Abstract Book Advances in Characterization and Modeling of Complex Carbonate Reservoirs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Faults and Associated Karst Collapse Suggest Conduits for Fluid Flow That Influence Hydraulic Fracturing-Induced Seismicity
Faults and associated karst collapse suggest conduits for fluid flow that influence hydraulic fracturing- induced seismicity Elwyn Gallowaya, Tyler Haucka, Hilary Corlettb, Dinu Pana˘ a, and Ryan Schultza,1 aAlberta Geological Survey, Alberta Energy Regulator, Edmonton, AB T8N 3A3, Canada; and bDepartment of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada Edited by Paul Segall, Stanford University, Stanford, CA, and approved August 21, 2018 (received for review May 1, 2018) During December 2011, a swarm of moderate-magnitude earth- bore [up to hundreds of meters (18–21)]. Furthermore, geo- quakes was induced by hydraulic fracturing (HF) near Cardston, mechanical modeling reveals that poroelastic changes from HF Alberta. Despite seismological associations linking these two processes, are transmitted only locally (20). These results are in direct the hydrological and tectonic mechanisms involved remain unclear. In contradiction to HF-related earthquakes that are located kilo- this study, we interpret a 3D reflection-seismic survey to delve into the meters away from the closest well bore (e.g., refs. 2, 6, 11, 22, and geological factors related to these earthquakes. First, we document a 23). Specific to the Cardston case, earthquakes (located on re- basement-rooted fault on which the earthquake rupture occurred that gional arrays) were observed within the uppermost crystalline ∼ – extends above the targeted reservoir. Second, at the reservoir’s strati- basement, 1.5 km deeper than the target upper Stettler Big SI Appendix graphic level, anomalous subcircular features are recognized along the Valley Reservoir zone ( ,Fig.S1); this observation is fault and are interpreted as resulting from fault-associated karst pro- further complicated by the fact that the fault slip response oc- ∼ – cesses. -
Subsurface Characterization of the Pembina-Wabamun Acid-Gas Injection Area
ERCB/AGS Special Report 093 Subsurface Characterization of the Pembina-Wabamun Acid-Gas Injection Area Subsurface Characterization of the Pembina-Wabamun Acid-Gas Injection Area Stefan Bachu Maja Buschkuehle Kristine Haug Karsten Michael Alberta Geological Survey Alberta Energy and Utilities Board ©Her Majesty the Queen in Right of Alberta, 2008 ISBN 978-0-7785-6950-3 The Energy Resources Conservation Board/Alberta Geological Survey (ERCB/AGS) and its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any digital data and software supplied with this publication are subject to the licence conditions. The data are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation, and/or any use of proprietary data formats in this release, do not constitute endorsement by the ERCB/AGS of any manufacturer's product. If this product is an ERCB/AGS Special Report, the information is provided as received from the author and has not been edited for conformity to ERCB/AGS standards. When using information from this publication in other publications or presentations, due acknowledgment should be given to the ERCB/AGS. The following reference format is recommended: Bachu, S., Buschkuehle, M., Haug, K., Michael, K. (2008): Subsurface characterization of the Pembina-Wabamun acid-gas injection area; Energy Resources Conservation Board, ERCB/AGS Special Report 093, 60 p. -
Geochemical Studies of Natural Gas, Part 1
, ~ ( j ? j f GeoehelDieaI Studies of Natural Gas I PART m. INERT GASES IN WESTERN CANADIAN NATURAL GASES* ~ By BRIAN HITCHONt -j (This is the last of a Series of three Parts presented by the author tor publication in the Journal. Parts I I, and II appeared, in the Summer and Fall issues respectively.) ABSTRAGr 1 INTRODUcrION GEOCHEMISTRY AND ORIGIN OF In natural gases, the stratigra NITROGEN l phic and geographic variations in J T HIS paper is the third aud final Downloaded from http://onepetro.org/JCPT/article-pdf/2/04/165/2165406/petsoc-63-04-03.pdf by guest on 30 September 2021 1 the contents of both nitrogen and part of a series concerned with Before considering this subject heIiwn are of geochemical interest, further it is very important to con although only helium is of com the geochemistry of natural gas in 1 mercial importance. Nitrogen may Western Canada. It is a discussion sider the units in which the analy l originate from a great variety of of the inert gases nitrogen and he tical data are reported. Ideally, sources, including air, either orig lium. The first paper (1) dealt knowledge of the mass of the in J inally trapped in the sediments or '~ introduced dissolved in percolating with the hydrocarbons and the sec dividual components of natural groWldwaters, the denitrification of ond (2) with the acid gases. Due gases in the sedimentary basin is nitrogenous compounds or the de to their generally unreactive na desirable. From the reports of cay of certain radioactive minerals. ture, chemically, compared to hy Buckley and his co-workers (5) it In contrast, there exist radioac drocarbons or the acid gases, both may be surmised that the bulk of tive sources for all natural helium, nitrogen and helium are common the material is methane, with much and thus the problem of the migra lesser amounts .of other components. -
