GödelandPhysics JohnD.Barrow DAMTP CentreforMathematicalSciences CambridgeUniversity WilberforceRd., CambridgeCB30WA UK Summary Weintroducesomeearlyconsiderationsofphysicalandmathematicalimpossibilityas preludestoGödel’sincompletenesstheorems.Weconsidersomeinformalaspectsof thesetheoremsandtheirunderlyingassumptionsanddiscusssometheresponsestothese theoremsbythoseseekingtodrawconclusionsfromthemaboutthecompletabilityof theoriesofphysics.WearguethatthereisnoreasontoexpectGödelincompletenessto handicapthesearchforadescriptionofthelawsofNature,butwedoexpectittolimit whatwecanpredictabouttheoutcomesofthoselaws,andexamplesaregiven.We discussthe'Gödeluniverse',asolutionofEinstein'sequationsdescribingarotating universewheretimetravelispossible,whichwasdiscoveredbyGödelin1949,andthe roleitplayedinexposingthefullspectrumofpossibilitiesthataglobalunderstandingof space-timewouldreveal.Finally,weshowhowrecentstudiesofsupertaskshaveshown howglobalspace-timestructuredeterminestheultimatecapabilityofcomputational deviceswithinthem. 2

1: SomeHistorical Background PhysicalImpossibilities Thereisalonghistoryofscientificandphilosophicalconsiderationofphysical impossibilities 1.TheAristotelianworldviewoutlawedthepossibilitythatphysical infinitiesorlocalphysicalvacuacouldbecreatedorobserved 2.DuringtheMiddleAges, physicistsdevisedingeniousthoughtexperimentstotrytoimaginehowNaturecouldbe ‘tricked’intoallowinganinstantaneousvacuumtoform,andthenarguingabouthowthis possibilitywasstoppedfromoccurringbynaturalprocessesor,ifthatfailed,bythe invocationofaCosmicCensor,topreventitsappearance 3.Chemistryhaditsown ongoingalchemicaldebateaboutthepossibilityorimpossibilityofmakinggoldfrom basermetals,andengineeringmaintainedanenduringattachmenttothequestfora perpetualmotionmachinesthatonlyfullyabatedwhentheconsequencesoflawsof thermodynamicsweresystematicallyunderstoodduringthenineteenthcentury.Subtle examples,likeMaxwell’ssortingdemon,stillremaineduntiltheywereeventuallyfully exorcisedbytheapplicationofthemodernthermodynamictheoryofcomputationin 1961 4. MathematicalImpossibilities Mathematiciansalsooccasionallyconsideredthequestionofimpossibilityinthe contextofaseveralfundamentalproblemsofarithmetic,geometry,andalgebra. Supposedly,inabout550BC,thePythagoreansfirstencounteredthe‘irrationality’of numberslike √2whichcannotbeexpressedastheratiooftwointegers(‘irrational’ originallymeaningsimply'notaratio',ratherthanbeyondreason,asmightbesuggested today).5.Legendhasitthatthisdiscoverywassuchascandal,thatthediscoverer, Hippasos,wasdrownedbythemembersofthePythagoreanbrotherhoodforhistrouble. Thisgivesusthefirstglimpseofoperationsandquestionswhichhavenoanswersgivena particularsetofrules.Inthefirstquarterofthe19 th century,theproblemoffindingan explicitformforthesolutionofageneralquinticalgebraicequationintermsofits coefficientswasprovedtohavenosolutioninvolvingordinaryarithmeticoperationsand radicalsbytheyoungNorwegianmathematician,HenrikAbel 6.Unlikethecaseof quadratic,cubic,orquarticequations,thegeneralquinticcannotbesolvedbyanyexact formula.Justafewyearslater,in1837,rigorousproofsweregiventhatanangleof60 degreescouldnotbetrisectedjustbyuseofastraightedgeandpairofcompasses.These examplesrevealedforthefirsttime,tothosewholookedatthemintherightway,some hintsastothelimitationsofparticularaxiomaticsystems. InthelightoftheongoingimpactofGödel’sworkonspeculationsaboutthe limitationsofthehumanmind,itisinterestingtoreflectbrieflyonthesociologicaland psychologicaleffectsofsomeoftheseearlyresults.Theexistenceofirrationalnumbers wasofthedeepestconcerntothePythagoreans;however,asfaraswecanjudge,there werenodeepphilosophicalquestionsaboutthelimitationsofmathematicalreasoning raisedbythedemonstrationthatthequinticcouldnotbesolved.Yet,therewasachange. Previously,thereweremanythingsthoughtimpossiblethatcouldnotbesoproven despitemanyeffortstodoso.Butnowtherewereproofsthatsomethingcouldnotbe done. 3

Axiomatics Thedevelopmentofunderstandingofwhatconstructionsandproofscouldbecarried outbylimitedmeans,suchasrulerandcompassconstruction,orusingonlyarithmetic operationsandradicals,showedthataxiomsmattered.Thepowerandscopeofasystem ofaxiomsdeterminedwhatitsallowedrulesofreasoningcouldencompass. Untilthe19 th century,thearchetypalaxiomaticsystemwasthatofEuclidean geometry.Butitimportanttoappreciatethatthissystemwasnotthenviewed,asitis today,asjustoneamongmanyaxiomaticpossibilities.Euclideangeometrywashowthe worldreallywas.ItwaspartoftheabsolutetruthabouttheUniverse.Thisgaveita specialstatusanditsconstructionsandelucidation,largelyunchangedformorethan2000 years,providedastylethatwasapedbymanyworksofphilosophyandtheology.The widespreadbeliefinitsabsolutetruthprovidedanimportantcornerstoneforthebeliefsof theologiansandphilosophersthathumanreasoncouldgraspsomethingoftheultimate natureofthings.Ifchallengedthatthiswasbeyondthepowerofourmindstopenetrate, theycouldalwayspointtoEuclideangeometryasaconcreteexampleofhowandwhere thistypeofinsightintotheultimatenatureofthingshadalreadybeenpossible.Asa result,thediscoveries,byBolyai,Lobachevskii,Gauss,andRiemann,thatother geometriesexisted,butinwhichEuclid’sparallelpostulatewasnotincluded,hadamajor impactoutsideofmathematics 7.Theexistenceofotherlogicallyconsistentgeometries meantthatEuclid’sgeometrywasnot the truth:itwassimplyamodelforsomepartsof thetruth.Asaresult,newformsofrelativismsprangup,nourishedbythedemonstration thatevenEuclid’sancientfoundationalsystemwasmerelyoneofmanypossible geometries–andindeedoneofthesealternativeswasafarmoreappropriatemodelfor describingthegeometryoftheEarth’ssurfacethanEuclid’s.Curiousbooksappeared aboutnon-Euclideanmodelsofgovernmentandeconomics.‘Non-Euclidean’becamea bywordfornewandrelativetruth,theverylatestintellectualfashion 8.Later,newlogics wouldbecreatedaswell,bychangingtheaxiomsoftheclassicallogicalsystemthat Aristotlehaddefined. Outofthesestudiesemergedadeeperappreciationoftheneedforaxiomstobe consistentlydefinedandclearlystated.Thetraditionalrealistviewofmathematicsasa descriptionofhowtheworld‘was’hadtobesupersededbyamoresophisticatedview thatrecognisedmathematicstobeanunlimitedsystemofpatternswhicharisefromthe infinitenumberofpossibleaxiomaticsystemsthatcanbedefined.Someofthose patternsappeartobemadeuseofinNature,butmostarenot.Mathematicalsystemslike Euclideangeometryhadbeenassumedtobepartoftheabsolutetruthabouttheworld anduniquelyrelatedtoreality.Butthedevelopmentofnon-Euclideangeometriesand non-standardlogicsmeantthatmathematicalexistencenowmeantnothingmorethan logicalself-(ieitmustnotbepossibletoprovethat0=1).Itnolongerhad anynecessaryrequirementofphysicalexistence. Hilbert’sprogramme ThecarefulstudyofaxiomaticsystemsrevealedthatevenEuclid’sbeautiful developmentofplanegeometrymadeuseofunstatedaxioms.In1882,MoritzPasch gaveaverysimpleexampleofanintuitively‘obvious’propertyofpointsandlinesthat 4 couldnotbeprovedfromEuclid’sclassicalaxioms 9.IfthepointsA,B,C,andDlieona straightlinesuchthatBliesbetweenAandCandCliesbetweenBandDthenitisnot possibletoprovethatBliesbetweenAandD.Thepictureofthesetupmadeitappear inevitablebutthatisnotasubstituteforaproof. ______ A BCD Paschwantedtodistinguishbetweenthelogicalconsequencesoftheaxiomsofgeometry andthosepropertiesthatwejustassumedwereintuitivelytrue.Forhim,mathematical argumentationshouldnotdependonanyphysicalorvisualisationofthe quantitiesinvolved.Hewasconcernedthataxiomaticsystemsshouldbecompleteand hasbeendescribedas'thefatherofrigoringeometry'byFreudenthal 10 . DavidHilbert,thegreatestmathematicianoftheday,felttheinfluence ofPasch’s writingsbothdirectlyandthroughtheireffectsonPeano'swork 11 from1882to1899,and beganasystematicprogrammein1899toplacemathematicsuponaformalaxiomatic footing 12 .Thiswasanewemphasis,conveyedbyHilbert'sremarkthatinmathematics 'Onemustbeabletosay..--insteadofpoints,straightlinesandplanes--tables,chairs, andbeermugs' 13 .Hebelievedthatitwouldbepossibletodeterminetheaxioms underlyingeachpartofmathematics(andhenceofthewhole),demonstratethatthese axiomsareself-consistent,andthenshowthattheresultingsystemofstatementsand deductionsformedfromtheseaxiomsisbothcompleteanddecidable.Moreprecisely,a systemis consistent ifwecannotprovethatastatementSanditsnegation, ∼S,areboth truetheorems.Itis complete ifforeverystatementSwecanforminitslanguage,eitherS oritsnegation, ∼Sisatruetheorem.Itis decidable ifforeverystatementSthatcanbe formedinitslanguage,wecanprovewhetherSistrueorfalse.Thus,ifasystemis decidableitmustbecomplete. Hilbert’sformalisticvisionofmathematicswasofatightwebofdeductionsspreading outwithimpeccablelogicalconnectionsfromthedefiningaxioms.Indeed,mathematics was defined tobethecollectionofallthosedeductions.Hilbertsetouttocompletethis formalisationofmathematicswiththehelpofothers,andbelievedthatitwould ultimatelybepossibletoextenditsscopetoincludescienceslikephysics 14 whichwere builtuponappliedmathematics.HebeganwithEuclideangeometryandsucceededin placingitonarigorousaxiomaticbasis.Hisprogrammethenimaginedstrengtheningthe systembyaddingadditionalaxioms,showingateachstepthatconsistencyand remained,untileventuallythesystemhadbecomelargeenoughto encompassthewholeofarithmetic. Hilbert’sprogrammebeganconfidentlyandhebelievedthatitwouldjustbeamatter oftimebeforeallofmathematicswascorralledwithinitsformalisticweb.Alas,the worldwassoonturneduponitsheadbytheyoungKurtGödel.Gödelhadcompletedone oftheearlystepsinHilbert’sprogrammeaspartofhisdoctoralthesis,byprovingthe consistencyandcompletenessof1st -orderlogic(laterAlonzoChurchandAlanTuring wouldshowthatitwasnotdecidable).Butthenextstepsthathetookhaveensuredhis fameasthegreatestlogicianofmoderntimes.FarfromextendingHilbert’sprogramme toachieveitskeyobjective–aproofofthecompletenessofarithmetic–Gödelproved thatanysystemrichenoughtocontainarithmeticmustbeincompleteandundecidable. 5

