A Brief History of Microphones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Army Radio Communication in the Great War Keith R Thrower, OBE
Army radio communication in the Great War Keith R Thrower, OBE Introduction Prior to the outbreak of WW1 in August 1914 many of the techniques to be used in later years for radio communications had already been invented, although most were still at an early stage of practical application. Radio transmitters at that time were predominantly using spark discharge from a high voltage induction coil, which created a series of damped oscillations in an associated tuned circuit at the rate of the spark discharge. The transmitted signal was noisy and rich in harmonics and spread widely over the radio spectrum. The ideal transmission was a continuous wave (CW) and there were three methods for producing this: 1. From an HF alternator, the practical design of which was made by the US General Electric engineer Ernst Alexanderson, initially based on a specification by Reginald Fessenden. These alternators were primarily intended for high-power, long-wave transmission and not suitable for use on the battlefield. 2. Arc generator, the practical form of which was invented by Valdemar Poulsen in 1902. Again the transmitters were high power and not suitable for battlefield use. 3. Valve oscillator, which was invented by the German engineer, Alexander Meissner, and patented in April 1913. Several important circuits using valves had been produced by 1914. These include: (a) the heterodyne, an oscillator circuit used to mix with an incoming continuous wave signal and beat it down to an audible note; (b) the detector, to extract the audio signal from the high frequency carrier; (c) the amplifier, both for the incoming high frequency signal and the detected audio or the beat signal from the heterodyne receiver; (d) regenerative feedback from the output of the detector or RF amplifier to its input, which had the effect of sharpening the tuning and increasing the amplification. -
Electret Microphone Replacement for a Carbon Insert
The VMARS Newsletter Issue 29 Electret microphone replacement for a carbon insert Colin Guy G4DDI When I found that I had a dud carbon insert in an H33F/PT handset, and I couldn’t find another insert that fitted (the original is about 1” diameter) I looked around for an alternative. Trevor Sanderson’s excellent article “The RAF Microphone” (Radio Bygones issue 79/80) makes reference to the use of electret inserts with an IC preamplifier in telephones and aircraft headsets, but the information given was too scant to make construction of one of these possible without reference to the IC data sheet, and the IC’s are expensive and difficult to obtain. I had a GPO type 21A insert, but the innards of this when dismantled were still too large to fit into the available space. The H33 handset is very slim, and also virtually solid, so there is very little room in which to place a preamplifier. A dig around on the internet turned up the following article written by F. Hueber, originally published in Elektor Electronics December 1994, and is published here with permission from Elektor Electronics magazine, December 1994, copyright Segment B.V., Beek (Lb.), The Netherlands, www.segment.nl. The original article included a pcb layout, but I built mine on a strip of veroboard four tracks wide by about 2” (see photo) and mounted it on the back of the ptt switch. The electret insert was acquired from a scrap telephone and all the rest of the components from TV panels. To save space the rectifier and R12 weren’t included, care being taken to ensure that the polarity was correct. -
Lasa Journal 8 Pp.36- 43) to Set up a Working Group with Us
laSa• International Association of Sound and Audiovisual Archives Association Internationale d' Archives Sonoreset Audiovisuelles Internationale Vereinigung der Schall- und Audiovisuellen Archive laSa• journal (formerly Phonographic Bulletin) no. 9 May 1997 IASA JOURNAL Journal of the International Association of Sound and Audiovisual Archives IASA Organie de l'Association Internationale d'Archives Sonores et Audiovisuelle IASA Zeitschchrift der Internationalen Vereinigung der Schall- und Audiovisuellen Archive IASA Editor: Chris Clark, The British Library National Sound Archive, 29 Exhibition Road, London SW7 2AS, UK. Fax 441714127413, e-mail [email protected] Reviews and Recent Publications Editor: Pekka Gronow, Finnish Broadcasting Company, PO Box 10, SF-00241, Helsinki, Finland. Fax 358014802089 The IASA Journal is published twice a year and is sent to all members of IASA. Applications for membership of IASA should be sent to the Secretary General (see list of officers below). The annual dues are 25GBP for individual members and 100GBP for institutional members. Back copies of the IASA Journal from -1971 are available on application. Subscriptions to the current year's issues of the IASA Journal are also available to non-members at a cost of 35GBP. Le IASA Journal est publie deux fois I'an et distribue a tous les membres. Veuilliez envoyer vos demandes d'adhesion au secretaire dont vous trouverez I'adresse ci-dessous. Les cotisations anuelles sont en ce moment de 25GBP pour les membres individuels et 100GBP pour les membres institutionelles. Les numeros precedeentes (a partir de 1971) du IASA Journal sont disponibles sure demande. Ceux qui ne sont pas membres de I' Assoociation puevent obtenir un abonnement du IASA Journal pour I'annee courante au cout de 35GBP. -
