Relationship Between Escape Speed and Flight Distance in a Wolf Spider, Hogna Carolinensis (Walckenaer 1805)

Total Page:16

File Type:pdf, Size:1020Kb

Relationship Between Escape Speed and Flight Distance in a Wolf Spider, Hogna Carolinensis (Walckenaer 1805) 2005. The Journal of Arachnology 33:153±158 RELATIONSHIP BETWEEN ESCAPE SPEED AND FLIGHT DISTANCE IN A WOLF SPIDER, HOGNA CAROLINENSIS (WALCKENAER 1805) Matthew K. Nelson and Daniel R. Formanowicz Jr.: Department of Biology, University of Texas at Arlington, Arlington, Texas 76019. E-mail: [email protected] ABSTRACT. The relationship between running speed and ¯ight distance is an important one in terms of escape from predators, especially in species that may have multiple defensive strategies. In the wolf spider Hogna carolinensis, one important antipredator mechanism is ¯ight. We examined the relationship between sprint speed and ¯ight distance in wolf spiders by measuring sprint speed on a running track and, in a separate set of experiments with the same individual spiders, measured the distance at which they ¯ed from an advancing model predator. Sprint speed was not signi®cantly correlated with mass, size, or sex of the spiders. Sprint speed was positively correlated with ¯ight distance. This correlation may be the result of a trade-off between two competing modes of antipredator mechanisms: escape and crypsis. In individuals with higher sprint speeds, escape may be the more advantageous option. Slower individuals may have a greater chance of surviving an encounter with a predator simply by remaining still and relying on crypsis. Keywords: Antipredator strategy, risk, ¯ee, sprint speed Behavior patterns associated with predator made by Ydenberg & Dill's (1986) model is escape and avoidance are important to indi- that ``response'' does not necessarily equal vidual survival. These result in strong selec- ``detection,'' in that it can often be dif®cult to tive pressure favoring individuals that suc- assess whether or not the potential prey has cessfully avoid or escape from predators. detected a predator. In some cases, an individ- When an animal is approached by a potential ual may ignore an approaching predator until predator, it must evaluate the level of preda- it becomes necessary to initiate ¯ight. In other tion risk, and utilize the appropriate antipred- cases, certain ``alert behaviors'' may occur ator mechanism to neutralize the risk. The dis- that precede a ¯ight decision. The Ydenberg- tance from an approaching predator at which Dill model generally predicts that individuals an animal chooses to ¯ee has been referred to should delay ¯ight until the costs associated as ``¯ight distance'' (e.g. FernaÂndez-Juricic et with staying (e.g., increased predation risk) al. 2002), ``¯ight initiation distance'' (e.g. exceed the bene®ts associated with staying Bonenfant & Kramer 1996), ``approach dis- (e.g., time spent searching for food or mates). tance'' (e.g. Martin & Lopez 1999), and Several studies have examined the relation- ``¯ush distance'' (e.g. FernaÂndez-Juricic et al. ship between ¯ight distance and running abil- 2001). The latter two of these imply the per- ity. Rand (1964) found that body temperature spective of the predator. Since we will be dis- affected the distance at which Anolis lizards cussing the issue from the perspective of the ¯ed from approaching predators, attributing prey, ``¯ight distance'' seems the most appro- differences in escape distances among individ- priate and concise terminology. uals to lower body temperatures which re- Ydenberg & Dill (1986) discussed in detail duced sprint speeds. Cooler individuals tended the economics of escape from predators. They to ¯ee at greater distances because lower body suggested a cost-bene®t model of ¯ight dis- temperatures result in greater risk of capture. tance, incorporating the costs and bene®ts of Heatwole (1968) suggested that crypsis might continuing a particular behavior (such as for- also play a role in ¯ight distances. Cryptic aging) relative to the costs and bene®ts of species of Anolis may decrease their risk of ¯eeing. A concept critical to the predictions capture by remaining motionless and ¯eeing 153 154 THE JOURNAL OF ARACHNOLOGY at shorter distances than less cryptic species. usually ¯ee a meter or so, and then remain Species that rely on crypsis may not ¯ee from motionless (pers. obs.). an approaching predator until detection by the We examined the relationship between predator is certain. body size and running speed in male and fe- Schwarzkopf & Shine (1992) suggested male H. carolinensis, testing the hypothesis that ``vulnerability'' (risk of capture) of prey that larger individuals were faster. Since there should be evaluated in terms of the probability is a sexual dimorphism in body size in this of being detected by a predator. They found species, we also predicted that females and that gravid female water skinks, Eulamprus males should differ in running speed. Using tympanum, exhibited decreased running abil- the