Thistookalmosteveryonebysurprise,includingJohnvonNeumann,whowaspresentat theconferenceinKönigsberg(Hilbert’shometown)on7 th September1930whenGödel brieflycommunicatedhisresults,andquicklyappreciatedthem--evenextendingthem, onlytofindthatGödelhadalreadymadetheextensioninaseparatepaper--andPaul Finsler(whotriedunsuccessfullytoconvinceGödelthathehaddiscoveredtheseresults beforehim),andeffectivelykilledHilbert’sprogrammewithonestroke. Theory IsitConsistent? IsitComplete? IsitDecidable? Propositional Yes Yes Yes calculus Euclidean Yes Yes Yes geometry 1st orderlogic Yes Yes No Arithmetic Yes Yes Yes (+,-)only Arithmetic ?? No No Infull(+,-,×,÷) Table1:Summaryoftheresultsestablishedabouttheconsistency,completeness,and decidabilityofsimplelogicalsystems. 2:SomeMathematicalJujitsu TheOptimistsandthePessimists Gödel'smonumentaldemonstration,thatsystemsofmathematicshavelimits,gradually infiltratedthewayinwhichphilosophersandscientistsviewedtheworldandourquestto understandit.Somecommentatorsclaimedthatitshowsthatallhumaninvestigationsofthe Universemustbelimited.Scienceisbasedonmathematics;mathematicscannotdiscoverall truths;thereforesciencecannotdiscoveralltruths.OneofGödel'scontemporaries,Hermann Weyl,describedGödel'sdiscoveryasexercising 15 'aconstantdrainontheenthusiasmand determinationwithwhichIpursuedmyresearchwork'.Hebelievedthatthisunderlying pessimism,sodifferentfromtherallyingcrywhichHilberthadissuedtomathematiciansin1900, wasshared'byothermathematicianswhoarenotindifferenttowhattheirscientificendeavours meaninthecontextofman'swholecaringandknowing,sufferingandcreativeexistenceinthe world'.Inmorerecenttimes,onewriterontheologyandsciencewithatraditionalCatholic stance,StanleyJaki,believesthatGödel’stheorempreventsusfromgaininganunderstandingof thecosmosasanecessarytruth, 'Clearlythennoscientificcosmology,whichofnecessitymustbehighlymathematical,canhave itsproofofconsistencywithinitselfasfarasmathematicsgoes.Intheabsenceofsuch consistency,allmathematicalmodels,alltheoriesofelementaryparticles,includingthetheoryof quarksandgluons...fallinherentlyshortofbeingthattheorywhichshowsinvirtueofitsapriori 6

truththattheworldcanonlybewhatitisandnothingelse.Thisistrueevenifthetheory happenedtoaccountwithperfectaccuracyforallphenomenaofthephysicalworldknownata particulartime.' 16 ItconstitutesafundamentalbarriertounderstandingoftheUniverse,for: 'ItseemsthatonthestrengthofGödel'stheoremthattheultimatefoundationsofthebold symbolicconstructionsofmathematicalphysicswillremainembeddedforeverinthatdeeperlevel ofthinkingcharacterizedbothbythewisdomandbythehazinessofanalogiesandintuitions.For thespeculativephysicistthisimpliesthattherearelimitstotheprecisionofcertainty,thatevenin thepurethinkingoftheoreticalphysicsthereisaboundary...Anintegralpartofthisboundaryis thescientisthimself,asathinker..' 17 Intriguingly,andjusttoshowtheimportantrolehumanpsychologyplaysinassessing thesignificanceoflimits,otherscientists,likeFreemanDyson,acknowledgethatGödel placeslimitsonourabilitytodiscoverthetruthsofmathematicsandscience,but interpretthisasensuringthatsciencewillgoonforever.Dysonseestheincompleteness theoremasaninsurancepolicyagainstthescientificenterprise,whichheadmiresso much,comingtoaself-satisfiedend;for 18 'Gödelprovedthattheworldofpuremathematicsisinexhaustible;nofinitesetofaxiomsandrules ofinferencecaneverencompassthewholeofmathematics;givenanysetofaxioms,wecanfind meaningfulmathematicalquestionswhichtheaxiomsleaveunanswered.Ihopethatananalogous situationexistsinthephysicalworld.Ifmyviewofthefutureiscorrect,itmeansthattheworldof physicsandastronomyisalsoinexhaustible;nomatterhowfarwegointothefuture,therewill alwaysbenewthingshappening,newinformationcomingin,newworldstoexplore,aconstantly expandingdomainoflife,consciousness,andmemory.' Thus,weseeepitomisedtheoptimisticandthepessimisticresponsestoGödel.The ‘optimists’,likeDyson,seehisresultasaguarantorofthenever-endingcharacterof humaninvestigation.Theyseescientificresearchaspartofanessentialpartofthehuman spiritwhich,ifitwerecompleted,wouldhaveadisastrousde-motivatingeffectuponus– justasitdiduponWeyl.The‘pessimists’,likeJaki,Lucas 19 ,andPenrose 20 ,bycontrast, interpretGödelasestablishingthatthehumanmindcannotknowall(maybenoteven most)ofthesecretsofNature. Gödel'sownviewwasasunexpectedasever.Hethoughtthatintuition,bywhichwe can'see'truthsofmathematicsandscience,wasatoolthatwouldonedaybevaluedjust asformallyandreverentlyaslogicitself, 'Idon'tseeanyreasonwhyweshouldhavelessconfidenceinthiskindofperception,i.e.,in mathematicalintuition,thaninsenseperception,whichinducesustobuildupphysicaltheories andtoexpectthatfuturesenseperceptionswillagreewiththemand,moreover,tobelievethata 21 questionnotdecidablenowhasmeaningandmaybedecidedinthefuture.' However,itiseasytouseGödel’stheoreminwaysthatplayfastandloosewiththe underlyingassumptionsofhistheorem.Manyspeculativeapplicationscanbefound spanningthefieldsofphilosophy,theology,andcomputingandtheyhavebeenexamined inalucidcriticalfashionbythelateTorkelFranzén 22 . 7

