Genome Editing for Β-Hemoglobinopathies: Advances and Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing
Journal of Personalized Medicine Article Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing Adekunle Adekile 1,*, Nagihan Akbulut-Jeradi 2, Rasha Al Khaldi 2, Maria Jinky Fernandez 2 and Jalaja Sukumaran 1 1 Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; jalajasukumaran@hotmail 2 Advanced Technology Company, Hawali 32060, Kuwait; [email protected] (N.A.-J.); [email protected] (R.A.); [email protected] (M.J.F.) * Correspondence: [email protected]; Tel.: +965-253-194-86 Abstract: Hemoglobin genotype and HBB haplotype are established genetic factors that modify the clinical phenotype in sickle cell disease (SCD). Current methods of establishing these two factors are cumbersome and/or prone to errors. The throughput capability of next generation sequencing (NGS) makes it ideal for simultaneous interrogation of the many genes of interest in SCD. This study was designed to confirm the diagnosis in patients with HbSS and Sβ-thalassemia, identify any ß-thal mutations and simultaneously determine the ßS HBB haplotype. Illumina Ampliseq custom DNA panel was used to genotype the DNA samples. Haplotyping was based on the alleles on five haplotype-specific SNPs. The patients studied included 159 HbSS patients and 68 Sβ-thal patients, previously diagnosed using high performance liquid chromatography (HPLC). There was Citation: Adekile, A.; considerable discordance between HPLC and NGS results, giving a false +ve rate of 20.5% with a S Akbulut-Jeradi, N.; Al Khaldi, R.; sensitivity of 79% for the identification of Sβthal. -
Hemoglobinopathies by Lentiviral Transfer of the Βa(T87Q)-Globin Gene
Gene Therapy of the β- Hemoglobinopathies by Lentiviral Transfer of the βA(T87Q)-Globin Gene The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Negre, O., A. Eggimann, Y. Beuzard, J. Ribeil, P. Bourget, S. Borwornpinyo, S. Hongeng, et al. 2016. “Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the βA(T87Q)- Globin Gene.” Human Gene Therapy 27 (2): 148-165. doi:10.1089/ hum.2016.007. http://dx.doi.org/10.1089/hum.2016.007. Published Version doi:10.1089/hum.2016.007 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:26318640 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Gene Therapy of the b-Hemoglobinopathies by Lentiviral Transfer of the bA(T87Q)-Globin Gene Olivier Negre,1,2,* Anne-Virginie Eggimann,1 Yves Beuzard,2,3 Jean-Antoine Ribeil,4 Philippe Bourget,4 Suparerk Borwornpinyo,5 Suradej Hongeng,5 Salima Hacein-Bey,6 Marina Cavazzana,4 Philippe Leboulch,2,3,5,7 and Emmanuel Payen2,3,8,* 1bluebird bio, Cambridge, Massachusetts; 2CEA, Institute of Emerging Disease and Innovative Therapies (iMETI), Fontenay aux Roses, France; 3UMR 007, University of Paris 11 and CEA, CEA-iMETI, Fontenay aux Roses, France; 4Necker Hospital, Assistance Publique-Hoˆpitaux de Paris, Paris, France; 5Mahidol University, Bangkok, Thailand; 6Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Assistance Publique–Hoˆpitaux de Paris, Paris, France; 7Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts; 8INSERM, Paris, France. -
Gene Therapy for Hemoglobinopathies
Gene Therapy for Hemoglobinopathies Marina Cavazzana1,* and Fulvio Mavilio1,2,* 1University of Paris Descartes-Sorbonne Paris Cite´, IMAGINE Institute, Paris, France; and 2Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy. Gene therapy for b-thalassemia and sickle-cell disease is based on transplantation of genetically corrected, autologous hematopoietic stem cells. Preclinical and clinical studies have shown the safety and efficacy of this therapeutic approach, currently based on lentiviral vectors to transfer a b-globin gene under the transcriptional control of regulatory elements of the b-globin locus. Nevertheless, a number of factors are still limiting its efficacy, such as limited stem-cell dose and quality, suboptimal gene transfer