same spiders, we examined the distance at ity and shorter ¯ight distances relative to non- which they ¯ed from an approaching model gravid females. They suggested that gravid fe- predator. We used the data collected on run- males switched antipredator tactics from ning speed and ¯ight distance to test the fol- escape to crypsis because of the decrease in lowing hypothesis based on Ydenberg & running speed. They interpreted these results Dill's (1986) model: faster individuals would as evidence that escape speed may not always be expected to ¯ee at shorter distances from be the most important element involved in de- the predator. termining when to ¯ee. Formanowicz et al. METHODS (1990) investigated similar effects in the liz- 5 ard Scincella lateralis with differences in Hogna carolinensis (n 77; 44 males, 33 sprint speed related to tail autotomy. Skinks females) used in this study were collected on with autotomized tails were found to exhibit 26 March and 11 April, 1997 at the Texas Na- slower running speeds and relatively shorter ture Conservancy's Independence Creek Pre- ¯ight distances. They suggested that individ- serve, approximately 37 km south of Shef- ®eld, Terrell County, Texas, on the uals that had lost their tails switched to a cryp- northeastern edge of the Chihuahuan desert. tic antipredator strategy to compensate for re- Voucher specimens have been deposited at the duction in sprint speed. Denver Museum of Nature & Science. Most In this study, we examined the relationship spiders were collected at night by using head- between running speed and ¯ight distance in lamps to produce eyeshine; a few were col- the wolf spider Hogna carolinensis (Walcken- lected by turning rocks during the day. Spiders aer 1805). Hogna carolinensis is a large, bur- were not found to be active during the day. rowing wolf spider that is active on the sur- Females were often found near the mouth of face of the ground from dusk until dawn and a burrow, and sometimes removed from a bur- is distributed from southernmost Maine and row. In almost every case, females were found Ontario throughout the southeastern U.S. and within a meter of the burrow. Males, however, west to Baja California (Dondale & Redner were only occasionally found near a burrow 1990). Very little has been published concern- but never in a burrow. Spiders were housed ing the life history of this species. Individuals individually, in clear plastic containers (18.5 of Hogna carolinensis construct a burrow 3 7.5 3 9 cm) with a sand substrate (approx. with a turret of sticks and grass surrounding 1 cm deep). Each spider was fed one adult the mouth of the burrow. Or, in some cases, cricket/week, and water was available ad li- these spiders may inhabit a deserted rodent bitum. Temperatures in the housing and test- burrow (Shook 1978). The depth of the bur- ing area ranged from 25±26 8C. row likely varies between geographical re- Escape Speed.ÐSpider escape speeds were gions and possibly with the substrate. In west measured on a wooden track 9 cm wide and Texas, where this study was conducted, I have 2 m long, with sheet-metal side walls approx- found burrows as deep as 25 cm (pers. obs.). imately 21 cm high. All trials were conducted Likely predators include lizards, centipedes during daylight hours. A start box was sepa- (pers. obs.), scorpions, coyotes, owls and var- rated from the track by a removable metal di- ious predacious insects (Shook 1978). If a vider (21 3 9 cm). A spider was placed in the burrow is near, individuals will retreat to a start box, allowed to acclimate for 15 minutes, burrow when disturbed (Kuenzler 1958); how- the divider was raised, and the spider was ever, if a burrow is not near, the animal will prodded on the posterior end of the abdomen NELSON & FORMANOWICZÐESCAPE DISTANCE OF WOLF SPIDER 155 with a ®berglass rod until it ran. Using a stop- 0.8640) indicating that the speed of the model watch, we recorded the time that the spider predator from trial to trial was not signi®- crossed each 50 cm segment of track. Each cantly different. Another set of trials was run spider was run twice with 24 hours between using only the motor without the model pred- trials, after which time its mass was recorded. ator to rule out the possibility of cues from Spider cephalothorax lengths were measured the sound and vibration of the motor. In these at the end of the study with a caliper. trials, none of the spiders responded to the The fastest 50 cm speed (cm/s) for each spi- activation of the motor (n 5 10). The response der was used for statistical analyses. T-tests of the spider to the approaching model pred- were used to determine whether mass, ceph- ator was viewed through the observation holes alothorax length and speed differed between in the wall of the spider chamber. Escape was the sexes. Normality was evaluated using Sha- operationally de®ned as a spider turning and piro-Wilk's W, and none of the groups violat- running in the opposite direction from the ed this assumption at 0.05 level.