Gödelwasnotmindedtodrawanystrongconclusionsforphysicsfromhis incompletenesstheorems.HemadenoconnectionswiththeUncertaintyPrincipleof quantummechanics,whichwasadvertisedasanothergreatdeductionwhichlimitedour abilitytoknow,andwhichwasdiscoveredbyHeisenbergjustafewyearsbeforeGödel madehisdiscovery.Infact,Gödelwasratherhostiletoanyconsiderationofquantum mechanicsatall.ThosewhoworkedatthesameInstituteforAdvancedStudy(noone reallyworked with Gödel)believedthatthiswasaresultofhisfrequentdiscussionswith Einsteinwho,inthewordsofJohnWheeler(whoknewthemboth)'brainwashedGödel' intodisbelievingquantummechanicsandtheUncertaintyPrinciple.GregChaitin records 23 thisaccountofWheeler'sattempttodrawGödeloutonthequestionofwhether thereisaconnectionbetweenGödelincompletenessandHeisenberg’sUncertainty Principle, 'Well,onedayIwasattheInstituteforAdvancedStudy,andIwenttoGödel'soffice,andthere wasGödel.ItwaswinterandGödelhadanelectricheaterandhadhislegswrappedinablanket. Isaid'ProfessorGödel,whatconnectiondoyouseebetweenyourincompletenesstheoremand Heisenberg'suncertaintyprinciple?'AndGödelgotangryandthrewmeoutofhisoffice!' 24 Theclaimthatmathematicscontainsunprovablestatements--physicsisbasedon mathematics--thereforephysicswillnotbeabletodiscovereverythingthatistrue,has beenaroundforalongtime.Moresophisticatedversionsofithavebeenconstructed whichexploitthepossibilityofuncomputablemathematicaloperationsbeingrequiredto makepredictionsaboutobservablequantities.Fromthisvantagepoint,StephenWolfram, hasconjecturedthat 25 'Onemayspeculatethatundecidabilityiscommoninallbutthemosttrivialphysicaltheories. Evensimplyformulatedproblemsintheoreticalphysicsmaybefoundtobeprovablyinsoluble.' Indeed,itisknownthatundecidabilityistheruleratherthantheexceptionamongstthe truthsofarithmetic 26 . DrawingtheLineBetweenCompletenessandIncompleteness Withtheseworriesinmind,letuslookalittlemorecloselyatwhatGödel'sresult mighthavetosayaboutphysics.Thesituationisnotsoclear-cutassomecommentators wouldoftenhaveusbelieve.Itisusefultolayoutthepreciseassumptionsthatunderlie Gödel'sdeductionofincompleteness.Gödel'stheoremsaysthatifaformalsystemis 1. finitelyspecified 2. largeenoughtoincludearithmetic 3. consistent thenitis incomplete . Condition1meansthattherearenotanuncomputableinfinityofaxioms.Wecouldnot, forinstance,chooseoursystemtoconsistofallthetruestatementsaboutarithmetic becausethiscollectioncannotbefinitelylistedintherequiredsense. Condition2meansthattheformalsystemincludesallthesymbolsandaxiomsusedin arithmetic.Thesymbolsare0,'zero',S,'successorof',+, ×,and=.Hence,thenumber 8 twoisthesuccessorofthesuccessorofzero,writtenasthe term SS0,andtwoandplus twoequalsfourisexpressedasSS0+SS0=SSSS0. ThestructureofarithmeticplaysacentralroleintheproofofGödel'stheorem. Specialpropertiesofnumbers,liketheirfactorisationsandthefactthatanynumbercan befactoredinonlyonewayastheproductofprimedivisors(eg.130=2 ×5×13),were usedbyGödeltoestablishacrucialcorrespondencebetweenstatementsofmathematics andstatementsaboutmathematics.Thereby,linguisticparadoxeslikethatofthe'liar' couldbeembedded,likeTrojanhorses,withinthestructureofmathematicsitself.Only logicalsystemswhicharerichenoughtoincludearithmeticallowthisincestuous encodingofstatementsaboutthemselvestobemadewithintheirownlanguage. Again,itisinstructivetoseehowtheserequirementsmightfailtobemet.Ifwe pickedatheorythatconsistedofreferencesto(andrelationsbetween)onlythefirstten numbers(0,1,2,3,4,5,6,7,8,9)witharithmeticmodulo10,thenCondition2failsandsuch amini-arithmeticiscomplete.Arithmeticmakesstatementsaboutindividualnumbers,or terms(likeSS0,above).Ifasystemdoesnothaveindividualtermslikethisbut,like Euclideangeometry,onlymakesstatementsaboutacontinuumofpoints,circles,and lines,ingeneral,thenitcannotsatisfyCondition2.Accordingly,asAlfredTarskifirst showed,Euclideangeometryiscomplete.Thereisnothingmagicalabouttheflat, Euclideannatureofthegeometryeither:thenon-Euclideangeometriesoncurved surfacesarealsocomplete.Completenesscanbelong-windedthough.Astatementof geometryinvolvingnsymbolscantakeuptoexp[exp[n]]computationalstepstohaveits truthorfalsitydetermined 27 .Forjustn=10,thisnumberamountstoastaggering9.44 × 10 9565 ;forcomparison,therehaveonlybeenabout10 27 nanosecondssincetheapparent beginningoftheUniverse’sexpansionhistory. Similarly,ifwehadalogicaltheorydealingwithnumbersthatonlyusedtheconcept of'greaterthan',withoutreferringtoanyspecificnumbers,thenitwouldbecomplete:we candeterminethetruthorfalsityofanystatementaboutrealnumbersinvolvingjustthe 'greaterthan'relationship. Anotherexampleofasystemthatissmallerthanarithmeticisarithmeticwithoutthe , ×,operation.ThisiscalledPresburger 28 arithmetic(thefullarithmeticis calledPeanoarithmeticafterthemathematicianwhofirstexpresseditaxiomatically,in 1889).Atfirstthissoundsstrange,inoureverydayencounterswithmultiplicationitis nothingmorethanashorthandwayofdoing(eg2+2+2+2+2+2=2 ×6),butin thefulllogicalsystemofarithmetic,inthepresenceoflogicalquantifierslike'there exists'or'forany',multiplicationpermitsconstructionswhicharenotmerelyequivalent toasuccessionof. Presburgerarithmeticiscomplete:allstatementsabouttheadditionofnatural numberscanbeprovedordisproved;alltruthscanbereachedfromtheaxioms 29 . Similarly,ifwecreateanothertruncatedversionofarithmetic,whichdoesnothave addition,butretainsmultiplication,thisisalsocomplete.Itisonlywhenadditionand multiplicationaresimultaneouslypresentthatincompletenessemerges.Extendingthe systemfurtherbyaddingextraoperationslikeexponentiationtotherepertoireofbasic operationsmakesnodifference.Incompletenessremainsbutnointrinsicallynewformof itisfound.Arithmeticisthewatershedincomplexity. TheuseofGödeltoplacelimitsonwhatamathematicaltheoryofphysics(or anythingelse)canultimatelytellusseemsafairlystraightforwardconsequence.Butas 9 onelooksmorecarefullyintothequestion,thingsarenotquitesosimple.Suppose,for themoment,thatalltheconditionsrequiredforGödel'stheoremtoholdareinplace. Whatwouldincompletenesslooklikeinpractice?Wearefamiliarwiththesituationof havingaphysicaltheorywhichmakesaccuratepredictionsaboutawiderangeof observedphenomena:wemightcallit'thestandardmodel'.Oneday,wemaybe surprisedbyanobservationaboutwhichithasnothingtosay.Itcannotbe accommodatedwithinitsframework.Examplesareprovidedbysomesocalled‘grand unifiedtheories’inparticlephysics.Someearlyeditionsofthesetheorieshadthe propertythatallneutrinosmusthavezeromass.Nowifaneutrinoisobservedtohavea non-zeromass(asexperimentshavenowconfirmed)thenweknowthatthenewsituation cannotbeaccommodatedwithinouroriginaltheory.Whatdowedo?Wehave encounteredacertainsortofincompleteness,butwerespondtoitbyextendingor modifyingthetheorytoincludethenewpossibilities.Thus,inpractice,incompleteness looksverymuchlikeinadequacyinatheory.ItwouldbecomemorelikeGödel incompletenessifwecouldfindnoextensionofthetheorythatcouldpredictthenew observedfact. Aninterestingexampleofananalogousdilemmaisprovidedbythehistoryof mathematics.Duringthesixteenthcentury,mathematiciansstartedtoexplorewhat happenedwhentheyaddedtogetherinfinitelistsofnumbers.Ifthequantitiesinthelist getlargerthenthesumwill'diverge',thatis,asthenumberoftermsapproachesinfinity sodoesthesum.Anexampleisthesum

1+2+3+4+5+...... =infinity. However,iftheindividualtermsgetsmallerandsmallersufficientlyrapidly 30 thenthe sumofaninfinitenumberoftermscangetcloserandclosertoafinitelimitingvalue whichweshallcallthesumoftheseries;forexample

1+1/9+1/25+1/36+1/49+.....= π2/8=1.2337005..

