of PAHs (46 244 ng/g ww) and s-PAHs (6.0 46.8 ng/g ww) were observed in the aquatic fi Mesophyll morphology plants.
    [Show full text]
  • The Effects of Water Pollution on the Phylogenetic Community Structure of Aquatic Plants in the East Tiaoxi River, China
    Received: 4 November 2018 | Revised: 8 October 2019 | Accepted: 6 November 2019 DOI: 10.1111/fwb.13451 ORIGINAL ARTICLE The effects of water pollution on the phylogenetic community structure of aquatic plants in the East Tiaoxi River, China Hironori Toyama1,2 | Kazuhiro Bessho3 | Liangliang Huang4 | Shun K. Hirota5,6 | Yuichi Kano6 | Keiko Mase2 | Tatsuro Sato6 | Akiyo Naiki7 | Jianhua Li8 | Yukihiro Shimatani9 | Tetsukazu Yahara2,6 1Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan 2Center for Asian Conservation Ecology, Kyushu University, Motooka, Fukuoka, Japan 3Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan 4Guangxi Key Laboratory of Environmental Pollution Control and Technology, Guilin University of Technology, Guilin, Guangxi, China 5Field Science Center, Graduate School of Agricultural Science, Tohoku University, Osaki City, Miyagi, Japan 6Institute of Decision Science for a Sustainable Society, Kyushu University, Motooka, Fukuoka, Japan 7Tropical Biosphere Research Center, University of the Ryukyus, Yaeyama-gun, Okinawa, Japan 8Key Laboratory of Water Environment in the Yangtze River, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China 9Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan Correspondence Hironori Toyama, Center for Environmental Abstract Biology and Ecosystem Studies, National 1. Water pollution is one of the most serious aquatic environmental problems world- Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan. wide. In China, recent agricultural and industrial development has resulted in rapid Email: [email protected] changes in aquatic ecosystems. Here, we reveal the effects of water pollution on Funding information the phylogenetic community structure of aquatic macrophytes in the Tiaoxi River, JSPS grant for Global Center of Excellence China.
    [Show full text]
  • Anaerobic Digestion of Submerged Macrophytes
    DISSERTATION ANAEROBIC DIGESTION OF SUBMERGED MACROPHYTES —BIOCHEMICAL APPROACH FOR ENHANCING THE METHANE PRODUCTION— 2016 SOKA UNIVERSITY GRADUATE SCHOOL OF ENGINEERING MITSUHIKO KOYAMA ANAEROBIC DIGESTION OF SUBMERGED MACROPHYTES —BIOCHEMICAL APPROACH FOR ENHANCING THE METHANE PRODUCTION— March 2016 MITSUHIKO KOYAMA SOKA UNIVERSITY Author: Mitsuhiko Koyama Title: Anaerobic digestion of submerged macrophytes —Biochemical approach for enhancing the methane production— Department: Environmental Engineering for Symbiosis Faculty: Engineering Degree: Ph.D. Convocation: March 2016 Permission is herewith granted to Soka University to circulate and copy for non- commercial purposes, at its discretion, the above title request of individual or institutions. We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Engineering March 2016 DISSERTATION COMMITTEE Prof. Dr. Tatsuki Toda Prof. Dr. Shuichi Yamamoto Prof. Dr. Kiyohiko Nakasaki Contents page ACKNOWLEDGMENTS i ABSTRACT iii Chapter I GENERAL INTRODUCTION 1.1. Emerging issues of aquatic macrophytes 1 1.2. Harvesting of submerged macrophytes and treatment of the harvested phytomass 2 1.3. Anaerobic digestion of lignocellulosic biomass and enhancement of CH4 recovery 5 1.4. Objectives 7 Tables 9 Figures 10 ChapterⅡ CHEMICAL COMPOSITION AND ANAEROBIC DIGESTIBILITY OF FIVE SUBMERGED MACROPHYTE SPECIES DOMINANT IN LAKE BIWA 2.1. Introduction 16 2.2. Materials and methods 17 2.2.1. Substrates and inoculum 17 2.2.2. Batch anaerobic digestion of submerged macrophytes 18 2.2.3. Analytical parameters 19 2.2.4. Calculation 20 2.3. Results and discussion 21 2.3.1. Chemical composition of submerged macrophytes 21 2.3.2.