Recommended publications
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders
    Susquehanna University Scholarly Commons Senior Scholars Day Apr 28th, 12:00 AM - 12:00 AM Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders Maya Khanna Susquehanna University Joseph Evans Susquehanna University Matthew Persons Susquehanna University Follow this and additional works at: https://scholarlycommons.susqu.edu/ssd Khanna, Maya; Evans, Joseph; and Persons, Matthew, "Effects of Chronic Exposure to the Herbicide, Mesotrione, on Spiders" (2020). Senior Scholars Day. 34. https://scholarlycommons.susqu.edu/ssd/2020/posters/34 This Event is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Senior Scholars Day by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Effects of Chronic Exposure to the Herbicide, Mesotrione on Spiders Maya Khanna, Joseph Evans, and Matthew Persons Department of Biology, Susquehanna University, PA 17870 Tigrosa helluo Trochosa ruricola Mecaphesa asperata Frontinella pyramitela Tetragnatha laboriosa Hogna lenta Pisaurina mira Abstract Methods All spiders were collected on Table 1. The predicted lethality of mesotrione on each spider species based upon soil association levels and species size. Toxicity is predicted to increase with smaller size and Mesotrione is a widely used agricultural herbicide and is frequently used alone or as an adjuvant for the Susquehanna University’s campus. Each spider was housed in a 473 ml (16oz) greater soil contact. Sample sizes for each species are indicated to the left. A total of 615 herbicides glyphosate and atrazine. The effects of mesotrione are largely untested on beneficial non-target spiders were used in this study. species such as spiders.
    [Show full text]
  • Common Kansas Spiders
    A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.
    [Show full text]
  • Araneae, Lycosidae)
    1996 . The Journal of Arachnology 24:186—200 PATTERN AND DURATION OF COPULATION IN WOLF SPIDERS (ARANEAE, LYCOSIDAE) Gail E. Stratton'' 4, Eileen A. Hebets 2.5 , Patricia R. Miller3 and Gary L. Miller2: 'Albion College, Albion, Michigan 49221 USA ; University of Mississippi , University, Mississippi 38677 USA ; and Northwest Mississippi Community College , Senatobia, Mississippi 38668 US A ABSTRACT . The temporal patterns of insertion of male palps, expansion of the hematodocha an d duration of copulation are reported for 10 species of Schizocosa Chamberlin 1904, three species of Ra- bidosa Roewer 1955, one species of Gladicosa Brady 1986, one species of Hogna Simon 1885, two species of Isohogna Roewer 1960, one species of Trochosa C.L. Koch 1848, one species of Geolycosa Montgomery 1904, two species of Arctosa C.L. Koch 1848, three species of Alopecosa Simon 1885 and six species of Pardosa C.L. Koch 1847 . In all species of Schizocosa examined so far, males showed a pattern composed of a series of insertions with one palp followed by a switch to the opposite side and a separate series of insertions with the other palp . During each insertion there was a single expansion of the hematodocha . These copulations generally lasted from 1—4 hours . Males of Gladicosa bellamyi (Gertsch Wallace 1937) and Hogna georgicola (Walckenaer 1837) likewise showed a series of insertions on one side followed by insertions on the other side, with a single expansion of the hematodocha wit h each insertion . Males of Arctosa littoralis (Hentz 1844), A. sanctaerosae Gertsch Wallace 1935 and Geolycosa rogersi Wallace 1942 each copulated by alternating palps with a single insertion and singl e expansion of the hematodocha.
