Vitrification of Ion-Exchange (IEX) Resins: Advantages and Technical Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Vitrification of Ion-Exchange (IEX) Resins: Advantages and Technical Challenges WSRC-MS-95-0518 Vitrification of Ion-Exchange (IEX) Resins: Advantages and Technical Challenges bv C. M. Jantzen Westinghouse Savannah River Company Savannah River, Site Aiken, South Carolina 29808 D. K. Paster G. A. Cicero A document prepared for AMERICAN CERAMIC SOCIETY ANNUAL MEETING, NUCLEAR DIVISION at Indianapolis frorrt 04/14/95 - 04/17/95. DOE Contract No. DE-AC09-89SR18035 This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,.or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161. USfiC-fns-IS-*31* VITRIFICATION OF ION-EXCHANGE (IEX) RESINS: ADVANTAGES AND TECHNICAL CHALLENGESt Carol M. Jantzen David K. Peeler Connie A. Cicero Westinghouse Savannah Westinghouse Savannah Westinghouse Savannah Technology Center (SRTC) River Technology Center River Technology Center Aiken, SC 29808 Aiken, SC 29808 Aiken, SC 29808 (803)725-2374 (803)725-8435 (803)725-5306 ABSTRACT I. INTRODUCTION Technologies are being developed by the US Spent ion exchange (EX) resin wastes are Department of Energy's (DOE) Savannah generated from a variety of waste treatment River Site (SRS) in conjunction with the processes in the DOE complex and in Electric Power Research Institute (EPRI)t and commercial nuclear facilities. The spent IEX the commercial sector to convert low-level resins are generated during the radioactive ion exchange (IEX) resin wastes decontamination of liquid or aqueous process from the nuclear utilities to solid stabilized streams. The contaminants which are waste forms for permanent disposal. One of removed from the aqueous streams and sorbed the alternative waste stabilization technologies on the IEX resins can be radioactive, is vitrification of the resin into glass. Wastes hazardous, or both. Thus, spent resins exist can be vitrified at elevated temperatures by as High Level Waste (HLW),* Low Level thermal treatment One alternative thermal Waste (LLW),** and Mixed Low Level Waste treatment is conventional Joule heated+t (MLLWJ.ttt melting. Vitrification of wastes into glass is an attractive option because it atomistically bonds both hazardous and radioactive species highly radioactive material resulting from the in the glass structure, and volume reduces the reprocessing of spent nuclear fuel, including liquid waste by 70 - 80%. The large volume waste produced directly in reprocessing and any reductions allow for large associated savings solid material derived from such liquid waste that in disposal and/or long term storage costs. contains fission products in sufficient concentration (Nuclear Waste Policy Act of 1992) waste that is not high-level radioactive waste, spent nuclear fuel, transuranic waste, or by-product material as defined in section 1 le(2) of the Atomic Energy Act of 1954 (Nuclear Waste Policy Act of 1992) ttt waste that contains source, special nuclear, or byproduct material subject to regulation under the Atomic Energy Act and hazardous waste species Westinghouse Savannah River Cooperative subject to regulation under the Recource Research and Development Agreement (CRADA) Conservation and Recovery Act waste as defined in No. CR-94-002 40 CFR 261 (U.S. Code Title 42, Section 2011); tt Joule heated melters vitrify waste in a refractory- if the hazardous species are on the U.S. lined vessel containing diametrically opposed Environmental Protection Agency (EPA) list of electrodes. The electrodes are used to heat the hazardous wastes as oudined in 40 CFR261.31, glass by passing an electric current through the .32, .33 then the waste is considered a "listed" material. This process is called Joule heating. MLLW DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED'yo 0 USfit-ms^f-fclX EX resins are used in defense and commercial - the Environmental Protection Agency power reactors to remove hazardous anions (EPA) has declared vitrification the and cations, particularly low levels of fission Best Demonstrated Available products such as Cs137, Sr9», Co60, C14 and Technology (BDAT) for high-level Tc". In addition, some tritium contamination radioactive waste3 or suspect tritium contamination is usually present. The EX resin wastes from " the EPA has produced a Handbook of commercial power reactors typically use Vitrification Technologies for organic resins with sulfonated or chlorinated Treatment of Hazardous and groups. The resin wastes, ashes or residues Radioactive Waste4 resulting from thermal treatment of such resins are, therefore, usually high in sulfur or - the DOE Office of Technology chlorine. Development (OTD) has taken the position that MLLW should be The resin wastes from Boiling Water Reactors stabilized to the highest level (BWR) are