Thisleftmathematicianstoworryaboutamostpeculiartypeofunendingsum, 1-1+1-1+1-1+1-.....=?????

Ifyoudivideuptheseriesintopairsoftermsitlookslike(1-1)+(1-1)+....andsoon. Thisisjust0+0+0+...=0andthesumiszero.Butthinkoftheseriesas1-{1-1+1-1 +1-...}anditlookslike1-{0}=1.Weseemtohaveprovedthat0=1. Mathematicianshadavarietyofchoiceswhenfacedwithambiguoussumslikethis. Theycouldrejectinfinitiesinmathematicsanddealonlywithfinitesumsofnumbers,or, asCauchyshowedintheearlynineteenthcentury,thesumofaserieslikethelastone mustbedefinedbyspecifyingmorecloselywhatismeantbyitssum.Thelimitingvalue ofthesummustbespecifiedtogetherwiththeprocedureusedtocalculateit.The contradiction0=1arisesonlywhenoneomitstospecifytheprocedureusedtoworkout thesum.Inbothcasesitisdifferent,andsothetwoanswersarenotthesamebecause theyariseindifferentaxiomaticsystems.Thus,hereweseeasimpleexampleofhowa limitisside-steppedbyenlargingtheconceptwhichseemstocreatelimitations. 10

Divergentseriescanbedealtwithconsistentlysolongastheconceptofasumfora seriesissuitablyextended 31 . AnotherpossiblewayofevadingGödel’stheoremisifthephysicalworldonlymakes useofthedecidablepartofmathematics.Weknowthatmathematicsisaninfiniteseaof possiblestructures.Onlysomeofthosestructuresandpatternsappeartofindexistence andapplicationinthephysicalworld.Itmaybethattheyareallfromthesubsetof decidabletruths.Thingsmaybeevenbetterprotectedthanthat:perhapsonlycomputable patternsareinstantiatedinphysicalreality? ItisalsopossiblethattheconditionsrequiredtoproveGödelincompletenessdonot applytophysicaltheories.Condition1requirestheaxiomsofthetheorytobelistable.It mightbethatthelawsofphysicsarenotlistableinthispredictablesense.Thiswouldbe aradicaldeparturefromthesituationthatwethinkexists,wherethenumberof fundamentallawsisbelievedtobenotjustlistable,butfinite(andverysmall).Butitis alwayspossiblethatwearejustscratchingthesurfaceofabottomlesstoweroflaws, onlythetopofwhichhassignificanteffectsuponourexperience.However,iftherewere anunlistableinfinityofphysicallawsthenwewouldfaceamoreformidableproblem thanthatofincompleteness. Anequallyinterestingissueisthatoffiniteness.Itmaybethattheuniverseof physicalpossibilitiesisfinite,althoughastronomicallylarge 32 .However,nomatterhow largethenumberofprimitivequantitiestowhichthelawsrefer,solongastheyarefinite, theresultingsystemofinter-relationshipswillbecomplete.Weshouldstressthat althoughwehabituallyassumethatthereisacontinuumofpointsofspaceandtimethis isjustanassumptionthatisveryconvenientfortheuseofsimplemathematics.Thereis nodeepreasontobelievethatspaceandtimearecontinuous,ratherthandiscrete,attheir mostfundamentalmicroscopiclevel;infact,therearesometheoriesofquantumgravity thatassumethattheyarenot.Quantumtheoryhasintroduceddiscretenessandfiniteness inanumberofplaceswhereoncewebelievedinacontinuumofpossibilities.Curiously, ifwegiveupthiscontinuity,sothatthereisnotnecessarilyanotherpointinbetweenany twosufficientlyclosepointsyoucaretochoose.Space-timestructurebecomesinfinitely morecomplicatedbecausecontinuousfunctionscanbedefinedbytheirvaluesonthe rationals.Manymorethingscanhappen.Thisquestionoffinitenessmightalsobebound upwiththequestionofwhethertheuniverseisfiniteinvolumeandwhetherthenumber ofelementaryparticles(orwhateverthemostelementaryentitiesmightbe)ofNatureare finiteorinfiniteinnumber.Thus,theremightonlyexistafinitenumberoftermsto whichtheultimatelogicaltheoryofthephysicalworldapplies.Hence,itwouldbe complete. AfurtherpossibilitywithregardtotheapplicationofGödeltothelawsofphysicsis thatCondition2oftheincompletenesstheoremmightnotbemet.Howcouldthisbe? Althoughweseemtomakewideuseofarithmetic,andmuchlargermathematical structures,whenwecarryoutscientificinvestigationsofthelawsofNature,thisdoesnot meanthattheinnerlogicofthephysicalUniverseneedstoemploysuchalargestructure. Itisundoubtedlyconvenientforustouselargemathematicalstructurestogetherwith conceptslikeinfinitybutthismaybeananthropomorphism.Thedeepstructureofthe Universemayberootedinamuchsimplerlogicthanthatoffullarithmetic,andhencebe complete.Allthiswouldrequirewouldbefortheunderlyingstructuretocontaineither additionormultiplicationbutnotboth.Recallthatallthesumsthatyouhaveeverdone 11 haveusedmultiplicationsimplyasashorthandforaddition.Theywouldbepossiblein Presburgerarithmeticaswell.Alternatively,abasicstructureofrealitythatmadeuseof simplerelationshipsofageometricalvariety,orwhichderivedfrom'greaterthan'or'less than'relationships,orsubtlecombinationsofthemallcouldalsoremaincomplete 33 .The factthatEinstein'stheoryofgeneralrelativityreplacesmanyphysicalnotionslikeforce andweightby geometrical distortionsinthefabricofspace-timemaywellholdsome clueaboutwhatispossiblehere. Thereisasurprisinglyrichrangeofpossibilitiesforabasicrepresentationof mathematicalphysicsintermsofsystemswhichmightbedecidableorundecidable. Tarskishowedthat,unlikePeano’sarithmeticofadditionandmultiplicationofnatural numbers,thefirst-ordertheoryofrealnumbersunderadditionandmultiplicationis decidable.Thisisrathersurprisingandmaygivesomehopethattheoriesofphysics basedontherealsorcomplexnumberswillevadeundecidabilityingeneral.Tarskialso wentontoshowthatmanymathematicalsystemsusedinphysics,likelatticetheory, projectivegeometry,andAbeliangrouptheoryaredecidable,whileothers,notablynon- Abeliangrouptheoryarenot 34 .Littleconsiderationseemstobehavegiventothe consequencesoftheseresultstothedevelopmentofultimatetheoriesofphysics. Thereisanotherimportantaspectofthesituationtobekeepinview.Evenifa logicalsystemiscomplete,italwayscontainsunprovable'truths'.Thesearetheaxioms whicharechosentodefinethesystem.Andaftertheyarechosen,allthelogicalsystem candoisdeduceconclusionsfromthem.Insimplelogicalsystems,likePeanoarithmetic, theaxiomsseemreasonablyobviousbecausewearethinkingbackwards--formalising somethingthatwehavebeendoingintuitivelyforthousandsofyears.Whenwelookata subjectlikephysics,thereareparallelsanddifferences.Theaxioms,orlaws,ofphysics aretheprimetargetofphysicsresearch.Theyarebynomeansintuitivelyobvious, becausetheygovernregimesthatcanliefaroutsideofourexperience.Theoutcomesof thoselawsareunpredictableincertaincircumstancesbecausetheyinvolvesymmetry breakings.Tryingtodeducethelawsfromtheoutcomesisnotsomethingthatwecan everdouniquelyandcompletelybymeansofacomputerprogramme. Thus,wedetectacompletelydifferentemphasisinthestudyofformalsystemsandin physicalscience.Inmathematicsandlogic,westartbydefiningasystemofaxiomsand lawsofdeduction.Then,wemighttrytoshowthatthesystemiscompleteorincomplete, anddeduceasmanytheoremsaswecanfromtheaxioms.Inscience,wearenotatliberty topickanylogicalsystemoflawsthatwechoose.Wearetryingtofindthesystemof lawsandaxioms(assumingthereisone--ormorethanoneperhaps)thatwillgiveriseto theoutcomesthatwesee.Aswestressedearlier,itisalwayspossibletofindasystemof lawswhichwillgiverisetoanysetofobservedoutcomes.Butitistheverysetof unprovablestatementsthatthelogiciansandthemathematiciansignore--theaxiomsand lawsofdeduction--thatthescientistismostinterestedindiscoveringratherthansimply assuming.Theonlyhopeofproceedingasthelogiciansdo,wouldbeifforsomereason thereisonlyonepossiblesetofaxiomsorlawsofphysics.Sofar,thisdoesnotseem likely 35 ;evenifitwerewewouldnotbeabletoprove. 12