    [Show full text]
  • DESERTAS WOLF SPIDER (Hogna Ingens)
    Terrestrial Invertebrate Taxon Advisory Group Best Practice Guidelines for Desertas Wolf Spiders Version 1.4 – August 2018 Mark Bushell1, 8, Calvin Allen2, Tyrone Capel3, Dave Clarke4, Alex Cliffe3, Nicola Cooke1, Graeme Dick7, James Gotts7, Caroline Howard5, Jamie Mitchell4, Phil Robinson6, Carmen Solan1, Ryan Stringer5 Edited by Mark Bushell DRAFT HOGNA INGENS EAZA BEST PRACTICE GUIDELINES – Ver. 1.4 AUGUST 2018 TITAG Chair: Mark Bushell, Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA. [email protected] TITAG Vice-Chairs: Tamás Papp, Chester Zoo, Moston Rd, Upton, Chester CH2 1EU. [email protected]. Vítek Lukáš, Zoo Praha, U Trojského zámku 3/120, 171 00 Praha 7, Czechia. [email protected] Cover photo © Emanuele Biggi Author Details: 1 – Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA 2 – Berkshire College of Agriculture, Hall Place, Burchetts Green Rd, Burchett's Green, Maidenhead SL6 6QR 3 – ZSL Whipsnade, Whipsnade, Dunstable LU6 2LF 4 – ZSL London, Regents Park, London NW1 4RY 5 – Askham Bryan College, Askham Bryan, York YO23 3FR 6 – The Deep, Tower St, Hull HU1 4DP 7 – Longleat Enterprises, Longleat, Warminster, Wiltshire, BA12 7NW 8 – Corresponding Author Reference: Bushell, M., Allen, C., Capel, T., Clarke, D., Cliffe, A., Cooke, N., Dick, G., Gotts, J., Howard, C., Mitchell, J., Robinson, P., Solan, C., Stringer, R. EAZA Best Practice Guidelines for Desertas Wolf Spiders. EAZA 2018. EAZA BEST PRACTICE GUIDELINES DISCLAIMER Copyright (2018) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA).
    [Show full text]
  • Curriculum Vitae
    Paula E. Cushing, Ph.D. Senior Curator of Invertebrate Zoology, Department of Zoology, Denver Museum of Nature & Science, 2001 Denver,Colorado 80205 USA E-mail: [email protected]; Web: https://science.dmns.org/museum- scientists/paula-cushing/, http://www.solifugae.info, http://spiders.dmns.org/default.aspx; Office Phone: (303) 370-6442; Lab Phone: (303) 370-7223; Fax: (303) 331-6492 CURRICULUM VITAE EDUCATION University of Florida, Gainesville, FL, 1990 - 1995, Ph.D. Virginia Tech, Blacksburg, VA, 1985 - 1988, M.Sc. Virginia Tech, Blacksburg, VA, 1982 - 1985, B.Sc. PROFESSIONAL AFFILIATIONS AND POSITIONS Denver Museum of Nature & Science, Senior Curator of Invertebrate Zoology, 1998 - present Associate Professor Adjoint, Department of Integrative Biology, University of Colorado, Denver, 2013 - present Denver Museum of Nature & Science, Department Chair of Zoology, 2006 – 2011 Adjunct Faculty, Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, 2011 - present Affiliate Faculty Member, Department of Biology and Wildlife, University of Alaska, Fairbanks, 2009 – 2012 Adjunct Faculty, Department of Bioagricultural Sciences and Pest Management, Colorado State University, 1999 – present Affiliate Faculty Member, Department of Life, Earth, and Environmental Science, West Texas AMU, 2011 - present American Museum of Natural History, Research Collaborator (Co-PI with Lorenzo Prendini), 2007 – 2012 College of Wooster, Wooster, Ohio, Visiting Assistant Professor, 1996 – 1997 University of Florida, Gainesville, Florida, Postdoctoral Teaching Associate, 1996 Division of Plant Industry, Gainesville, Florida, Curatorial Assistant for the Florida Arthropod Collection, 1991 National Museum of Natural History (Smithsonian), high school intern at the Insect Zoo, 1981; volunteer, 1982 GRANTS AND AWARDS 2018 - 2022: NSF Collaborative Research: ARTS: North American camel spiders (Arachnida, Solifugae, Eremobatidae): systematic revision and biogeography of an understudied taxon.