Upper Devonian and Lower Mississippian Stratigraphy
UPPER DEVONIAN AND LOWER MISSISSIPPIAN STRATIGRAPHY OF NORTHWESTERN MONTANA: A PETROLEUM SYSTEM APPROACH by Paul S. Schietinger A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date _____________ Signed: ____________________________ Paul S. Schietinger Signed: ____________________________ Dr. Stephen A. Sonnenberg Thesis Advisor Golden, Colorado Date _____________ Signed: ____________________________ Dr. John D. Humphrey Professor and Head Department of Geology and Geological Engineering ii ABSTRACT The Upper Devonian and Lower Mississippian stratigraphy in the Antler foreland basin of northwestern Montana is the current focus of exploration for several petroleum companies. Conodont zonation indicates that the Exshaw Formation of southern Alberta and northern Montana is Late Devonian and Early Mississippian in age, and is stratigraphically equivalent to the Bakken Formation in the Williston Basin and the Sappington Member of the Three Forks in southwestern Montana. The Exshaw, Bakken and Sappington are lithologically similar. Each formation is comprised of basal organic-rich shale, middle dolomitic siltstone and sandstone, and upper organic-rich shale. The Three Forks Formation in northwestern Montana consists of two members: the older Logan Gulch Member and the younger Trident Member. The Logan Gulch is 100 ft to over 450 ft thick and was subdivided in this study into three facies that were deposited in salina to sabkha environments. Locally, the Logan Gulch is termed the Potlatch Anhydrite. The Three Forks Formation in northwestern Montana is equivalent to the Stettler and Big Valley formations in southern Alberta. The younger Trident Member was subdivided into two facies that are transgressive, open marine deposits. -
Detailed Topography of the Devonian Grosmont Formation Surface from Legacy High-Resolution Seismic Profiles, Northeast Alberta
GEOPHYSICS, VOL. 79, NO. 4 (JULY-AUGUST 2014); P. B135–B149, 17 FIGS., 4 TABLES. 10.1190/GEO2013-0268.1 Case History Detailed topography of the Devonian Grosmont Formation surface from legacy high-resolution seismic profiles, northeast Alberta Elahe P. Ardakani1, Douglas R. Schmitt1, and Todd D. Bown1 ABSTRACT constructed solely on the basis of well-log data; in fact, the use of only well-log information would likely result in erroneous The Devonian Grosmont Formation in northeastern Alberta, interpretations. Although features smaller than about 40 m in Canada, is the world’s largest accumulation of heavy oil in car- radius cannot be easily discerned at the SMU due to wavefield bonate rock with estimated bitumen in place of 64.5 × 109 m3. and data sampling limits, the data did reveal the existence of a Much of the reservoir unconformably subcrops beneath roughly east–west-trending ridge-valley system. A more minor Cretaceous sediments. This is an eroded surface modified by northeast–southwest-trending linear valley also was apparent. kartstification known as the Sub-Mannville Unconformity These observations are all consistent with the model of a (SMU). We studied the reanalysis and integration of legacy seis- karsted/eroded carbonate surface. Comparison of the maps mic data sets obtained in the mid-1980s to investigate the struc- for the differing horizons further suggested that deeper horizons ture of this surface. Standard data processing was carried out may influence the structure of the SMU and even the overlying supplemented by some more modern approaches to noise reduc- Mesozoic formations. This suggested that some displacements tion. -
Interpretation of 3D Multicomponent Seismic Data for Investigating Natural Fractures in the Horn River Basin, Northeast British Columbia