3:LawsversusOutcomes SymmetryBreaking Thestructureofmodernphysicspresentswithanimportantdichotomy.Itis importanttoappreciatethisdivisioninordertounderstandthesignificanceofGödel incompletenessforphysics.ThefundamentallawsofNaturegoverningtheweak,strong, electromagnetic,andgravitationalforces,arealllocalgaugetheoriesderivedfromthe maintenanceofparticularmathematicalsymmetries.Astheseforcesbecomeunified,the numberofsymmetriesinvolvedwillbereduceduntilultimately(perhaps)thereisonly oneover-archingsymmetrydictatingtheformthelawsofNature–aso-called‘Theoryof Everything’,ofwhichMtheoryisthecurrentcandidate.ThusthelawsofNatureareina realsense‘simple’andhighlysymmetrical.Theultimatesymmetrywhichunitesthem mustpossessanumberofpropertiesinordertoaccommodateallthelow-energy manifestationsoftheseparateforces,thestatesthatlooklikeelementary‘particles’with alltheirproperties,anditmustbebigenoughforthemalltofitin. ThereisnoreasonwhyGödelincompletenessshouldhamperthesearchforthisall- encompassingsymmetrygoverningthe laws ofNature.Thissearchis,atroot,asearch forapattern,perhapsagroupsymmetryorsomeothermathematicalprescription.Itneed notbecomplicatedanditprobablyhasaparticularmathematicalpropertythatmakesit specially(orevenuniquely)fittedforthispurpose. Inreality,wenever‘see’lawsofNature:theyinhabitaPlatonicrealm.Rather,we witnesstheir outcomes .Thisisanimportantdistinction,becausetheoutcomesarequite differenttothelawsthatgovernthem.Theyareasymmetricalandcomplicatedandneed possessnoneofthesymmetriesdisplayedbythelaws.Thisisfortunatebecause,wereit notso,wecouldnotexist.IftheoutcomesofthelawsofNaturepossessedallthe symmetriesofthelawsthennothingcouldhappenwhichdidnotrespectthem.There couldbenostructureslocatedatparticulartimesandplaces,nodirectionalasymmetries, andnothinghappeningatanyonemoment.Allwouldbeunchangingandempty. ThisdichotomybetweenlawsandoutcomesiswhatIwouldcall‘thesecretofthe universe’.ItiswhatenablesaUniversetobegovernedbyaverysmallnumber(perhaps justone)ofsimpleandsymmetricallaws,yetgiverisetoanunlimitednumberofhighly complex,asymmetricalstates–ofwhichweareonevariety 36 . Thus,whereasthereisnoreasontoworryaboutGödelincompletenessfrustrating thesearchforthemathematicaldescriptionsofthelawsofNature,wemightwellexpect Gödelincompletenesstoariseinourattemptstodescribesomeofthecomplicated sequencesofeventsthatariseasoutcomestothelawsofNature. UndecidableOutcomes Specificexampleshavebeengivenofphysicalproblemsinwhichtheoutcomesof theirunderlyinglawsareundecidable.Asonemightexpectfromwhathasjustbeensaid, theydonotinvolveaninabilitytodeterminesomethingfundamentalaboutthenatureof thelawsofphysics,oreventhemostelementaryparticlesofmatter.Rather,theyinvolve aninabilitytoperformsomespecificmathematicalcalculation,whichinhibitsourability todeterminethecourseofeventsinawell-definedphysicalproblem.However,although theproblemmaybemathematicallywelldefined,thisdoesnotmeanthatitispossibleto createthepreciseconditionsrequiredfortheundecidabilitytoexist. 13