    [Show full text]
  • Potamogetonaceae (PDF)
    POTAMOGETONACEAE 眼子菜科 yan zi cai ke Guo Youhao (郭友好)1; Robert R. Haynes2, C. Barre Hellquist3, Zdenek Kaplan4 Herbs, perennial or annual, in fresh to brackish water, totally submerged or with floating leaves. Rhizomes present or absent. Stems elongated or shortened, terete to compressed, rarely strongly compressed. Leaves alternate or basal, occasionally opposite or subopposite; stipules free from leaves or adnate to leaf base and sheathing stems. Inflorescence a capitate spike, terminal or axillary. Plants monoecious; flowers small, bisexual. Perianth bractlike, free, present or absent. Stamens (1–)4; anthers sessile, (1 or)2-celled, extrorse, longitudinally dehiscent. Carpels (1–)4, free; ovule solitary. Fruit drupaceous. Embryo curved; endosperm absent. Three genera and ca. 85 species: cosmopolitan; two genera and 24 species in China. Guo Youhao & Li Qingyi. 1992. Potamogetonaceae (excluding Halodule, Phyllospadix, Posidonia, Ruppia, Syringodium, Triglochin, and Zostera). In: Sun Xiangzhong, ed., Fl. Reipubl. Popularis Sin. 8: 40–83. 1a. Submersed leaves with stipules free from leaf base, or if adnate then adnate portion less than 1/2 length of stipule; leaves submersed and floating or all submersed; submersed leaf blades translucent, not channeled, flattened; peduncle stiff, submersed or projecting above water surface ..................................................................... 1. Potamogeton 1b. Submersed leaves with stipules adnate to leaf blade for 2/3 or more length of stipule; leaves all submersed, blades opaque, channeled; peduncle lax, not projecting inflorescence above water surface ........................................... 2. Stuckenia 1. POTAMOGETON Linnaeus, Sp. Pl. 1: 126. 1753. 眼子菜属 yan zi cai shu Herbs, perennial or annual, in fresh or brackish water, totally submerged or with floating leaves. Stems terete to compressed, rarely strongly compressed.
    [Show full text]
  • Characterization of Lake Biwa Macrophytes in Their Chemical Composition
    Journal of the Japan Institute of Energy, 91,J. 621-628 Jpn. Inst. (2012) Energy, Vol. 91, No. 7, 2012 621 Original Paper Characterization of Lake Biwa Macrophytes in their Chemical Composition Harifara RABEMANOLONTSOA, and Shiro SAKA (Received December 2, 2011) Macrophytes growing in Lake Biwa such as ofusa-mo (Myriophyllum aquaticum), sennin-mo (Potamogeton maackianus), okanada-mo (Egeria densa), kuro-mo (Hydrilla verticillata) and kokanada-mo (Elodea nuttallii) were characterized in their chemical composition in order to evaluate their potential as biorefinery feedstocks. As a result, cellulose and hemicellulose contents were found to be in a range, respectively, between 227 - 436 g/ kg and 88 - 194 g/kg, while lignin content was from 71 to 175 g/kg. In more detail, hemicelluloses were mostly composed of xylose, galactose, mannose and arabinose in relatively equal amounts, whereas lignin was composed of guaiacylpropane, syringylpropane and p-hydroxylphenylpropane moieties, while ash and protein were remarkably high to be 105-223 g/kg and 137-229 g/kg, respectively. Although inorganics as shown by ash might be a limitation in the utilization of the macrophytes as biorefinery feedstocks, cellulose, hemicellulose, lignin and protein are available as raw materials for the production of a wide range of value- added biobased products. Key Words Myriophyllum aquaticum, Potamogeton maackianus, Egeria densa, Hydrilla verticillata, Elodea nuttallii, Lake Biwa, Chemical composition 1. Introduction verticillata) as well as okanada-mo (Egeria densa) were also Biorefinery from terrestrial biomass feedstocks en- abundant in the basin 5). The large quantity of macrophytes countered problems related to food price and land use.