    [Show full text]
  • Common Spiders of the Chicago Region 1 the Field Museum – Division of Environment, Culture, and Conservation
    An Introduction to the Spiders of Chicago Wilderness, USA Common Spiders of the Chicago Region 1 The Field Museum – Division of Environment, Culture, and Conservation Produced by: Jane and John Balaban, North Branch Restoration Project; Rebecca Schillo, Conservation Ecologist, The Field Museum; Lynette Schimming, BugGuide.net. © ECCo, The Field Museum, Chicago, IL 60605 USA [http://fieldmuseum.org/IDtools] [[email protected]] version 2, 2/2012 Images © Tom Murray, Lynette Schimming, Jane and John Balaban, and others – Under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (non-native species listed in red) ARANEIDAE ORB WEAVERS Orb Weavers and Long-Jawed Orb Weavers make classic orb webs made famous by the book Charlotte’s Web. You can sometimes tell a spider by its eyes, most have eight. This chart shows the orb weaver eye arrangement (see pg 6 for more info) 1 ARANEIDAE 2 Argiope aurantia 3 Argiope trifasciata 4 Araneus marmoreus Orb Weaver Spider Web Black and Yellow Argiope Banded Argiope Marbled Orbweaver ORB WEAVERS are classic spiders of gardens, grasslands, and woodlands. The Argiope shown here are the large grassland spiders of late summer and fall. Most Orb Weavers mature in late summer and look slightly different as juveniles. Pattern and coloring can vary in some species such as Araneus marmoreus. See the link for photos of its color patterns: 5 Araneus thaddeus 6 Araneus cingulatus 7 Araneus diadematus 8 Araneus trifolium http://bugguide.net/node/view/2016 Lattice Orbweaver Cross Orbweaver Shamrock Orbweaver 9 Metepeira labyrinthea 10 Neoscona arabesca 11 Larinioides cornutus 12 Araniella displicata 13 Verrucosa arenata Labyrinth Orbweaver Arabesque Orbweaver Furrow Orbweaver Sixspotted Orbweaver Arrowhead Spider TETRAGNATHIDAE LONG-JAWED ORB WEAVERS Leucauge is a common colorful spider of our gardens and woodlands, often found hanging under its almost horizontal web.
    [Show full text]
  • Wsn 47(2) (2016) 298-317 Eissn 2392-2192
    Available online at www.worldscientificnews.com WSN 47(2) (2016) 298-317 EISSN 2392-2192 Indian Lycosoidea Sundevall (Araneae: Opisthothelae: Araneomorphae) in Different States and Union Territories Including an Annotated Checklist Dhruba Chandra Dhali1,*, P. M. Sureshan1, Kailash Chandra2 1Zoological Survey of India, Western Ghat Regional Centre, Kozkhikore - 673006, India 2Zoological Survey of India, M- Block, New Alipore, Kolkata - 700053, India *E-mail address: [email protected] ABSTRACT Annotated checklist of Lycosoidea so far recorded from different states and union territories of India reveals a total of 251 species under 38 genera belonging five families. The review cleared that diversity of lycosoid spider fauna is maximum in West Bengal followed by Madhya Pradesh, Maharashtra, Tamil Nadu and they are not distributed maximally in the states and union territories within Biodiversity hotspots. This fauna is distributed all over the country. There is nearly 69.35% endemism (in context of India). Keywords: Distribution; Lycosoidea; India; State; Union Territories; Annotated; checklist 1. INTRODUCTION Spiders, composing the order Araneae Clerck, 1757 is the largest group among arachnids and separated into two suborders: Mesothelae Pocock, 1892 (segmented spiders) World Scientific News 47(2) (2016) 298-317 and Opisthothelae Pocock, 1892 (includes all other spiders). Later one is further divided into two infraorders: Mygalomorphae Pocock, 1892 (ancient' spiders) and Araneomorphae Smith, 1902 (modern' spiders include the vast majority of spiders) (Coddington, 2005; WSC, 2015). Araneomorphae composed of 99 families and most of them can be divided into at least six clades and 11 super-families, though some are still unplaced in that system (Zhang, 2011).