De Telefoon Van Reis
De Telefoon van Reis 05-01-2016 Ontwerpopdracht profielwerkstuk van: Thomas Aleva & Nwankwo Hogervorst Inhoudsopgave Inleiding ........................................................................................................................... 3 Onderzoeksvraag ............................................................................................................................. 3 Johann Philipp Reis........................................................................................................................... 3 Globale werking van de telefoon van Reis ....................................................................................... 3 Globale werking van de telefoon van Bell ....................................................................................... 4 Het ontwerp ..................................................................................................................... 4 Ontwerpcyclus ................................................................................................................................. 5 Programma van eisen: ..................................................................................................................... 5 Deeloplossingen ............................................................................................................................... 6 Ontwerpvoorstel .............................................................................................................................. 6 Benodigdheden ............................................................................................................................... -
Lynn Olson: a Tiny History of High Fidelity
A Tiny History of High Fidelity, Part 1 A Rainy Night in Portland, 1936. Thanks to the restoration movement, much of downtown Portland still looks like this. Where do I come from? Where am I going? Who am I? These ancient questions are with us still. With only the slightest of changes, they can be recast into a form that provides a guidepost to the music lover, the audiophile, the hobbyist, and the artisan-engineer. Where does the art of sound reproduction come from? Where is it going? What do I seek from this art? Radio! 1900-1930 In the first years of Electrical Amplification, engineers had their hands full just trying to master the complex and non-intuitive mathematics of vacuum tube amplifiers and oscillators. It is worth keeping in mind that vacuum tubes were electronics in the first half of the Twentieth Century; before Lee DeForest modified Edison's light-bulb, the only form of "amplification" were relays that could repeat and rebuild telegraph signals. Radio relied on tuned circuits, massive brute-force spark-gap transmitters, large long-wave antennas, and crystal-diode rectification that directly powered the headphones. The faint signal that wiggled the headset diaphragm was a infinitesimal fraction of the megawatts that poured in all directions from the transmitter. Records, of course, were purely mechanical and acoustic, and wouldn't work at all if it weren't for horn-gain in recording and playback. What we now think of as electronic engineering back then was electrical engineering, focussed on keeping AC power transmission systems in phase and specialized techniques for pushing a telephone-audio signal down hundreds of miles of wire without benefit of amplification. -
Telephone Talking to Your Neighbor Hasn’T Always Been As Easy As Picking up the Receiver
INVENTIONS The Telephone Talking to your neighbor hasn’t always been as easy as picking up the receiver BY CATHERINE V.O. HOFFBERGER “Mr. Watson, come in here. I need you!” These historic words are as recognizable as Martin Luther King Jr.’s inspiring “I Have a Dream” and John F. Kennedy’s philosophical “Ask not what your country can do for you— ask what you can do for your country.” Uttered by one Alexander Graham Bell on March 7, 1876, this quote is remem- bered not for its eloquence or effect, but for what it represents: the invention of that great tool of everyday life, the Telephone. Bell, born in Scotland to a deaf mother in 1847, followed the professional footsteps of his father, uncle and grandfa- ther, all professors of elocution (the study of speaking). Young “Aleck,” a passionate elocutionist, specialized in teaching speech to the deaf. Telephony, the science of producing sound (‘phono’) electrically over distance (‘tele’), was the rage among Three weeks later, Mr. Watson famously heard Bell sum- 19th-century inventors. The telegraph, created in England moning him over its wires. As his was the first telephone in 1833 and soon improved by American Samuel Morse, to truly work and receive a patent, Bell was credited with accomplished that in staccato, on-and-off rhythms. By the the invention. mid-1800s, it was the world’s means of long-distance audi- Bell’s fledgling business sold just six telephones in its ble communication. Bell and other scientists across first month. But by 1891, the company, by then known as Europe and in the United States including Antonio AT&T (the Atlantic Telephone and Telegraph Co.), was Meucci, Johann Philipp Reis, Elisha Gray and Thomas operating some 5 million phones in America. -
The Early Years of the Telephone
©2012 JSR The early years of the telephone The early years of the telephone John S. Reid Before Bell Ask who invented the telephone and most people who have an answer will reply Alexander Graham Bell, and probably clock it up as yet another invention by a Scotsman that was commercialised beyond our borders. Like many one line summaries, this is partly true but it credits to one person much more than he really deserves. Bell didn’t invent the word, he didn’t invent the concept, what ever the patent courts decreed, and actually didn’t invent most of the technology needed to turn the telephone into a business or household reality. He did, though, submit a crucial patent at just the right time in 1876, find backers to develop his concept, promoted his invention vigorously and pursued others through the courts to establish close to a monopoly business that made him and a good many others very well off. So, what is the fuller story of the early years of the telephone? In the 1820s, Charles Wheatstone who would later make a big name for himself as an inventor of telegraphy equipment invented a device he called a ‘telephone’ for transmitting music from one room to the next. It was not electrical but relied on conducting sound through a rod. In the same decade he also invented a device he called a ‘microphone’, for listening to faint sounds, but again it was not electrical. In succeeding decades quite a number of different devices by various inventors were given the name ‘telephone’. -
Method of Accommodating for Carbon/Electret Telephone Set Variability in Automatic Speaker Verification
Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number: 0 654 781 A2 12 EUROPEAN PATENT APPLICATION @ Application number: 94308231.3 @ Int. CI.6: G10L 5/06 (22) Date of filing : 09.11.94 (So) Priority: 19.11.93 US 155973 @ Inventor: Sachs, Richard M. 64 Sunset Place @ Date of publication of application : Middletown, New Jersey 07748 (US) 24.05.95 Bulletin 95/21 Inventor : Schoeffler, Max S. 17 Kenwood Lane @ Designated Contracting States : Matawan, New Jersey 07747 (US) DE ES FR GB IT (74) Representative : Watts, Christopher Malcolm @ Applicant : AT & T Corp. Kelway, Dr. et al 32 Avenue of the Americas AT&T (UK) Ltd. New York, NY 10013-2412 (US) 5, Mornington Road Woodford Green Essex, IG8 0TU (GB) (S) Method of accommodating for carbon/electret telephone set variability in automatic speaker verification. In verification method of (57) a speaker system, a FIG. 6 compensating for differences in speech sam- ples obtained during registration and those obtained during verification due to the use of VERIFICATION (4-WAY) different types of microphones is provided by ,601 at least of the such that filtering one samples PROMPT the similarities of the two samples are in- creased. The filtered sample is used within the ,604 speaker verification matching process. A two- RECEIVE VERIFICATION way comparison is disclosed in which both a SPEECH SAMPLE verification speech sample and a reference sample are filtered with nonlinear microphone r609 ,606 characteristics such as carbon microphone PRODUCE CARBON characteristics. A is also VERIFICATION FILTER four-way comparison PATTERN SAMPLE disclosed in which patterns produced from un- filtered verification and reference samples and 611 from the filtered verification PRODUCE CARBON patterns produced FILTERED and reference samples are compared to identify VERIFICATION a match. -
The Story of Alan Blumlein
Alan Dower Blumlein Of the men who were responsible for the development of the Marconi-EMI high-definition television system in the early 1930s, the name of Alan Dower Blumlein stands out. He was one of the most remarkable and significant engineers of the twentieth century. Yet, following his death in 1942, his work was shrouded in secrecy. He received neither obituary nor tributes. This article is based on Robert Alexander's book, which is the first comprehensive Blumlein biography hortly after 4.20 in the He simply found no need to be able afternoon on Sunday, 7 June to write. As with all things in his life S1942 — a glorious summer's up to this time, if he saw no need, he day, clear skies, warm sunshine and showed no interest. It was only perfect visibility for flying — a Halifax through sheer determination that Alan bomber crashed into the steep hillside Blumlein set himself the task of of a valley just north of the River learning to read detailed reference Wye near the village of Welsh books on his chosen subject, realising Bicknor in Herefordshire. All of its the need for this in order to advance eleven occupants were killed in the his passion for everything electrical. enormous fire that engulfed the aircraft on impact. After a slow start... Of the scientific personnel who died Blumlein's career initially took that day, Alan Dower Blumlein stands gradual steps. hi 1925, he co- out as possibly the greatest loss. "A published an elementary paper on national tragedy," one of his electrical principles in Wireless and later friend, Isaac Shoenberg, who Bernard colleagues would call it. -
The Evolution of Science-Fiction Films and Novels
2010 JUMP By Douglas Fenech, Christian Gradwohl & Jan Westren-Doll [DOES SCIENCE-FICTION PREDICT THE FUTURE??] [This research paper looks at a selection of science-fiction films and its connection with the progression of the television, the telephone and print media. It also analyzes statistical data obtained from a questionnaire conducted by the research group regarding communication media.] January 1, 2010 [DOES SCIENCE-FICTION PREDICT THE FUTURE OR CHANGE IT?] Table of Contents Introduction……………………………………………………………………………………………………………………………….4 Science-fiction filmmakers are not modern day Leonardo da Vinci’s…………………………………………5 Predictions of the future in science-fiction films and novels………………………………………………………6 History of the future………………………………………………………………………………………………………………….8 The evolution of science-fiction films and novels.........................................................................11 A look into Television....................................................................................................................13 Mechanical Television.......................................................................................................13 Electronic Television.........................................................................................................14 Colour Television..............................................................................................................15 The Remote Control..........................................................................................................16 -
The Telephone and Its Several Inventors
The History of Telecommunications The Telephone and its Several Inventors by Wim van Etten 1/36 Outline 1. Introduction 2. Bell and his invention 3. Bell Telephone Company (BTC) 4. Lawsuits 5. Developments in Europe and the Netherlands 6. Telephone sets 7. Telephone cables 8. Telephone switching 9. Liberalization 10. Conclusion 2/36 Reis • German physicist and school master • 1861: vibrating membrane touched needle; reproduction of sound by needle connected to electromagnet hitting wooden box • several great scientists witnessed his results • transmission of articulated speech could not be demonstrated in court • submitted publication to Annalen der Physik: refused • later on he was invited to publish; then he refused • ended his physical experiments as a poor, disappointed man Johann Philipp Reis 1834-1874 • invention not patented 3/36 The telephone patent 1876: February 14, Alexander Graham Bell applies patent “Improvement in Telegraphy”; patented March 7, 1876 Most valuable patent ever issued ! 4/36 Bell’s first experiments 5/36 Alexander Graham Bell • born in Scotland 1847 • father, grandfather and brother had all been associated with work on elocution and speech • his father developed a system of “Visible Speech” • was an expert in learning deaf-mute to “speak” • met Wheatstone and Helmholtz • when 2 brothers died of tuberculosis parents emigrated to Canada • 1873: professor of Vocal Physiology and Elocution at the Boston University School of Oratory: US citizen Alexander Graham Bell • 1875: started experimenting with “musical” telegraphy (1847-1922) • had a vision to transmit voice over telegraph wires 6/36 Bell (continued) • left Boston University to spent more time to experiments • 2 important deaf-mute pupils left: Georgie Sanders and Mabel Hubbard • used basement of Sanders’ house for experiments • Sanders and Hubbard gave financial support, provided he would abandon telephone experiments • Henry encouraged to go on with it • Thomas Watson became his assistant • March 10, 1876: “Mr. -
C.C.I.F.: Proceedings of the Xth Plenary Meeting (Budapest, 1934)
A NOTE FROM THE ITU LIBRARY & ARCHIVES SERVICE An erratum for this volume was issued for the French version of this publication. For reference purposes, it has been included with this PDF. This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections. La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service. Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT. ﻫﺬﻩ ﺍﻟﻨﺴﺨﺔ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ (PDF) ﻧﺘﺎﺝ ﺗﺼﻮﻳﺮ ﺑﺎﻟﻤﺴﺢ ﺍﻟﻀﻮﺋﻲ ﺃﺟﺮﺍﻩ ﻗﺴﻢ ﺍﻟﻤﻜﺘﺒﺔ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﻓﻲ ﺍﻻﺗﺤﺎﺩ ﺍﻟﺪﻭﻟﻲ ﻟﻼﺗﺼﺎﻻﺕ (ITU) ﻧﻘﻼ ﻣﻦ ﻭﺛﻴﻘﺔ ﻭﺭﻗﻴﺔ ﺃﺻﻠﻴﺔ ﺿﻤﻦ ﺍﻟﻮﺛﺎﺋﻖ ﺍﻟﻤﺘﻮﻓﺮﺓ ﻓﻲ ﻗﺴﻢ ﺍﻟﻤﻜﺘﺒﺔ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ. ً 此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。 Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ. © International Telecommunication Union COMITE CONSULTATIF INTERNATIONAL TELEPHONIQUE (C.C.I.F.) PROCEEDINGS OF THE Xth PLENARY MEETING Budapest, yrd— 10th September, 1934 TRANSLATED INTO ENGLISH BY THE TECHNICAL STAFF OF THE INTERNATIONAL STANDARD ELECTRIC CORPORATION Volume I ... General; Questions for Study ; Bibliography pages 5-107 Volume II ... Protection.............................................................. pages 111-156 Volume III ... ... Transmission; Definitions; Recommendations; Specifications ...................................... pages 159-334 Volume IV ... ... Transmission; Maintenance ........................... pages 338-536 Volume V ..