    [Show full text]
  • Exposure to Water Increased Pollen Longevity of Pondweed
    Evol Ecol (2010) 24:939–953 DOI 10.1007/s10682-010-9351-z ORIGINAL PAPER Exposure to water increased pollen longevity of pondweed (Potamogeton spp.) indicates different mechanisms ensuring pollination success of angiosperms in aquatic habitat Xiao-lin Zhang • Robert W. Gituru • Chun-feng Yang • You-hao Guo Received: 8 December 2008 / Accepted: 4 January 2010 / Published online: 22 January 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Pollen longevity in seven Potamogeton species representing different polli- nation systems (anemophily, epihydrophily and hydroautogamy) was assessed both under aerial condition and in contact with water to investigate how water impacts the sexual reproduction in these aquatic taxa. Stainability of pollen with MTT was considered as an indicator of pollen viability. The half-life of pollen longevity was calculated using expo- nential decay regression. Overall, pollen viability decreased relatively rapidly with time. Pollen grains of obligate anemophilic species had lower initial viability and shorter half- lives than those of facultative anemophilic species. Pollen in these latter species may take more time to reach the stigma. The pollen of Potamogeton may be categorized as partially hydrated pollen owing to its generally spherical shape and lack of furrows, rapid loss of viability, and fast pollen tube initiation. The half-life is positively correlated with pollen size. Smaller-sized grains are at greater risk of desiccation than larger grains. In contrast with the situation observed in most terrestrial angiosperms, contact with water increases pollen longevity in Potamogeton species. In our present study the half-lives of pollen longevity of Potamogeton species in which the pollen had come into contact with water (mean of 10.65 h) were markedly higher than those under aerial conditions (mean of 5.79 h, t = 2.622, P = 0.039).
    [Show full text]
  • Potamogetonaceae, Zosteraceae
    Flora Malesiana, Series I, Volume 16 (2002) 167-216 Potamogetonaceae, Zosteraceae, and Cymodoceaceae 1 C. den Hartog Nijmegen, The Netherlands & G. Wiegleb Cottbus, Germany) Introductionto thesea-grasses (C. den Hartog) In earlier papers the sea-grasses were classifiedwithin two families, the Potamogetona- and the As result of research of all of the ceae Hydrocharitaceae. a thorough genera order Helobiae (Alismatidae) by Tomlinson (1982), it has become evident that the very heterogeneous family Potamogetonaceae had to be split into a number of independent families. The sea-grasses which already had subfamily status, became families in their own right, the Cymodoceaceae the Zosteraceae and the Posidoniaceae (not in Malesia). , , The independence of these families is not contradicted by molecular genetical evidence (Les et al. 1997). According to the new vision the Potamogetonaceae are restricted to the genera Potamogeton, Groenlandia (not in Malesia), and Ruppia; however, there are of its molecular genetic indications that the latter genus may present a family own (Les et al. 1997). Therefore, and because of the comparable role in the vegetation of the dif- ferent introduction to in is here, with to the genera, an sea-grasses general given a Key different families and genera of sea-grasses. The phytochemistry of all these groups is given by R. Hegnauer. The few angiosperms that have penetrated into the marine environment, and are able to fulfiltheir vegetative and generative cycle when completely submerged, are generally known as sea-grasses. The name refers to the superficial resemblance to grasses, be- cause ofthe linear leaves of most of the species. In spite of the fact that the numberof sea-grass species is very small (only 60 to 65), they are of paramount importance in the coastal environment, where, when they occur, they generally form extensive beds.
    [Show full text]
  • A Study of Comparative Purification Efficiency of Two Species of Potamogeton (Submerged Macrophyte) in Wastewater Treatment
    International Journal of Scientific and Research Publications, Volume 3, Issue 1, January 2013 1 ISSN 2250-3153 A Study of Comparative Purification Efficiency of Two Species of Potamogeton (Submerged Macrophyte) In Wastewater Treatment Parvaiz Ahmad Lone*, Ajay Kumar Bhardwaj **, Fayaz Ahmad Bahar*** * Department of Environmental Sciences and Limnology, Barkatullah University, Bhopal, Madhya Pradesh, India. ** Department of Botany, Government Narmada Post Graduate College Hoshanagbad, Madhya Pradesh, India. *** Faculty of Agriculture (FOA) Wadura Sopore, SKUAST-Kashmir, India. Abstract- In the balancing of lake ecosystem macrophytes play a organic matter in the lake from the catchment area. Macrophytic very important role. They have capacity to improve the water vegetation plays an important role in maintaining the ecosystem quality by absorbing nutrients with their effective root system of a lake. Various types of macrophytes viz. emergent, free and hence as Biofilters. Attempt was made in which samples of floating, submerged are generally observed in an aquatic two Potamogeton species viz. Potamogeton crispus and ecosystem where they play a very important role in improving Potamogeton pectinatus were collected during December 2008 to the quality of water since later is a prime natural resource, a basic April 2009 from three different sites of Upper Lake of Bhopal. human need and a precious natural asset. The nutrients including the phosphorus, potassium and sodium in Among the principal characteristics of macrophytes is their the plants were analysed and found to be high. Significant ability to accumulate nutrients and accelerate nutrient loading in correlations in phosphorus, potassium and sodium levels were the environment. Many aquatic plants utilize these nutrients and apparent between the tissues of two Potamogeton species which produce large amount of biomass which can be used for some were related to their life forms and to the limnological beneficial purposes.
    [Show full text]
  • An Account of the Species of Potamogeton L. (Potamogetonaceae)
    Folia Geobotanica 33: 241-316, 1998 AN ACCOUNTOF THE SPECIES OF POTAMOGETONL. (POTAMOGETONACEAE) Gerhard Wiegleb1) & Zdenek Kaplan2) 1) Department of General Ecology, BTU Cottbus, POB 10 13 44, D-03013 Cottbus, Germany; tel. +49 355 692291, fax +49 355 692291, E-mail [email protected] 2) Institute of Botany, Academy of Sciences of the Czech Republic, CZ-25243 Pruhonice, Czech Republic; fax +420 2 67750031, E-mail [email protected] Keywords:Descriptions, Hybrids, Key to species, Species list, Synonyms,Taxonomic problems Abstract:An accountof thetaxonomy of thegenus Potamogeton L. withspecial reference to speciesdescription and delimitationis presented.A key to the species is given, basedas far as possibleon vegetativecharacters. Detaileddescriptions are providedfor a total of 69 species which are regardedas sufficientlywell known. Specialemphasis is laid both on a completelist of relevantcharacters as well as on the judgementof their respectivediagnostic values. All importantsynonyms are listed allowingdirect access to most of the relevant taxonomicand floristicPotamogeton literature. 50 confirmedhybrids are listed andassigned to theirputative parentspecies. Questions with respectto the taxalisted are formulated in notes on each of the species.A more generalview and questionson futurePotamogeton research are summarizedin the conclusions. "It is to be regretted that we never arrive to the truth but through some mistake or another" (J.O. Hagstrom 1916) INTRODUCTION Since the days of GRAEBNER(1907) and HAGSTROM(1916) no comprehensivetaxonomic treatmentof the genus Potamogeton L. claiming worldwide validity has been carried out. The work of GRAEBNER(1907) was an attempt to compile all the known taxonomic and phytogeographicinformation about the genus, althoughP. Graebnerhimself never carriedout importanttaxonomic work on the genus Potamogeton.In contrast,J.O.
    [Show full text]
  • Title SATELLITE-BASED APPROACH for MONITORING and MAPPING
    SATELLITE-BASED APPROACH FOR MONITORING AND MAPPING THE SUBMERGED AQUATIC Title VEGETATION IN THE EUTROPHIC SHALLOW BASIN OF LAKE BIWA, JAPAN( Dissertation_全文 ) Author(s) Yadav, Shweta Citation 京都大学 Issue Date 2017-09-25 URL https://doi.org/10.14989/doctor.k20694 Right 許諾条件により本文は2018-09-24に公開 Type Thesis or Dissertation Textversion ETD Kyoto University SATELLITE-BASED APPROACH FOR MONITORING AND MAPPING THE SUBMERGED AQUATIC VEGETATION IN THE EUTROPHIC SHALLOW BASIN OF LAKE BIWA, JAPAN SHWETA YADAV 2017 1 ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Professor Minoru Yoneda and also to Professor Yosuke Alexandre Yamashiki for their constant guidance and supervision throughout my doctoral research, which helped me to accomplish the task of my Ph.D. thesis. I would also like to extend my sincere thanks to Professor Tamura Masayuki, and Associate Professor Junichi Susaki for their immense support and valuable suggestions, which helped me to enhance my knowledge and understanding during my research. My gratitude extends to Professor Yoshihisa Shimizu for the constructive comments during my defense. Also thankful to Associate Professor Yoko Shimada for giving the much-needed suggestions during my research period. I owe my thanks to Dr. Kanako Ishikawa and other staff members from Lake Biwa Environmental Research Institute (LBERI) for conducting the lake surveys with us and for sharing the information. Also grateful to Japan Water Agency (JWA) for providing the required data for research. I am thankful to the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, for the financial support during my stay at Kyoto University.
    [Show full text]