enriched in constituents such as reasonably possible to ensure that the Fe3C>4 while wastes from Pressurized Water resulting waste form will meet both Reactors (PWR) are enriched in borate used as 7 current and future regulatory a homogeneous moderator and in Li used for specifications pH control. In addition, these wastes are 137 60 usually contaminated with Cs and Co . • vitrification allows glass to have a high Both dry and wet wastes from BWR/PWR potential to meet the EPA characteristically reactors can be combined, e.g. EX resins, hazardous and/or listed Land Disposal waste sludges, filter aids, slurries, and other Restrictions (LDR's)tt spent decontamination solutions.1 Approximately, 100,000 lbs of BWR EX • glass formulations are flexible and easily waste and 30,000 lbs of PWR EX waste are accommodate process chemistry variation generated per reactor per year.t Large volumes of EX waste must, therefore, be • waste pretreatment is often minimal; waste converted to a solid stabilized waste form for can be dry or slurry fed to a melter permanent disposal. • high throughput melters which are low in cost, compact and have simple n. RATIONALE FOR VITREICATION maintenance features are readily available from commercial vendors and can be made One alternative EX resin waste stabilization transportable option is to vitrify the hazardous and radioactive species into glass.2 The rationale • commercially available melters have the for the vitrification of EX resin wastes are the ability to handle high concentrations of following: sulfate • glass is a very durable and • vitrification allows for large volume environmentally acceptable waste form reductions, sometimes up to or greater because both hazardous and radioactive than 97%5-6 species are atomistically bonded in the glass tt vitrified waste forms have the highest probability t EPRI consultant, Jene N. Vance of being "delisted" -2- [^6 AC- mnS-15-6 • large reductions in volume minimize long- forming potential" of the waste. Stabilization term storage or disposal costs of heavy metals in glass has been shown to be enhanced by use of reactive additives* • minimization of long-term storage costs such as diatomaceous earth, perlite (perflo), makes vitrification cost effective on a life rice husk ash, and/or precipitated silica.5"6 cycle basis Use of highly reactive silica was determined to lower vitrification temperatures, increase • vitrification is a well developed technology waste loadings, maximize volume reductions, minimize melt line corrosion, and produce • vitrification and resin destruction avoid EPA acceptable glasses. hydrogen generation of "resin only" storage or disposal in cement7 Vitrification via the Reactive Additive Stabilization Process (RASP) can be used to The US DOE Savannah River Site (SRS), vitrify the following types of wastes: which is operated by Westinghouse Savannah River Company (WSRC), is currently • spent filter aids from waste water investigating vitrification for disposal of treatment various low-level and mixed wastes.4'6'8 The first hazardous/mixed wastes vitrified in • waste sludges laboratory studies at SRS have been (1) simulated incinerator wastes (ash and • combinations of spent filter aids from blowdown) and (2) actual listed nickel plating waste water treatment and waste sludges line (RCRA F006) waste water sludges admixed with spent filter
Recommended publications
  • Nuclear Waste Vitrification Efficiency: Cold Cap Reactions
    Journal of Non-Crystalline Solids 358 (2012) 3559–3562 Contents lists available at SciVerse ScienceDirect Journal of Non-Crystalline Solids journal homepage: www.elsevier.com/ locate/ jnoncrysol Nuclear waste vitrification efficiency: Cold cap reactions P. Hrma a,b,⁎, A.A. Kruger c, R. Pokorny d a Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea b Pacific Northwest National Laboratory, Richland, WA 99352, USA c U.S. Department of Energy Hanford Tank Waste Treatment and Immobilization Plant Federal Project Office, Engineering Division, Richland, WA 99352, USA d Institute of Chemical Technology, Prague, Czech Republic article info abstract Article history: Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass in a Received 26 July 2011 glass-melting furnace. The conversion of batch to glass consists of various chemical reactions, phase transi- Received in revised form 5 January 2012 tions, and diffusion-controlled processes. This study introduces a one-dimensional (1D) mathematical Available online 7 March 2012 model of the cold cap that describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified Keywords: boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, Glass melting; Glass foaming; the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter con- Waste vitrification; ditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting.