    [Show full text]
  • Araneae: Mygalomorphae)
    1 Neoichnology of the Burrowing Spiders Gorgyrella inermis (Araneae: Mygalomorphae) and Hogna lenta (Araneae: Araneomorphae) A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science John M. Hils August 2014 © 2014 John M. Hils. All Rights Reserved. 2 This thesis titled Neoichnology of the Burrowing Spiders Gorgyrella inermis (Araneae: Mygalomorphae) and Hogna lenta (Araneae: Araneomorphae) by JOHN M. HILS has been approved for the Department of Geological Sciences and the College of Arts and Sciences by Daniel I. Hembree Associate Professor of Geological Sciences Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT HILS, JOHN M., M.S., August 2014, Geological Sciences Neoichnology of the Burrowing Spiders Gorgyrella inermis (Araneae: Mygalomorphae) and Hogna lenta (Araneae: Araneomorphae) Director of Thesis: Daniel I. Hembree Trace fossils are useful for interpreting the environmental conditions and ecological composition of strata. Neoichnological studies are necessary to provide informed interpretations, but few studies have examined the traces produced by continental species and how these organisms respond to changes in environmental conditions. Spiders are major predators in modern ecosystems. The fossil record of spiders extends to the Carboniferous, but few body fossils have been found earlier than the Cretaceous. Although the earliest spiders were probably burrowing species, burrows attributed to spiders are known primarily from the Pleistocene. The identification of spider burrows in the fossil record would allow for better paleoecological interpretations and provide a more complete understanding of the order’s evolutionary history. This study examines the morphology of burrows produced by the mygalomorph spider Gorgyrella inermis and the araneomorph spider Hogna lenta (Arachnida: Araneae).
    [Show full text]
  • Spiders (Arachnida: Aranei) of Azerbaijan. 2. Critical Survey of Wolf Spiders (Lycosidae) Found in the Country with Description
    Arthropoda Selecta 12 (1): 4765 © ARTHROPODA SELECTA, 2003 Spiders (Arachnida: Aranei) of Azerbaijan. 2. Critical survey of wolf spiders (Lycosidae) found in the country with description of three new species and brief review of Palaeartic Evippa Simon, 1885 Ïàóêè (Arachnida: Aranei) Àçåðáàéäæàíà. 2. Îáçîð ïàóêîâ-âîëêîâ (Lycosidae) îòìå÷åííûõ â ôàóíå ðåñïóáëèêè ñ îïèñàíèåì òð¸õ íîâûõ âèäîâ è êðàòêèé îáçîð ïàóêîâ ðîäà Evippa Simon, 1885 Âîñòî÷íîé Ïàëåàðêòèêè Yuri M. Marusik1, Elchin F. Guseinov2 & Seppo Koponen3 Þ.Ì. Ìàðóñèê1, Ý.Ô. Ãóñåéíîâ2, Ñ. Êîïîíåí3 ¹ Institute for Biological Problems of the North, Portovaya Str. 18, Magadan, 685000 Russia. E-mail: [email protected] ¹ Èíñòèòóò áèîëîãè÷åñêèõ ïðîáëåì Ñåâåðà, ÄÂÎ ÐÀÍ, óë. Ïîðòîâàÿ 18, Ìàãàäàí 685000 Ðîññèÿ. ² Institute of Zoology, block 504, passage 1128, Baku 370073 Azerbaijan. E-mail: [email protected] ² Èíñòèòóò çîîëîãèè ÀÍ Àçåðáàéäæàíà, êâàðòàë 504, ïðîåçä 1128, Áàêó 370073 Àçåðáàéäæàí. 3 Zoological Museum, University of Turku, FIN-20014 Turku Finland. E-mail: [email protected] KEY WORDS: Aranei, Lycosidae, Evippa, wolf spiders, check-list, Caucasus, Azerbaijan, new records, new species. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Aranei, Lycosidae, Evippa, ïàóêè-âîëêè, ñèñòåìàòè÷åñêèé ñïèñîê, Êàâêàç, Àçåðáàéäæàí, íîâûå íàõîäêè, íîâûå âèäû. ABSTRACT: Three species new to science are mon, 1870 îáíàðóæåíà âïåðâûå â ôàóíå Àçåðáàé- described from Azerbaijan: Evippa apsheronica sp.n. äæàíà è âñåãî Êàâêàçà. Ñîãëàñíî ëèòåðàòóðíûì è ($), E. caucasica sp.n. (#) and Pardosa gusarensis íîâûì äàííûì ôàóíà ïàóêîâ-âîëêîâ ðåñïóáëèêè sp.n. ($). A survey of Evippa Simon, 1882 reported âêëþ÷àåò 69 âèäîâ îòíîñèìûõ ê 14 ðîäàì: Alloho- from the former USSR is given and six species are gna (1), Alopecosa (14), Arctosa (4), Aulonia (2), illustrated.
    [Show full text]
  • Husbandry Manual for Wolf Spiders
    HUSBANDRY MANUAL FOR Image 1 Wolf Spider (Provided by http://www.richard-seaman.com/Wallpaper/Nature/Spiders/index.html) WOLF SPIDERS With specific reference to Lycosa godeffroyi Class: Arachnida Order: Lycosidae Complier: Amber Gane Date of Preparation: Western Sydney Institute of TAFE, Richmond Course name and number: Lecturer: Jacki Salkeld, Brad Walker, David Crass and Graeme Phipps. DISCLAIMER These husbandry guidelines were produced by the compiler/author at TAFE NSW – Western Sydney Institute, Richmond College, N.S.W. Australia as part assessment for completion of Certificate III in Captive Animals, Course number 1068, RUV30204. Since the husbandry guidelines are the result of student project work, care should be taken in the interpretation of information therein, - in effect, all care taken but no responsibility is assumed for any loss or damage that may result from the use of these guidelines. It is offered to the ASZK Husbandry Manuals Register for the benefit of animal welfare and care. Husbandry guidelines are utility documents and are ‘works in progress’, so enhancements to these guidelines are invited. 2 OCCUPATIONAL HEALTH AND SAFETY Every species of spider in the world contains venom in their poison glands, but few react with humans causing a reaction (sometimes deadly). These few spiders are classified by us as ‘Venomous’. All Wolf Spider species are generally classified as venomous to humans, though not lethal. Individual reactions tend towards the subjective, depending upon allergies, the amount of injected venom, size and species of wolf spider, age and health of victim. This generally non-aggressive spider will only initiate a strike if provoked.
    [Show full text]
  • Identifying Spiders Through DNA Barcodes
    481 Identifying spiders through DNA barcodes Rowan D.H. Barrett and Paul D.N. Hebert Abstract: With almost 40 000 species, the spiders provide important model systems for studies of sociality, mating systems, and sexual dimorphism. However, work on this group is regularly constrained by difficulties in species identi- fication. DNA-based identification systems represent a promising approach to resolve this taxonomic impediment, but their efficacy has only been tested in a few groups. In this study, we demonstrate that sequence diversity in a standard segment of the mitochondrial gene coding for cytochrome c oxidase I (COI) is highly effective in discriminating spider species. A COI profile containing 168 spider species and 35 other arachnid species correctly assigned 100% of subse- quently analyzed specimens to the appropriate species. In addition, we found no overlap between mean nucleotide di- vergences at the intra- and inter-specific levels. Our results establish the potential of COI as a rapid and accurate identification tool for biodiversity surveys of spiders. Résumé : Avec presque 40 000 espèces, les araignées constituent un modèle important pour l’étude de la vie sociale, des systèmes d’accouplement et du dimorphisme sexuel. Cependant, la recherche sur ce groupe est souvent restreinte par les problèmes d’identification des espèces. Les systèmes d’identification basés dur l’ADN présentent une solution prometteuse à cette difficulté d’ordre taxonomique, mais leur efficacité n’a été vérifiée que chez quelques groupes. Nous démontrons ici que la diversité des séquences dans un segment type du gène mitochondrial de la cytochrome c oxydase I (COI) peut servir de façon très efficace à la reconnaissance des espèces d’araignées.
    [Show full text]