efficiency and gene expression levels, and toxicity of myeloablative regimens. In addition, the cost and complexity of the current vector and cell manufacturing clearly limits its application to patients living in less favored countries, where hemoglobinopathies may reach endemic proportions. Gene-editing technology may provide a therapeutic alternative overcoming some of these limitations, though proving its safety and efficacy will most likely require extensive clinical investigation. Keywords: thalassemia; sickle-cell disease; globin genes; lentiviral vectors; gene editing INTRODUCTION providing strong evidence of safety and long-term 3 HEMOGLOBINOPATHIES ARE INHERITED blood disorders efficacy in most cases. In particular. LVs showed characterized by defective synthesis of hemoglobin relatively safe integration patterns in the human (Hb) chains or by the synthesis of mutated globin genome and appeared to cause little interference variants, such as the bA-E6V causing sickle-cell with normal gene regulation and no significant al- diseases (SCD). -
Adult, Embryonic and Fetal Hemoglobin Are Expressed in Human Glioblastoma Cells
514 INTERNATIONAL JOURNAL OF ONCOLOGY 44: 514-520, 2014 Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells MARWAN EMARA1,2, A. ROBERT TURNER1 and JOAN ALLALUNIS-TURNER1 1Department of Oncology, University of Alberta and Alberta Health Services, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; 2Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt Received September 7, 2013; Accepted October 7, 2013 DOI: 10.3892/ijo.2013.2186 Abstract. Hemoglobin is a hemoprotein, produced mainly in Introduction erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell Globins are hemo-containing proteins, have the ability to types including human and rodent neurons of embryonic bind gaseous ligands [oxygen (O2), nitric oxide (NO) and and adult brain, but not astrocytes and oligodendrocytes. carbon monoxide (CO)] reversibly. They have been described Human glioblastoma multiforme (GBM) is the most aggres- in prokaryotes, fungi, plants and animals with an enormous sive tumor among gliomas. However, despite extensive basic diversity of structure and function (1). To date, hemoglobin, and clinical research studies on GBM cells, little is known myoglobin, neuroglobin (Ngb) and cytoglobin (Cygb) repre- about glial defence mechanisms that allow these cells to sent the vertebrate globin family with distinct function and survive and resist various types of treatment. We have tissue distributions (2). During ontogeny, developing erythro- shown previously that the newest members of vertebrate blasts sequentially express embryonic {[Gower 1 (ζ2ε2), globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are Gower 2 (α2ε2), and Portland 1 (ζ2γ2)] to fetal [Hb F(α2γ2)] expressed in human GBM cells. -
Technical Note, Appendix: an Analysis of Blood Processing Methods to Prepare Samples for Genechip® Expression Profiling (Pdf, 1
Appendix 1: Signature genes for different blood cell types. Blood Cell Type Source Probe Set Description Symbol Blood Cell Type Source Probe Set Description Symbol Fraction ID Fraction ID Mono- Lympho- GSK 203547_at CD4 antigen (p55) CD4 Whitney et al. 209813_x_at T cell receptor TRG nuclear cytes gamma locus cells Whitney et al. 209995_s_at T-cell leukemia/ TCL1A Whitney et al. 203104_at colony stimulating CSF1R lymphoma 1A factor 1 receptor, Whitney et al. 210164_at granzyme B GZMB formerly McDonough (granzyme 2, feline sarcoma viral cytotoxic T-lymphocyte- (v-fms) oncogene associated serine homolog esterase 1) Whitney et al. 203290_at major histocompatibility HLA-DQA1 Whitney et al. 210321_at similar to granzyme B CTLA1 complex, class II, (granzyme 2, cytotoxic DQ alpha 1 T-lymphocyte-associated Whitney et al. 203413_at NEL-like 2 (chicken) NELL2 serine esterase 1) Whitney et al. 203828_s_at natural killer cell NK4 (H. sapiens) transcript 4 Whitney et al. 212827_at immunoglobulin heavy IGHM Whitney et al. 203932_at major histocompatibility HLA-DMB constant mu complex, class II, Whitney et al. 212998_x_at major histocompatibility HLA-DQB1 DM beta complex, class II, Whitney et al. 204655_at chemokine (C-C motif) CCL5 DQ beta 1 ligand 5 Whitney et al. 212999_x_at major histocompatibility HLA-DQB Whitney et al. 204661_at CDW52 antigen CDW52 complex, class II, (CAMPATH-1 antigen) DQ beta 1 Whitney et al. 205049_s_at CD79A antigen CD79A Whitney et al. 213193_x_at T cell receptor beta locus TRB (immunoglobulin- Whitney et al. 213425_at Homo sapiens cDNA associated alpha) FLJ11441 fis, clone Whitney et al. 205291_at interleukin 2 receptor, IL2RB HEMBA1001323, beta mRNA sequence Whitney et al. -
The Alexipharmic Mechanisms of Five Licorice Ingredients Involved in CYP450 and Nrf2 Pathways in Paraquat-Induced Mice Acute Lung Injury
Hindawi Oxidative Medicine and Cellular Longevity Volume 2019, Article ID 7283104, 20 pages https://doi.org/10.1155/2019/7283104 Research Article The Alexipharmic Mechanisms of Five Licorice Ingredients Involved in CYP450 and Nrf2 Pathways in Paraquat-Induced Mice Acute Lung Injury Zi-Jing Liu,1,2 Jing Zhong,1 Mei Zhang,1 Ze-Hui Chen,1 Ji-Ye Wang,1 Han-Ying Chen,1,2 Xiao-Qin Wang,1,2 and Bo Zhang 1,2 1Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China 2Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi 832002, China Correspondence should be addressed to Bo Zhang; [email protected] Received 21 May 2018; Revised 30 September 2018; Accepted 3 December 2018; Published 28 April 2019 Academic Editor: Pablo Muriel Copyright © 2019 Zi-Jing Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Oxidative stress is an important mechanism in acute lung injury (ALI) induced by paraquat (PQ), one of the most widely used herbicides in developing countries. In clinical prophylaxis and treatment, licorice is a widely used herbal medicine in China due to its strong alexipharmic characteristics. However, the corresponding biochemical mechanism of antioxidation and detoxification enzymes induced by licorice’s ingredients is still not fully demonstrated. In this study, the detoxification effect of licorice was evaluated in vivo and in vitro. The detoxification and antioxidation effect of its active ingredients involved in the treatment was screened systematically according to Absorption, Distribution, Metabolism, and Excretion (ADME): predictions and evidence-based literature mining methods in silico approach. -
Franco-Brazilian Collaboration in Hematology International Research Network on Hematology (IRNH)
Franco-Brazilian collaboration in Hematology International Research Network on Hematology (IRNH) New emerging collaboration The genesis of a project: from the late 90s Analysis of the 677C→T mutation of the Methylenetetrahydrofolate Reductase Gene in Different Ethnic Groups R. F. Franco, A. G. Araújo, J. F. Guerreiro, J. Elion, M. A. Zago Thromb Haemost. 1998 Jan;79(1):119-21. The phylogeography of mitochondrial DNA haplogroup L3g in Africa and the Atlantic slave trade. Bortoloni MC, Da Silva WA Jr, Zago MA, Elion J, Krishnamoorthy R, Goncalves VF, Pena SD Am. J. Hum. Genet. 75:523–524, 2004 from population genetics… ….to cellular and molecular hematology Cellular and Molecular Effects of Hydroxycarbamide in Sickle Cell Patients Silva-Pinto AC, de Cássia Viu Carrara R, V.B. Palma P, Zago MA, Elion J, Covas DT Current Pharmacogenomics and Personalized Medicine, 2014, 12, 114-122 15 publications 1998-2015 The genesis of a project (II): from the early 2000s clinical hematology Host defense and inflammatory gene polymorphisms are associated with outcomes after HLA-identical sibling bone marrow transplantation Vanderson Rocha, Rendrik F. Franco, Raphael Porcher, Henrique Bittencourt, Wilson A. Silva Jr, Aurelien Latouche, Agnes Devergie, Helene Esperou, Patricia Ribaud, Gerard Socie, Marco Antonio Zago, and Eliane Gluckman Blood. 2002 Dec 1;100(12):3908-18 Age-adjusted recipient pretransplantation telomere length and treatment-related mortality after hematopoietic stem cell transplantation. Peffault de Latour R, Calado RT, Busson M, Abrams J, Adoui N, Robin M, Larghero J, Dhedin N, Xhaard A, Clave E, Charron D, Toubert A, Loiseau P, Socié G, Young NS. -
Anti-Hemoglobin Antibody (FITC) Product Number: AC15-0147-12
Anti-Hemoglobin Antibody (FITC) Product Number: AC15-0147-12 Overview Host Species: Goat Clonality: Polyclonal Purity: Hemoglobin Antibody (FITC) is affinity purified. The affinity purified antibody is then conjugated to the fluorescent dye FITC (fluorescein isothiocyanate). Conjugate: FITC Immunogen Type: Anti-hemoglobin antibody (FITC) was rasied against human hemoglobin. Physical Characteristics Amount: 0.05 mg Concentration: 1 mg/ml Volume: 0.05 ml Buffer: 10 mM Sodium Phosphate, 0.15 M NaCl, pH 7.2 with 0.05% (w/v) sodium azide. Storage: FITC conjugated antibody can be stored at 4?C for up to 18 months. For longer storage the conjugate can be stored at -20?C after adding 50% glycerol. Fluorescein conjugated antibodies should always be stored in the dark. Specificity Species Reactivity: Human Specificity: Human hemoglobin Target Information Gene ID Number(s): 3047 (human), 3039 (human), 3040 (human) Alternative Names: 3-prime alpha-globin gene; Alpha globin; alpha one globin; alpha-1 globin; Alpha-globin; Beta globin; CD113t C; CD31antibody (FITC); Erythremia, beta-globin type, included; Gamma 1 globin; Hb FAgamma; HBA 1; HBA 2; HBA; HBA_HUMAN; HBA1antibody (FITC); HBA2; HBB; Hbb-y; HBD; Hbe1; HBG 1antibody (FITC); HBG; HBG1; HBGA; HBGR; HBHantibody (FITC); Hemoglobin alpha 1; hemoglobin alpha 1 globin chain; Hemoglobinalpha chain; Hemoglobin alpha locus; Hemoglobin alpha locus 1antibody (FITC); hemoglobin alpha-1 chain; Hemoglobin beta; Hemoglobin beta chainantibody (FITC); Hemoglobin beta chain complex; Hemoglobin beta locus; Hemoglobingamma -
The Normal Structure and Regulation of Human Globin Gene Clusters
CHAPTER 3 The Normal Structure and Regulation of Human Globin Gene Clusters Bernard G. Forget and Ross C. Hardison The genes encoding the different globin chains of hemoglobin are members of an ancient gene family. In this chapter we will review the structural features of the globin genes, with particular attention to the sequences needed for proper regulation of gene expression. Some of these have been well- conserved during mammalian evolution and therefore are likely to provide a common function in many mammals. Others are only found in higher primates, and may play roles in lineage-specific regulation. We will first describe the structural characteristics of the human globin genes and then provide a comparative analysis of the genomic contexts, regulatory regions and evolutionary conservation of features present in the globin gene clusters. NUMBER AND CHROMOSOMAL LOCALIZATION OF HUMAN GLOBIN GENES Hemoglobin is a heterotetramer that contains two polypeptide subunits related to the α-globin gene subfamily (referred to here as α-like globins) and two polypeptide subunits related to the β-globin gene subfamily (β-like globins). Globin polypeptides bind heme, which in turn allows the hemoglobin in erythrocytes to bind oxygen reversibly and transport it from the lungs to respiring tissues. In humans, as in all vertebrate species studied, different α-like and β-like globin chains are synthesized at Chapter 3 The Normal Structure and Regulation of the Globin Gene Clusters progressive stages of development to produce hemoglobins characteristic of primitive (embryonic) and definitive (fetal and adult) erythroid cells (Figure 3.1). Before precise knowledge of globin gene organization was gained by gene mapping and molecular cloning, a general picture of the number and arrangement of the human globin genes emerged from the genetic analysis of normal and abnormal hemoglobins and their pattern of inheritance. -
