Gödel and Physics

Gödel and Physics

GödelandPhysics JohnD.Barrow DAMTP CentreforMathematicalSciences CambridgeUniversity WilberforceRd., CambridgeCB30WA UK Summary Weintroducesomeearlyconsiderationsofphysicalandmathematicalimpossibilityas preludestoGödel’sincompletenesstheorems.Weconsidersomeinformalaspectsof thesetheoremsandtheirunderlyingassumptionsanddiscusssometheresponsestothese theoremsbythoseseekingtodrawconclusionsfromthemaboutthecompletabilityof theoriesofphysics.WearguethatthereisnoreasontoexpectGödelincompletenessto handicapthesearchforadescriptionofthelawsofNature,butwedoexpectittolimit whatwecanpredictabouttheoutcomesofthoselaws,andexamplesaregiven.We discussthe'Gödeluniverse',asolutionofEinstein'sequationsdescribingarotating universewheretimetravelispossible,whichwasdiscoveredbyGödelin1949,andthe roleitplayedinexposingthefullspectrumofpossibilitiesthataglobalunderstandingof space-timewouldreveal.Finally,weshowhowrecentstudiesofsupertaskshaveshown howglobalspace-timestructuredeterminestheultimatecapabilityofcomputational deviceswithinthem. 2 1: SomeHistorical Background PhysicalImpossibilities Thereisalonghistoryofscientificandphilosophicalconsiderationofphysical impossibilities 1.TheAristotelianworldviewoutlawedthepossibilitythatphysical infinitiesorlocalphysicalvacuacouldbecreatedorobserved 2.DuringtheMiddleAges, physicistsdevisedingeniousthoughtexperimentstotrytoimaginehowNaturecouldbe ‘tricked’intoallowinganinstantaneousvacuumtoform,andthenarguingabouthowthis possibilitywasstoppedfromoccurringbynaturalprocessesor,ifthatfailed,bythe invocationofaCosmicCensor,topreventitsappearance 3.Chemistryhaditsown ongoingalchemicaldebateaboutthepossibilityorimpossibilityofmakinggoldfrom basermetals,andengineeringmaintainedanenduringattachmenttothequestfora perpetualmotionmachinesthatonlyfullyabatedwhentheconsequencesoflawsof thermodynamicsweresystematicallyunderstoodduringthenineteenthcentury.Subtle examples,likeMaxwell’ssortingdemon,stillremaineduntiltheywereeventuallyfully exorcisedbytheapplicationofthemodernthermodynamictheoryofcomputationin 1961 4. MathematicalImpossibilities Mathematiciansalsooccasionallyconsideredthequestionofimpossibilityinthe contextofaseveralfundamentalproblemsofarithmetic,geometry,andalgebra. Supposedly,inabout550BC,thePythagoreansfirstencounteredthe‘irrationality’of numberslike √2whichcannotbeexpressedastheratiooftwointegers(‘irrational’ originallymeaningsimply'notaratio',ratherthanbeyondreason,asmightbesuggested today).5.Legendhasitthatthisdiscoverywassuchascandal,thatthediscoverer, Hippasos,wasdrownedbythemembersofthePythagoreanbrotherhoodforhistrouble. Thisgivesusthefirstglimpseofoperationsandquestionswhichhavenoanswersgivena particularsetofrules.Inthefirstquarterofthe19 th century,theproblemoffindingan explicitformforthesolutionofageneralquinticalgebraicequationintermsofits coefficientswasprovedtohavenosolutioninvolvingordinaryarithmeticoperationsand radicalsbytheyoungNorwegianmathematician,HenrikAbel 6.Unlikethecaseof quadratic,cubic,orquarticequations,thegeneralquinticcannotbesolvedbyanyexact formula.Justafewyearslater,in1837,rigorousproofsweregiventhatanangleof60 degreescouldnotbetrisectedjustbyuseofastraightedgeandpairofcompasses.These