Natural fracture analysis from 3D-3C seismic data Interpretation of 3D multicomponent seismic data for investigating natural fractures in the Horn River Basin, northeast British Columbia Abdallah Al-Zahrani* and Don Lawton ABSTRACT A 3D multicomponent seismic dataset from the Horn River Basin was assessed for mapping fractures. The data had good fold, offset and azimuth distributions and several approaches were used to interpret the distribution of natural fractures. In addition to amplitude mapping, PP and PS curvature maps enhanced the structural interpretation of the data and enabled the lateral continuity of faults and fractures to be mapped across the area of the seismic survey. Both horizon and volume based most negative curvature were effective in mapping fault and fracture trends within both Exshaw and Muskwa shale gas targets. At the Exshaw level, the curvature shows two main fault trends: northwest- southeast trending normal faults that dip toward the southwest, as well as northeast- southwest strike-slip faults. At the Muskwa level, the curvature image shows different major fault trends, namely north, northeast-south, southwest (normal and reverse faults), and northwest-southeast faults. Fractures interpreted using curvature attributes are close to the major faults and their dominant trends are generally parallel to the major faults in the area. INTRODUCTION Shale gas is one of the three types of unconventional gas plays that are growing rapidly in North America (Kuuskraa and Stevens, 2009). What make this play attractive to the oil companies compared with conventional resources is that the shale gas formations are continuous over large areas, with giant reserves, and the gas is enclosed within microporosity of the shales, and the rocks, in this case act as source, reservoir and trap at the same time (Kuuskraa and Stevens, 2009). -
The Grosmont Formation: a Massive "By-Passed" Pay Zone
Canadian Society of Petroleum Geologists - University Outreach Lecture Tour The Grosmont Formation: a massive "by-passed" pay zone. Jen Russel-Houston, Ph.D., P. Geol., Osum Oil Sands Corp., Calgary, Alberta [email protected] The Upper Devonian Frasnian Grosmont Formation located in northern Alberta is a bitumen-bearing carbonate unit with an estimated 50.5 billion cubic meters (318 billion bbls) of bitumen in place (ERCB, 2008). Recovering just 20% of the resources within the Grosmont would increase Canada's reserves by about one-third. Currently, no recovery has been assigned to the Grosmont Formation by any corporate or government agency. The Grosmont Formation carbonate rocks are richly saturated with bitumen in the Saleski area of northern Alberta. The shallow marine carbonate strata dip to the southwest and are eroded at the angular unconformity with the overlying Cretaceous-aged clastic rocks. The Grosmont Formation has A. Stratigraphy of the Saleski Area highlighting the angular unconformity of the Devoian been divided into four informal members; the Grosmont A, B, C, Grosmont with the Cretaceous Mannville Group. Vertical exaggeration is 50 x. B. Map of and D in order of decreasing stratigraphic age. The lithofacies Alberta with the Saleski area identified and shown at a smaller scale. Subcrop edges are marked of the Grosmont Formation at Saleski represent open marine to that represent where the Grosmont strata are eroded to zero thickness at the sub-Cretaceous restricted marine deposits and record an overall shallowing- unconformity. upward succession. The sediments were deposited in a wide carbonate platform setting (150 km by 600 km) and subjected to regional diagenetic processes related to the unconformity. -
Conodont Biofacies in a Ramp to Basin Setting (Latest Devonian and Earliest Carboniferous) in the Rocky Mountains of Southernmost Canada and Northern Montana
U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Conodont biofacies in a ramp to basin setting (latest Devonian and earliest Carboniferous) in the Rocky Mountains of southernmost Canada and northern Montana by Lauret E. Savoy1 and Anita G. Harris 2 Open-File Report 93-184 This report is preliminary and has not been reviewed for conformity with Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. \ Department of Geology and Geography, Mount Holyoke College, South Hadley, MA 01075 2 U.S. Geological Survey, Reston, VA 22092 1993 TABLE OF CONTENTS ABSTRACT 1 INTRODUCTION 2 LITHOSTRATIGRAPHY AND DEPOSITIONAL SETTING 2 CONODONT BIOSTRATIGRAPHY AND BIOFACIES 8 Palliser Formation 8 Exshaw Formation 13 Banff Formation 13 Correlative units in the Lussier syncline 15 PALEOGEOGRAPfflC SETTING 17 CONCLUSION 23 ACKNOWLEDGMENTS 23 REFERENCES CITED 24 APPENDIX 1 38 FIGURES 1. Index map of sections examined and major structural features of the thrust and fold belt 3 2. Correlation chart of Upper Devonian and Lower Mississippian stratigraphic units. 4 3. Selected microfacies of the Palliser Formation. 5 4. Type section of Exshaw Formation, Jura Creek. 6 5. Lower part of Banff Formation, North Lost Creek. 7 6. Conodont distribution in Palliser and Exshaw formations, Inverted Ridge. 9 7. Conodont distribution in upper Palliser and lower Banff formations, Crowsnest Pass. 11 8. Conodont distribution in upper Palliser, Exshaw, and lower Banff formations, composite Jura Creek - Mount Buller section. 12 9. -
Regional Groundwater Flow, Water Production and Waste Water Injection in the Area of the Wabasca Oil Sands