Gene Therapy of Primary T Cell Immunodeficiencies. Alain Fischer, Salima Hacein-Bey-Abina, Marina Cavazzana-Calvo
Gene therapy of primary T cell immunodeficiencies. Alain Fischer, Salima Hacein-Bey-Abina, Marina Cavazzana-Calvo To cite this version: Alain Fischer, Salima Hacein-Bey-Abina, Marina Cavazzana-Calvo. Gene therapy of primary T cell immunodeficiencies.. Gene, Elsevier, 2013, 525 (2), pp.170-173. 10.1016/j.gene.2013.03.092. inserm- 00817790 HAL Id: inserm-00817790 https://www.hal.inserm.fr/inserm-00817790 Submitted on 25 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Gene therapy of primary T cell immunodeficiencies Alain Fischer 1,2,3 Salima Hacein-Bey-Abina 1,2,4,5 and Marina Cavazzana-Calvo 1,2,4,5 1 INSERM U768, Paris, France; 2 Paris Cité, Université Paris Descartes, Imagine Institute, Paris, France; 3 Immunology and Pediatric Hematology Department and 4 Biotherapy Department, Necker Children's Hospital, Assistance Publique–Hôpitaux de Paris, Paris, France; 5 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique– Hôpitaux de Paris, INSERM, Paris, France. Corresponding author: Alain Fischer e-mail address: [email protected] Phone: +33 1 44 49 50 71 Fax: +33 1 42 73 06 40 1 ABSTRACT Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. -
Clonal Tracking in Gene Therapy Patients Reveals a Diversity of Human Hematopoietic Differentiation Programs
Downloaded from https://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2019002350/1633999/blood.2019002350.pdf?casa_token=MftWf-Ph-7sAAAAA:mu3J3sN5fO6NJZptgI4epbaPQukB1O_yj7JvNlI233ZSKCQWQ1T-BlKo2CmaIAVvjCsMS2mkjA by UNIVERSITY COLLEGE LONDON user on 14 March 2020 American Society of Hematology 2021 L Street NW, Suite 900, Washington, DC 20036 Phone: 202-776-0544 | Fax 202-776-0545 [email protected] Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs Tracking no: BLD-2019-002350R1 Emmanuelle Six (INSERM U1163, France) Agathe Guilloux (Université Paris-Saclay, Univ Evry, France) Adeline Denis (INSERM UMR 1163, France) Arnaud Lecoules (INSERM UMR 1163, France) Alessandra Magnani (Necker Enfants malades university Hospital, France) Romain Vilette (Evry University, France) Frances Male (University of Pennsylvania, United States) Nicolas Cagnard (Bioinformatics Plateforme University Paris-Descartes, France) Marianne DELVILLE (4. Department of Biotherapy, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, France) Elisa Magrin (Hôpital Necker Enfants Malades, France) Laure CACCAVELLI (Necker hospital, France) Cécile Roudaut (Hopital Necker - Enfants Malades, France) Clemence Plantier (Necker Enfants malades university Hospital, France) Steicy Sobrino (Instutut IMAGINE, Hôpital Necker, France) John Gregg (University of Pennsylvania, United States) Christopher Nobles (University of Pennsylvania, United States) John Everett (University of Pennsylvania, United States) Salima Hacein-Bey-Abina (Université Paris Descartes, France) Anne Galy (Genethon, France) Alain FISCHER (INSTITUT IMAGINE, France) Adrian Thrasher (UCL Institute of Child Health, United Kingdom) Isabelle André (Institut Imagine, France) Marina Cavazzana (APHP, France) Frederic Bushman (University of Pennsylvania, United States) Abstract: In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. -
Evolution of Hemoglobin and Its Genes
Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Evolution of Hemoglobin and Its Genes Ross C. Hardison Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 Correspondence: [email protected] Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article pre- sents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the a-like globin gene complex are relatively stable, the b-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals. wide range of animals, vertebrate and inver- globin genes, and attempts to modulate globin Atebrate, use hemoglobins to transport oxy- gene expression are a fundamental approach to gen, carrying it from lungs, gills, or