AninterestingseriesofexamplesofthissorthavebeencreatedbytheBrazilian mathematicians,FranciscoDoriaandN.daCosta 37 .Respondingtoachallengeproblem posedbytheRussianmathematicianVladimirArnold,theyinvestigatedwhetheritwas possibletohaveageneralmathematicalcriterionwhichwoulddecidewhetherornotany equilibriumwasstable.Astableequilibriumisasituationlikeaballsittinginthebottom ofabasin–displaceitslightlyanditreturnstothebottom;anunstableequilibriumislike aneedlebalancedvertically–displaceitslightlyanditmovesawayfromthevertical 38 . Whentheequilibriumisofasimplenaturethisproblemisveryelementary;first-year sciencestudentslearnaboutit.But,whentheequilibriumexistsinthefaceofmore complicatedcouplingsbetweenthedifferentcompetinginfluences,theproblemsoon becomesmorecomplicatedthanthesituationstudiedbysciencestudents 39 .Solongas thereareonlyafewcompetinginfluencesthestabilityoftheequilibriumcanstillbe decidedbyinspectingtheequationsthatgovernthesituation.Arnold’schallengewasto discoveranwhichtellsusifthiscanalwaysbedone,nomatterhowmany competinginfluencesthereare,andnomatterhowcomplextheirinter-relationships.By ‘discover’hemeantfindaformulaintowhichyoucanfeedtheequationswhichgovern theequilibriumalongwithyourdefinitionofstability,andoutofwhichwillpopthe answer‘stable’orunstable’. DaCostaandDoriadiscoveredthattherecanexistnosuchalgorithm.Thereexist equilibriacharacterisedbyspecialsolutionsofmathematicalequationswhosestabilityis undecidable.Inorderforthisundecidabilitytohaveanimpactonproblemsofreal interestinmathematicalphysicstheequilibriahavetoinvolvetheinterplayofverylarge numbersofdifferentforces.Whilesuchequilibriacannotberuledout,theyhavenot arisenyetinrealphysicalproblems.DaCostaandDoriawentontoidentifysimilar problemswheretheanswertoasimplequestion,like‘willtheorbitofaparticlebecome chaotic’,isGödelundecidable.Theycanbeviewedasphysicallygroundedexamplesof thetheoremsofRice 40 andRichardson 41 whichshow,inaprecisesense,thatonlytrivial propertiesofcomputerprogramsarealgorithmicallydecidable.Othershavealsotriedto identifyformallyundecidableproblems.GerochandHartlehavediscussedproblemsin quantumgravitythatpredictthevaluesofpotentiallyobservablequantitiesasasumof termswhoselistingisknowntobeaTuringuncomputableoperation 42 .Pour-Eland Richards 43 showedthatverysimpledifferentialequations,whicharewidelyusedin physics,likethewaveequation,canhaveuncomputableoutcomeswhentheinitialdatais notverysmooth.Thislackofsmoothnessgivesrisetowhatmathematicianscallan‘ill- posed’problem.Itisthisfeaturethatgivesrisetotheuncomputability.However,Traub andWozniakowski 44 haveshownthateveryill-posedproblemiswell-posedonthe averageunderrathergeneralconditions.Wolfram 45 givesexamplesofintractabilityan undecidabilityarisingincondensedmatterphysicsandevenbelievesthatundecidability istypicalinphysicaltheories. ThestudyofEinstein’s’generaltheoryofrelativityalsoproducesanundecidable problemifthemathematicalquantitiesinvolvedareunrestricted 46 .Whenonefindsan exactsolutionofEinstein’sequationsitisalwaysnecessarytodiscoverwhetheritisjust another,knownsolutionthatiswritteninadifferentform.Usually,onecaninvestigate thisbyhand,butforcomplicatedsolutionscomputerscanhelp.Forthispurposewe requirecomputersprogrammedtocarryoutalgebraicmanipulations.Theycancheck variousquantitiestodiscoverifagivensolutionisequivalenttoonealreadysittinginits 14 memorybankofknownsolutions.Inpracticalcasesencounteredsofar,thischecking procedurecomesupwithadefiniteresultafterasmallnumberofsteps.But,ingeneral, thecomparisonisanundecidableprocessequivalenttoanotherfamousundecidable problemofpuremathematics,‘thewordproblem’ofgrouptheory,firstposedbyMax Dehn 47 in1911andshowntobeundecidablein1955 48 . Thetentativeconclusionsweshoulddrawfromthisdiscussionisthat,justbecause physicsmakesuseofmathematics,itisbynomeansrequiredthatGödelplacesanylimit upontheoverallscopeofphysicstounderstandthelawsofNature 49 .Themathematics thatNaturemakesuseofmaybesmaller,andsimplerthanisneededforundecidabilityto rearitshead. 4:GödelandSpace-timeStructure Space-timeinaSpin AlthoughKurtGödelisfamousamongstlogiciansforhisincompletenesstheorems, heisalsofamousamongstcosmologists,butforaquitedifferentreason.In1949, inspiredbyhismanyconversationswithEinsteinaboutthenatureoftimeandMach’s principle,GödelfoundanewandcompletelyunsuspectedtypeofsolutiontoEinstein’s equationsofgeneralrelativity 50 .Gödel’ssolutionwasauniversethatrotatesandpermits timetraveltooccurintothepast. Thiswasthefirsttimethatthepossibilityoftimetravel(intothepast)hademergedin thecontextofatheoryofphysics.TheideaoftimetravelfirstappearedinH.G.Wells’ famous1895story, TheTimeMachine ,butitwaswidelysuspectedthatbackwards 51 time travelintothepastwouldinsomewaybeinconflictwiththelawsofNature.Gödel’s universeshowedthatwasnotnecessarilyso:itcouldariseasaconsequenceofatheory obeyingalltheconservationlawsofphysics.Timetravelintothefutureisarelatively uncontroversialmatterandisjustanotherwayofdescribingtheobservedeffectsoftime dilationinspecialrelativity. Gödel’suniverseisnottheonethatwelivein.Foronething,Gödel’suniverseis notexpanding;foranother,thereisnoevidencethatourUniverseisrotating–andifitis, thenitsrateofspinmustbeatleast10 5timesslowerthanitsexpansionratebecauseof theisotropyofthemicrowavebackgroundradiation 52 .Nonetheless,Gödel’suniversewas akeydiscoveryinthestudyofspace-timeandgravitation.Iftimetravelwaspossible, perhapsitcouldariseinotheruniverseswhichareviabledescriptionsofourown? ButtheinfluenceofGödel'ssolutiononthedevelopmentofthesubjectwasmore indirect.Itrevealedforthefirsttimethesubtletyofthe global structureofspace-time, particularlywhenrotationispresent.Previously,thecosmologicalmodelsthatwere studiedtendedtobespatiallyhomogeneouswithsimpletopologiesandhighdegreesof globalsymmetrythatruledoutordisguisedglobalstructure.Later,in1965,Roger Penrosewouldapplypowerfulnewmethodsofdifferentialtopologytothisproblemand provethefirstsingularitytheoremsincosmology.Thepossibilityofclosedtime-like curvesinspace-timethatGödelhadrevealedmeantthatspecificvetoshadtobeincluded insomeofthesetheoremstoexcludetheirpresence,otherwisepastincompletenessof geodesicscouldbeavoidedbyperiodicallyreappearinginthefuture.ItwasGödel’s universethatfirstshowedhowunusualspace-timescouldbewhilststillremaining physicallyandfactuallyconsistent.Priortoitsdiscovery,physicistsandphilosophersof 15 scienceregardedtimetraveltothepastasthenecessaryharbingeroffactual contradictions.ButGödel'ssolutionshowsthatthereexistself-consistenthistorieswhich areperiodicinspaceandtime 53 .Itcontinuestobestudiedasakeyexampleofan intrinsicallygeneral-relativisticeffectanditsfullstabilitypropertieshavebeenelucidated onlyrecently 54 .Someofitsunusualpropertiesareexplainedintheaccompanyingarticle byWolfgangRindler. Inrecentyears,Gödel’sstudyofspace-timestructureandhisworkonthe incompletenessoflogicalsystemshavebeenpulledtogetherinafascinatingway.Ithas beenshownthatthereisalinkbetweentheglobalstructureofaspace-timeandthesorts ofcomputationsthatcanbecompletedwithinthem.Thisunexpectedlinkarisesfroma strangeoldproblemwithanewname:isitpossibletodoaninfinitenumberofthingsina finiteamountoftime?Andthenewnameforsucharemarkableoldactivityisa ‘supertask’. Supertasks Theancients,beginningwithZeno,werechallengedbytheparadoxesofinfinities onmanyfronts 55 .Butwhataboutphilosopherstoday?Whatsortofproblemsdothey worryabout?Thereareliveissuesontheinterfacebetweenscienceandphilosophythat areconcernedwithwhetheritispossibletobuildan"infinitymachine"thatcanperform aninfinitenumberoftasksinafinitetime.Ofcourse,thissimplequestionneedssome clarification:whatexactlyismeantby"possible","tasks","number","infinite","finite" and,bynomeansleast,by"time".Classicalphysicsappearstoimposefewphysical limitsonthefunctioningofinfinitymachinesbecausethereisnolimittothespeedat whichsignalscantravelorswitchescanmove.Newton'slawsallowaninfinitymachine. ThiscanbeseenbyexploitingadiscoveryaboutNewtoniandynamicsmadein1971by theUSmathematicianJeffXia 56 .Firsttakefourparticlesofequalmassandarrangethem intwobinarypairsorbitingwithequalbutoppositely-directedspinsintwoseparate parallelplanes,sotheoverallangularmomentumiszero.Now,introduceafifthmuch lighterparticlethatoscillatesbackandforthalongaperpendicularlinejoiningthemass centresofthetwobinarypairs.Xiashowedthatsuchasystemoffiveparticleswill expandtoinfinitesizeina finite time! Howdoesthishappen?Thelittleoscillatingparticlerunsbackandforthbetween thebinarypairs,eachtimecreatinganunstablemeetingofthreebodies.Thelighter particlethengetskickedbackandthebinarypairrecoilsoutwardstoconserve momentum.Thelighterparticlethentravelsacrosstotheotherbinaryandthesame ménageàtrois isrepeatedthere.Thiscontinueswithoutend,acceleratingthebinarypairs apartsostronglythattheybecomeinfinitelyseparatedwhilethelighterparticle undergoesaninfinitenumberofoscillationsinthefinitetimebeforethesystemachieves infinitesize. Unfortunately(orperhapsfortunately),thisbehaviourisnotpossiblewhen relativityistakenintoaccount.Noinformationcanbetransmittedfasterthanthespeedof lightandgravitationalforcescannotbecomearbitrarilystronginEinstein'stheoryof motionandgravitation;norcanmassesgetarbitrarilyclosetoeachotherandrecoil- thereisalimittohowcloseseparationcanget,afterwhichan"eventhorizon"surface enclosestheparticlestoformablackhole 57 .Theirfateisthensealed–nosuchinfinity machinecouldsendinformationtotheoutsideworld. 16