Regional groundwater flow, water production and waste water injection in the area of the Wabasca oil sands by K. Udo Weyer J.C. Ellis WDA Consultants Inc., Calgary, Alberta, Canada [email protected] Water Technologies Symposium 2014 ( WaterTech 2014) April 9 -11, 2014 Fairmont Banff Springs, Alberta, Canada 1 © 2014, K.U. Weyer Basic features of regional groundwater dynamics (very abbreviated) Those interested in details of physically based hydraulics should participate in the upcoming CSPG short course: Dynamics of subsurface flow of water, hydrocarbons, and CO2 : Physics and field examples Calgary, May 21/22, 2014, www.cspg.org (select: Short Courses) 2 © 2014, K. U. Weyer For the purpose of this talk let’s first debunk four concepts widely believed to dominate groundwater dynamics and commonly applied to groundwater flow in Alberta and in particular the Athabasca and Wabasca oil sands: 1. Buoyancy forces are directed vertically upwards or downwards under both hydrostatic and hydrodynamic conditions 2. The calculation of flow directions depends on two force fields; that of heads and that of buoyancy forces. 3. Groundwater flow takes the path of least resistance. 4. Recharge into deep aquifers occurs at the outcrop of aquifers in hills and discharge from these aquifers occurs at the downstream end of the same aquifer complexes. The hydrodynamic work of the Alberta Research Council (ARC) has been dominated by these four assumptions since about 1990. 3 © 2014, K. U. Weyer Buoyancy Forces Hydraulic forces (grad Φ) under hydrostatic and hydrodynamic conditions After Hubbert, M. King, 1953. Entrapment of petroleum under hydrodynamic conditions. AAPG Bulletin 37, no. -
Finding Pathways to Produce Heavy Oil from Canadian Carbonates
ALBERTA HEAVY OIL Finding Pathways to Produce Heavy Oil From Canadian Carbonates Stephen Rassenfoss, JPT Emerging Technology Editor early 2 million bbl of ultraheavy crude are produced each for oil sands is not a good fit in carbonates. But a mix of meth- N day from Canadian oil sands, but the notion of also pro- ods used for bitumen production worked well enough to con- ducing bitumen from reservoirs made of carbonate rock can vince the partners to plan a commercial test. that they plan to spark skeptical remarks. use for the first commercial development in the formation. They are likely to say something like: “Carbonates are very The Laricina-Osum joint venture has filed for a permit to different. In carbonates, it is just different,” said Daniel Yang, produce as much as 10,700 B/D from up to 32 wells, with first director of reservoir engineering at Laricina Energy, who has a oil in 2015. Husky and Shell have also filed for permission to different reading of the exploration history of formations that do pilot projects with the Alberta Energy Regulator, the agen- hold more than 400 billion bbl of the crude. cy formerly known as the Energy Resources Conservation Laricina has partnered with a second Calgary independent, Board (ERCB). Osum Oil Sands, to try to prove that bitumen can be commer- “It is going like early development in major oil sands basins cially produced from the Grosmont formation, which holds 75% such as the Athabasca, where there were many field pilots,” said of the heavy crude known as bitumen in Alberta’s carbonates. -
Geological Introduction to E3 Metals Corp. Clearwater and Exshaw Lithium-Brine Properties in South-Central Alberta
National Topographic System 1:50 000 Map Sheets: Clearwater Sub-Property: 82O09; 82O16; 82P12; 82P13; 82P14; 83A04; 83B01 Exshaw Sub-Property: 83A02; 83A03; 83A06; 83A07 GEOLOGICAL INTRODUCTION TO E3 METALS CORP. CLEARWATER AND EXSHAW LITHIUM-BRINE PROPERTIES IN SOUTH-CENTRAL ALBERTA Prepared For: E3 Metals Corp. Suite 2050 - 1055 West Georgia St. Vancouver, British Columbia, Canada V6E 3P3 Prepared by: APEX Geoscience Ltd. Suite 110, 2489 – 24th Street Edmonton, Alberta, Canada T6P 1L3 Roy Eccles, M.Sc., P. Geol. Effective Date: 18 May 2017 Edmonton, Alberta, Canada Geological Introduction to E3 Metals Lithium-Brine Project in South-Central Alberta Table of Contents 1.0 Summary .............................................................................................................................. 1 2.0 Introduction .......................................................................................................................... 6 3.0 Reliance on Other Experts................................................................................................. 10 4.0 Property Description and Location .................................................................................... 10 4.1 Property Rights and Maintenance ................................................................................. 11 4.2 Coexisting Oil, Gas and Oil Sands Rights ..................................................................... 15 4.3 Permitting and Other Factors/Risks .............................................................................. -
Synoptic Taxonomy of Major Fossil Groups
APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida