The Cryosphere Discuss., doi:10.5194/tc-2017-57, 2017 Manuscript under review for journal The Cryosphere Discussion started: 24 April 2017 c Author(s) 2017. CC-BY 3.0 License. Measuring the snowpack depth with Unmanned Aerial System photogrammetry: comparison with manual probing and a 3D laser scanning over a sample plot Francesco Avanzi1,*, Alberto Bianchi1,*, Alberto Cina2,*, Carlo De Michele1,*, Paolo Maschio2,*, Diana Pagliari1,*, Daniele Passoni3,*, Livio Pinto1,*, Marco Piras2,*, and Lorenzo Rossi1,* 1Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milano 2Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering, Corso Duca degli Abruzzi 24, 10129 Torino 3Università degli Studi di Genova, Laboratory of Geodesy, Geomatics and GIS, Via Montallegro 1,16145 Genova *Authors in alphabetic order Correspondence to: Prof. Carlo De Michele, Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milano (
[email protected]) Abstract. Photogrammetric surveys using Unmanned Aerial Systems (UAS) may represent an alternative to existing methods for measuring the distribution of snow, but additional efforts are still needed to establish this technique as a low-cost, yet precise tool. Importantly, existing works have mainly used sparse evaluation datasets that limit the insight into UAS performance 5 at high spatial resolutions. Here, we compare a UAS-based photogrammetric map of snow depth with data acquired with a MultiStation and with manual probing over a sample plot. The relatively high density of manual data (135 pt over 6700 m2, i.e., 2 pt/100 m2) enables to assess the performance of UAS in capturing the marked spatial variability of snow.