Rose-Hulman Undergraduate Mathematics Journal Volume 11 Issue 1 Article 8 Gödel's Incompleteness Tyson Lipscomb Marshall University,
[email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Lipscomb, Tyson (2010) "Gödel's Incompleteness," Rose-Hulman Undergraduate Mathematics Journal: Vol. 11 : Iss. 1 , Article 8. Available at: https://scholar.rose-hulman.edu/rhumj/vol11/iss1/8 Gödel's Incompleteness Theorems: A Revolutionary View of the Nature of Mathematical Pursuits Tyson Lipscomb Marshall University March 11th, 2010 Abstract The work of the mathematician Kurt Gödel changed the face of mathematics forever. His famous incompleteness theorem proved that any formalized system of mathematics would always contain statements that were undecidable, showing that there are certain inherent limitations to the way many mathematicians studies mathematics. This paper provides a history of the mathematical developments that laid the foundation for Gödel's work, describes the unique method used by Gödel to prove his famous incompleteness theorem, and discusses the far- reaching mathematical implications thereof. 2 I. Introduction For thousands of years mathematics has been the one field of human thought wherein truths have been known with absolute certainty. In other fields of thought, such as science and philosophy, there has always been a level of imprecision or speculation. In mathematics, however, there are truths that we can know beyond a shadow of a doubt due to the methods of proof first devised by the ancient Greeks [10]. The unparallelled certainty of mathematics has throughout the past millennia led many to accept the notion that it would be possible to answer any mathematical question through expansive enough development of mathematical techniques [16].