Butthisdoesnotmeanthatallrelativisticinfinitymachinesareforbidden 58 . Indeed,theEinsteinianrelativityoftimethatisarequirementofallobservers,nomatter whattheirmotion,opensupsomeinterestingnewpossibilitiesforcompletinginfinite tasksinfinitetime.Coulditbethatonemovingobservercouldseeaninfinitenumberof computationsoccurringeventhoughonlyafinitenumberhadoccurredaccordingto someoneelse?Misner 59 andBarrowandTipler 60 haveshownthatthereareexamplesof entireuniversesinwhichaninfinitenumberofoscillationsoccuronapproachto singularitiesinspace-timebutitisnecessaryfortheentireuniversetohitthesingularity; ineffect,thewholeuniverseistheinfinitymachine.Itstillremainstoaskwhetheralocal infinitymachinecouldexistandsendussignalsasaresultofcompletinganinfinite numberofoperationsinafiniteamountofourtime. Thefamousmotivatingexampleofthissortoftemporalrelativityistheso-called 'twinparadox'.Twoidenticaltwinsaregivendifferentfuturecareers.Tweedlehomestays athomewhileTweedleawaygoesawayonaspaceflightataspeedapproachingthatof light.Whentheyareeventuallyreunited,relativitypredictsthatTweedleawaywillfind Tweedlehometobemucholder.Thetwinshaveexperienceddifferentcareersinspace andtimebecauseoftheaccelerationanddecelerationthatTweedleawayunderwenton hisroundtrip. Socanweeversendacomputeronajourneysoextremethatitcouldaccomplish aninfinitenumberofoperationsbythetimeitreturnstoitsstay-at-homeowner?Itamar Pitowskyfirstargued 61 thatifTweedleawaycouldacceleratehisspaceshipsufficiently strongly,thenhecouldrecordafiniteamountoftheuniverse'shistoryonhisownclock whilehistwinrecordsaninfiniteamountoftimeonhisclock.Doesthis,hewondered, permittheexistenceofa"Platonistcomputer"-onethatcouldcarryoutaninfinite numberofoperationsalongsometrajectorythroughspaceandtimeandprintoutanswers thatwecouldseebackhome.Alas,thereisaproblem-forthereceivertostayincontact withthecomputer,healsohastoacceleratedramaticallytomaintaintheflowof information.Eventuallythegravitationalforcesbecomestupendousandheistornapart. Notwithstandingtheseproblemsacheck-listofpropertieshasbeencompiledfor universesthatcanallowaninfinitenumberoftaskstobecompletedinfinitetime,or "supertasks"astheyhavebecomeknown.ThesearecalledMalament-Hogarth(MH) universesafterDavidMalament,aUniversityofChicagophilosopher,andMark Hogarth 62 ,aformerCambridgeUniversityresearchstudent,who,in1992,investigated theconditionsunderwhichtheyweretheoreticallypossible.Supertasks 63 openthe fascinatingprospectoffindingorcreatingconditionsunderwhichaninfinitenumberof thingscanbeseentobeaccomplishedinafinitetime.Thishasallsortsofconsequences forcomputerscienceandmathematicsbecauseitwouldremovethedistinctionbetween computableanduncomputableoperations.ItissomethingofasurprisethatMHuniverses (seeFigure1)areself-consistentmathematicalpossibilitiesbut,unfortunately,have propertiesthatsuggesttheyarenotrealisticphysicalpossibilitiesunlessweembrace somedisturbingnotions,suchastheprospectofthingshappeningwithoutcauses,and travelbackwardsthroughtime. Themostseriousby-productofbeingallowedtobuildaninfinitymachineis rathermorealarmingthough.Observerswhostrayintobadpartsoftheseuniverseswill findthatbeingabletoperformaninfinitenumberofcomputationsinafinitetimealso meansthatanyamountofradiation,nomatterhowsmall,getscompressedtozero 17 wavelengthandamplifiedtoinfinitefrequencyandenergyalongtheinfinite computationaltrail.Thusanyattempttotransmittheoutputfromaninfinitenumberof computationswillzapthereceiveranddestroyhim.Sofar,thesedireproblemsseemto ruleoutthepracticalityofengineeringarelativisticinfinitymachineinsuchawaythat wecouldsafelyreceiveandstoretheinformation.Buttheuniversesinwhichinfinite tasksarepossibleinfinitetimeincludesatypeofspacethatplaysakeyroleinthe structureoftheverysuperstringtheoriesthatlookedsoappealinglyfinite. Ifyoucouldseetheoutputfromaninfinitymachinethatcompletessupertasksthen youhavethepossibilityofdecidingundecidableproblemsbydirectsearchthroughthe infinitecatalogueofpossibilities:Turing’suncomputableoperationsseemtobecome completeableinafiniteamountofourwristwatchtime.Isthisreallypossible? Remarkably,Hogarthshowed 64 insomespace-timesitwaspossibletodecideGödel undecidablequestionsbydirectsearchbysendingacomputeralongacertainspace-time path, γ,sothatitcouldprintoutandsendyoutheanswertothequestion.Now,createa hierarchyofnspace-timestructuresofascendingcomplexitiessuchthatthen th inthe sequenceallowsasupertasktobecompletedwhichcancheckthetruthofany arithmeticalassertionmadeinthen th butnotthe(n+1) st quantifierarithmeticinKleene’s logicalhierarchy,bywhichlogicianscalibratethecomplexityofpossiblelogical expressions.Thereisaneatone-to-onecorrespondencebetweenthelistofspace-times andthecomplexityofthelogicalstatementsthattheycandecide.Subsequently,Etesiand Nemeti 65 showedthatsomerelationsonnaturalnumberswhichareneitheruniversalnor co-universal,canbedecidedinKerrspace-times.Welch 66 recentlygeneralisedthese resultstoshowthatthecomputationalcapabilityofspace-timescouldberaisedbeyond thatofarithmetictohyper-arithmetics,andshowedthatthereisupperboundonthe computationalabilityinanyspace-timewhichisauniversalconstantdefinedbythe space-time. Thus,inconclusion,wefindthatGödel’sideasarestillprovokingnewresearch programmesandunsuspectedpropertiesoftheworldsoflogicalandphysicalreality.His incompletenesstheoremsshouldnotbeadrainonourenthusiasmtoseekoutandcodify thelawsofNature:thereisnoreasonforthemtolimitthatsearchforthefundamental symmetriesofNatureinanysignificantway.But,bycontrast,insituationsofsufficient complexity,wedoexpecttofindthatGödelincompletenessplaceslimitsonourabilityto usethoselawstopredictthefuture,carryoutspecificcomputations,orbuild: incompletenessbesetstheoutcomesofverysimplelawsofNature.Finally,ifwestudy universes,thenGödel’simpactwillalwaysbefeltaswetrytoreconcilethesimplelocal geometryofspaceandtimewiththeextraordinarypossibilitiesthatitsexoticglobal structureallows.Space-timestructuredefineswhatcanbeprovedinauniverse. 18

P

³dτ= ∞ along γ

γ

I-(P)

Figure1 :Thespace-timeofanMHspace-timewithtimemappedverticallyandspace (compressedtoonedimension)horizontally.WearelocatedatPandourcausalpast, I-(P)consistsofalltheeventsthatcaninfluenceus.Ifthereisapathinourpast, γ,such thatthereisaninfiniteamountofitsowntimepassingonapproachtothespace-time pointwhereitintersectsourpastlinecone,theedgeofI -(P). Acknowledgements IwouldliketothankPhilipWelchfordiscussionsandChristos Papadimitriouformanyhelpfulsuggestions. 1J.D.Barrow, Impossibility ,OxfordUP,Oxford,(1998). 2J.D.Barrow, TheBookofNothing ,Cape,London,(2000). 3E.Grant, MuchAdoAboutNothing:TheoriesofSpaceandVacuumfromtheMiddleAgestotheScientific Revolution ,CambridgeUP,Cambridge, (1981).Earlierexamplesofsomeofthesechallengingthought experimentscanbefoundinLucretius, DeRerumNatura Book1. 4SeeH.LeffandA.Rex(eds.), Maxwell’s Demon,PrincetonUP,Princeton,(1990)foranoverviewwith reprintsofallthecrucialpapers. 5K.Guthrie(ed.), ThePythagoreanSourcebookandLibrary, PharesPress,GrandRapids,(1987). 6P.Pesic, Abel’sProof:anessayonthesourcesandmeaningofmathematicalunsolvability ,MITPress, Cambridge(2003).ThisbookalsocontainsanewtranslationofAbel’s1824discoverypaper. 7J.Richards,TheReceptionofaMathematicalTheory:Non-EuclideangeometryinEngland1868-1883,in NaturalOrder:HistoricalStudiesofScientificCulture ,eds.B.BarnesandS.Shapin,SagePubl.,Beverly Hills,(1979). 8J.D.Barrow, PiintheSky ,OxfordUP,Oxford,(1992),pp.8-15. 9M.Pasch, VorlesungenüberneuereGeometrie ,Leipzig,(1882) 19

10 H.Freudenthal, Themaintrendsinthefoundationofgeometryinthe19 th century .StanfordUP,Stanford, (1962),p.619,quotedinKennedyop.cit.p.133. 11 H.C.Kennedy,Amer.Math.Monthly79,133-6(1972). 12 SeeJ.Gray, TheHilbertChallenge ,OxfordUP,Oxford,(2000)whichcontainsthetextofHilbert’s AddresstotheInternationalCongressofMathematiciansin1900onpp.240-282andM.Toepell,Archive forHistoryofExactSciences35,329(1986) 13 D.Hilbert,quotedinC.Reid, Hilbert ,Springer-Verlag,NY,(1970),p.57. 14 L.Corry,ArchiveforHistoryofExactSciences51,83(1997) 15 H.Weyl,Amer.Math.Monthly53,13(1946). 16 S.Jaki, CosmosandCreator ,ScottishAcademic Press,Edinburgh,(1980),p49. 17 S.Jaki, TheRelevanceofPhysics, Univ.ChicagoP,Chicago,(1966),p129. 18 F.Dyson,TheWorldonaString,NewYorkReviewofBooks,May13 th ,(2004) 19 J.R.Lucas,Philosophy36,112(1961)and FreedomoftheWill (1970). 20 R.Penrose, TheEmperor’sNewMind, OxfordUP.,Oxford,(19XX). 21 K.Gödel,WhatisCantor'sContinuumProblem?,PhilosophyofMathematicsed.P.Benacerraf&H. Putnamp483 22 T.Frenzén, Gödel’sTheorem:AnIncompleteGuidetoitsUseandAbuse, A.K.Peters,Wellesley, (2005). 23 QuotedinJ.Bernstein, QuantumProfiles, BasicBks.,NY,(1991).Pp.140-1;seealsoJ.D.Barrow, Impossibility, OxfordUP,Oxford,(1998),chap.8. 24 RecordedbyChaitinseeJ.Bernstein, QuantumProfiles ,pp140-1andK.Svozil, Randomnessand UndecidabilityinPhysics, WorldScientific,Singapore,(1993),p112. 25 S.Wolfram, CellularAutomataandComplexity,CollectedPapers, Add.Wesley,ReadingMA,(1994). 26 C.Calude, Informationandrandomness--AnAlgorithmicPerspective, Springer,Berlin,(1994);C. Calude,H.Jürgensen,andM.Zimand,IsIndependenceanException?,Appl.Math.Comput.66,63 (1994);K.Svozil,in BoundariesandBarriers:onthelimitsofscientificknowledge, eds.J.CastiandA. Karlqvist,Add.Wesley,NY,(1996),p.215. 27 D.Harel, ComputersLtd., OxfordUP,Oxford(2000). 28 M.Presburger,ComptesRendusduCongrèsdeMathématiciensdesPaysSlaves,Warsawpp.92-101 (1929);D.C.Cooper,TheoremProvinginArithmeticwithoutMultiplication,inB.MeltzerandD.Michie (eds.), MachineIntelligence, EdinburghUP,Edinburgh,(1972),pp.91-100. 29 Thedecisionprocedureisingeneraldouble-exponentiallylong,though.Thatis,thecomputationaltime requiredtocarryoutNoperationsgrowsas(2 N)N.Presburgerarithmeticallowsustotalkaboutpositive integers,andvariableswhosevaluesarepositiveintegers.Ifweenlargeitbypermittingtheconceptofsets ofintegerstobeused,thenthesituationbecomesalmostunimaginablyintractable.Ithasbeenshownthat thissystemdoesnotadmitevenaK-foldexponentialalgorithm,foranyfiniteK.Thedecisionproblemis saidtobenon-elementaryinsuchsituations.Theintractabilityisunlimited;seeM.J.FischerandM.O. Rabin,Super-ExponentialComplexityofPresburgerArithmetic,Proc.SIAM-AMSSymp.7,27-41 (1974).Appl.Maths,7,27-41(1974). 30 Thatthetermsinthesumgetprogressivelysmallerisanecessarybutnotasufficientconditionforan infinitesumtobefinite.Forexample,thesum1+1/2+1/3+1/4+1/5+...isinfinite. 31 R.Rosen,OntheLimitationsofScientificKnowledge,in BoundariesandBarriers:onthelimitsof scientificknowledge, eds.J.L.CastiandA.Karlqvist,Add.Wesley,NY,(1996),p.199. 32 Thiscouldbebecauseithaspositivespatialcurvatureoracompactspatialtopologylikethatofthe3- toruseventhoughithasnon-positivecurvature,seeJ.D.Barrow, TheInfiniteBook ,Cape,London,(2005), chap.7. 33 JohnA.Wheelerhasspeculatedabouttheultimatestructureofspace-timebeingaformof'pregeometry' obeyingacalculusofpropositionsrestrictedbyGödelincompleteness.Weareproposingthatthis pregeometrymightbesimpleenoughtobecomplete;seeC.Misner,K.Thorne,andJ.A.Wheeler, Gravitation, W.H.Freeman,San.Fran,(1973),pp.1211-2. 34 A.Tarski,A.MostowskiandR.M.Robinson, Undecidabletheories ,NorthHolland,Amsterdam,(1953). 35 Thesituationinsuperstringtheoryisstillveryfluid.Thereappeartoexistmanydifferent,logicallyself- consistentsuperstringtheories,buttherearestrongindicationsthattheymaybedifferentrepresentationsof amuchsmallernumber(maybeevenjustone)theory. 20

36 J.D.Barrow, NewTheoriesofEverything ,OxfordUP,Oxford,(2007). 37 N.C.daCostaandF.Doria,Int.J.Theor.Phys.30,1041(1991),Found.Phys.Letts.,4,363(1991) 38 Actually,thereareothermorecomplicatedpossibilitiesclusteredaroundthedividinglinebetweenthese twosimplepossibilitiesanditisthesethatprovidetheindeterminacyoftheproblemingeneral. 39 Itismaynotbedeterminedatlinearorderifthereareeigenvalueswhicharezeroorarepurely imaginary. 40 H.G.Rice,Trans.Amer.Math.Soc.74,358(1953). 41 D.Richardson,SymbolicLogic33,514(1968). 42 R.GerochandJ.Hartle,ComputabilityandPhysicalTheories,FoundationsofPhysics,16,533(1986). Theproblemisthatthecalculationofawavefunctionforacosmologicalquantityinvolvesthesumof quantitiesevaluatedonevery4-dimensionalcompactmanifoldinturn.Thelistingofthiscollectionsof manifoldsisuncomputable. 43 M.B.Pour-ElandI.Richards,Acomputableordinarydifferentialequationwhichpossessesno computablesolution,Ann.Math.Logic,17,61(1979),Thewaveequationwithcomputableinitialdata suchthatitsuniquesolutionisnotcomputable,Adv.Math.39,215(1981),Non-computabilityinmodelsof physicalphenomena,Int.J.Theor.Phys.21,553(1982). 44 J.F.TraubandH.Wozniakowski,Information-basedComplexity:NewQuestionsforMathematicians, ThemathematicalIntelligencer,13,34(1991). 45 S.Wolfram,UndecidabilityandIntractabilityinTheoreticalPhysics,Phys.Rev.Lett.,54,735(1985); OriginsofRandomnessinPhysicalSystems,Phys.Rev.Lett.55,449(1985);PhysicsandComputation, Int.J.Theo.Phys.21,165(1982). 46 Ifthemetricfunctionsarepolynomialsthentheproblemisdecidable,butiscomputationallydouble- exponential.Ifthemetricfunctionsareallowedtobesufficientlysmooththentheproblembecomes undecidable,seethearticleonAlgebraicSimplificationbyBuchbergerandLoosinBuchberger,Loosand Collins, ComputerAlgebra:symbolicandalgebraiccomputation', 2nded.,Springer,Wien,(1983) .Iam gratefultoMalcolmMacCallumforsupplyingthesedetails. 47 M.Dehn,Math.Ann.71,73(1911). 48 SeeW.Boone,AnnalsofMathematics,70,207(1959) 49 Forafullerdiscussionofthewholerangeoflimitsthatmayexistonourabilitytounderstandthe universeseetheauthor’sdiscussioninJ.D.Barrow, Impossibility ,OxfordUP,(1998)onwhichthe discussionhereisbased. 50 K.Gödel, Rev.Mod.Phys.21,447(1949).FordetailsoftheglobalstructureoftheGödeluniversesee S.W.HawkingandG.F.R.Ellis, TheLargescaleStructureofSpace-time ,CambridgeUP,Cambridge (1973);forastudyofitsstabilityandadiscussionofitsNewtoniancounterpart,seeJ.D.BarrowandC.G. Tsagas,Class.QuantumGravity21,1773(2004). 51 Forwardtimetravelintothefutureisroutinelyobservedandisasimpleconsequenceofspecialrelativity. Forexample,inthecaseofthetwinparadox,thetwinwhohasundergoneaccelerationsreturnstofindthat heisyoungerthanhistwin:hehasineffecttimetravelledintohistwin’sfuture. 52 J.D.Barrow,R.JuszkiewiczandD.H.Sonoda,MNRAS213,917(1985). 53 J.D.Barrow, TheInfiniteBook ,JonathanCape,London(2005). 54 J.D.BarrowandC.Tsagas,Class.QuantumGravity21,1773(2004). 55 A.Grünbaum, ModernScienceandZeno’sParadoxes ,AllenandUnwin,London(1968),and PhilosophicalProblemsofSpaceandTime ,2 nd .Edn.,Reidel,Dordrecht,(1973),chap.18. 56 Z.Xia,Ann.Math.135,,411(1992)andD.G.SaariandZ.Xia,J.Diff.Eqns.82,342(1989).The connectionbetweenXia’sremarkableconstructionispointedoutinandJ.D.Barrow, TheInfiniteBook , Cape,London,(2005),chap.10.Notehowever,thattheinitialconditionsneededforXia’sspecific examplearespecial(aCantorset)andwillnotariseinpractice. 57 Oncetwomasses,eachofmassM,fallinsidearadius4GM/c 2aneventhorizonformsaroundthem. 58 Wecouldbelivinginsideaverylargeblackholealongwiththeinfinitymachine. 59 C.W.Misner,Phys.Rev.186,1328(1969). 60 J.D.BarrowandF.J.Tipler, TheAnthropicCosmologicalPrinciple ,OxfordUP,Oxford(1986),chap. 10. 61 I.Pitowsky,Iyyun39,81(1990). 62 M.L.Hogarth,Found.Phys.Lett.5,173(1992). 21

63 J.EarmanandNorton,Phil.ofSci.60,22(1993)andJ.D.Barrow, TheInfiniteBook ,Cape,London, (2005),chap.10. 6464 M.Hogarth,Brit.JournalPhil.ofSci.55,681(2004). 65 G.EtesiandI.Németi,Int.J.Theor.Phys.41,341(2002). 66 P.D.Welch,gr-qc/0609035