examplesrevealedforthefirsttime,tothosewholookedatthemintherightway,some hintsastothelimitationsofparticularaxiomaticsystems. InthelightoftheongoingimpactofGödel’sworkonspeculationsaboutthe limitationsofthehumanmind,itisinterestingtoreflectbrieflyonthesociologicaland psychologicaleffectsofsomeoftheseearlyresults.Theexistenceofirrationalnumbers wasofthedeepestconcerntothePythagoreans;however,asfaraswecanjudge,there werenodeepphilosophicalquestionsaboutthelimitationsofmathematicalreasoning raisedbythedemonstrationthatthequinticcouldnotbesolved.Yet,therewasachange. Previously,thereweremanythingsthoughtimpossiblethatcouldnotbesoproven despitemanyeffortstodoso.Butnowtherewereproofsthatsomethingcouldnotbe done. 3 Axiomatics Thedevelopmentofunderstandingofwhatconstructionsandproofscouldbecarried outbylimitedmeans,suchasrulerandcompassconstruction,orusingonlyarithmetic operationsandradicals,showedthataxiomsmattered.Thepowerandscopeofasystem ofaxiomsdeterminedwhatitsallowedrulesofreasoningcouldencompass. Untilthe19 th century,thearchetypalaxiomaticsystemwasthatofEuclidean geometry.Butitimportanttoappreciatethatthissystemwasnotthenviewed,asitis today,asjustoneamongmanyaxiomaticpossibilities.Euclideangeometrywashowthe worldreallywas.ItwaspartoftheabsolutetruthabouttheUniverse.Thisgaveita specialstatusanditsconstructionsandelucidation,largelyunchangedformorethan2000 years,providedastylethatwasapedbymanyworksofphilosophyandtheology.The widespreadbeliefinitsabsolutetruthprovidedanimportantcornerstoneforthebeliefsof theologiansandphilosophersthathumanreasoncouldgraspsomethingoftheultimate natureofthings.Ifchallengedthatthiswasbeyondthepowerofourmindstopenetrate, theycouldalwayspointtoEuclideangeometryasaconcreteexampleofhowandwhere thistypeofinsightintotheultimatenatureofthingshadalreadybeenpossible.Asa result,thediscoveries,byBolyai,Lobachevskii,Gauss,andRiemann,thatother geometriesexisted,butinwhichEuclid’sparallelpostulatewasnotincluded,hadamajor impactoutsideofmathematics 7.Theexistenceofotherlogicallyconsistentgeometries meantthatEuclid’sgeometrywasnot the truth:itwassimplyamodelforsomepartsof thetruth.Asaresult,newformsofrelativismsprangup,nourishedbythedemonstration thatevenEuclid’sancientfoundationalsystemwasmerelyoneofmanypossible geometries–andindeedoneofthesealternativeswasafarmoreappropriatemodelfor describingthegeometryoftheEarth’ssurfacethanEuclid’s.Curiousbooksappeared aboutnon-Euclideanmodelsofgovernmentandeconomics.‘Non-Euclidean’becamea bywordfornewandrelativetruth,theverylatestintellectualfashion 8.Later,newlogics wouldbecreatedaswell,bychangingtheaxiomsoftheclassicallogicalsystemthat Aristotlehaddefined. Outofthesestudiesemergedadeeperappreciationoftheneedforaxiomstobe consistentlydefinedandclearlystated.Thetraditionalrealistviewofmathematicsasa descriptionofhowtheworld‘was’hadtobesupersededbyamoresophisticatedview thatrecognisedmathematicstobeanunlimitedsystemofpatternswhicharisefromthe infinitenumberofpossibleaxiomaticsystemsthatcanbedefined.Someofthose patternsappeartobemadeuseofinNature,butmostarenot.Mathematicalsystemslike Euclideangeometryhadbeenassumedtobepartoftheabsolutetruthabouttheworld anduniquelyrelatedtoreality.Butthedevelopmentofnon-Euclideangeometriesand non-standardlogicsmeantthatmathematicalexistencenowmeantnothingmorethan logicalself-consistency(ieitmustnotbepossibletoprovethat0=1).Itnolongerhad anynecessaryrequirementofphysicalexistence. Hilbert’sprogramme ThecarefulstudyofaxiomaticsystemsrevealedthatevenEuclid’sbeautiful developmentofplanegeometrymadeuseofunstatedaxioms.In1882,MoritzPasch gaveaverysimpleexampleofanintuitively‘obvious’propertyofpointsandlinesthat 4 couldnotbeprovedfromEuclid’sclassicalaxioms 9.IfthepointsA,B,C,andDlieona straightlinesuchthatBliesbetweenAandCandCliesbetweenBandDthenitisnot possibletoprovethatBliesbetweenAandD.Thepictureofthesetupmadeitappear inevitablebutthatisnotasubstituteforaproof. _____________________________ A BCD Paschwantedtodistinguishbetweenthelogicalconsequencesoftheaxiomsofgeometry andthosepropertiesthatwejustassumedwereintuitivelytrue.Forhim,mathematical argumentationshouldnotdependonanyphysicalinterpretationorvisualisationofthe quantitiesinvolved.Hewasconcernedthataxiomaticsystemsshouldbecompleteand hasbeendescribedas'thefatherofrigoringeometry'byFreudenthal 10 . DavidHilbert,thegreatestmathematicianoftheday,felttheinfluence ofPasch’s writingsbothdirectlyandthroughtheireffectsonPeano'swork 11 from1882to1899,and beganasystematicprogrammein1899toplacemathematicsuponaformalaxiomatic footing 12 .Thiswasanewemphasis,conveyedbyHilbert'sremarkthatinmathematics 'Onemustbeabletosay..--insteadofpoints,straightlinesandplanes--tables,chairs, andbeermugs' 13 .Hebelievedthatitwouldbepossibletodeterminetheaxioms underlyingeachpartofmathematics(andhenceofthewhole),demonstratethatthese axiomsareself-consistent,andthenshowthattheresultingsystemofstatementsand deductionsformedfromtheseaxiomsisbothcompleteanddecidable.Moreprecisely,a systemis consistent ifwecannotprovethatastatementSanditsnegation, ∼S,areboth truetheorems.Itis complete ifforeverystatementSwecanforminitslanguage,eitherS oritsnegation, ∼Sisatruetheorem.Itis decidable ifforeverystatementSthatcanbe formedinitslanguage,wecanprovewhetherSistrueorfalse.Thus,ifasystemis decidableitmustbecomplete. Hilbert’sformalisticvisionofmathematicswasofatightwebofdeductionsspreading outwithimpeccablelogicalconnectionsfromthedefiningaxioms.Indeed,mathematics was defined tobethecollectionofallthosedeductions.Hilbertsetouttocompletethis formalisationofmathematicswiththehelpofothers,andbelievedthatitwould ultimatelybepossibletoextenditsscopetoincludescienceslikephysics 14 whichwere builtuponappliedmathematics.HebeganwithEuclideangeometryandsucceededin placingitonarigorousaxiomaticbasis.Hisprogrammethenimaginedstrengtheningthe systembyaddingadditionalaxioms,showingateachstepthatconsistencyand decidabilityremained,untileventuallythesystemhadbecomelargeenoughto encompassthewholeofarithmetic. Hilbert’sprogrammebeganconfidentlyandhebelievedthatitwouldjustbeamatter oftimebeforeallofmathematicswascorralledwithinitsformalisticweb.Alas,the worldwassoonturneduponitsheadbytheyoungKurtGödel.Gödelhadcompletedone oftheearlystepsinHilbert’sprogrammeaspartofhisdoctoralthesis,byprovingthe consistencyandcompletenessof1st -orderlogic(laterAlonzoChurchandAlanTuring wouldshowthatitwasnotdecidable).Butthenextstepsthathetookhaveensuredhis

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us