    [Show full text]
  • Final Vitrification Melter Evaluation
    Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter February 2012 Prepared by the U.S. Department of Energy West Valley, New York This page is intentionally blank. WASTE-INCIDENTAL-TO-REPROCESSING EVALUATION FOR THE WVDP VITRIFICATION MELTER CONTENTS NOTATION (Acronyms, Abbreviations, and Units).................................................. v 1.0 INTRODUCTION ...................................................................................................... 1 1.1 Purpose. ................................................................................................................. 2 1.2 Scope and Technical Basis ....................................................................................... 2 1.3 Consultation and Opportunity for Public Review ........................................................ 3 1.4 Background ............................................................................................................ 4 1.4.1 The Western New York Nuclear Service Center .............................................. 4 1.4.2 Spent Nuclear Fuel Processing ...................................................................... 6 1.4.3 The West Valley Demonstration Project ......................................................... 7 1.4.4 Characterization of the Vitrification Melter ..................................................... 7 1.4.5 Incorporation into a Solid Physical Form ........................................................ 8 1.4.6 Potential Waste Disposal
    [Show full text]
  • Progress in Nuclear Waste Vitrification by Ceramic Melter Technique
    JP9950237 PROGRESS IN NUCLEAR WASTE VITRIFICATION BY CERAMIC MELTER TECHNIQUE S. WEISENBURGER Forschungszentrum Karlsruhe Institut fur Nukleare Entsorgungstechnik P.O.BOX 3640, 76021 Karlsruhe, Germany ABSTRACT Nuclear waste vitrification by using the liquid-fed ceramic-lined waste glass melter process started in 1973 with the pioneering development at Batelle Pacific Northwest Laboratory. The first radioactive plant applying this technique was the PAMELA plant in Mol/ Belgium which was put into hot operation in 1985. A main part of the technology for this plant including the melter was developed by the Institut fur Nukleare Entsorgungstechnik (INE) of Forschungszentrum Karlsruhe (FZK)! For the time being there is an increasing demand for the availability of small-scale vitrification units for processing of small stocks of high level liquid wastes (HLLW). Limited quantities of HLLW solutions were obtained during the period of development of reprocessing techniques at various international sites. One example is the former WAK (Wiederaufarbeitungs-anlage Karlsruhe) reprocessing plant. It is located at the site of Forschungszentrum Karlsruhe and is now under decommissioning. The overall decommissioning program includes vitrification of 70 m3 of stored HLLW with a total p7y radioactivity of 8.9 x E17 Bq. This paper focuses on progress achieved in the design of small-scale liquid-fed ceramic glass melters for these purposes. Improvements are described regarding extension of power electrode life time by optimized air cooling, glass pouring operation, off-gas pipe cleaning, glass level detection system in the melt tank, and arrangement of a small-scale melter in a hot a cell. Some test results achieved with the new melter are also outlined.
    [Show full text]
  • Transformation (T TT) Diagram for EPY® Epoxy System
    18 2018, 63, nr 1 Glass transition temperature-cure temperature- ® -transformation (TgTT) diagram for EPY epoxy system Magdalena Urbaniak1) DOI: dx.doi.org/10.14314/polimery.2018.1.3 Abstract: The EPY® epoxy system applied for the production of machine foundation chocks was iso- thermally cured at varying cure temperatures and times. The thermal behavior during the curing of the system was monitored by means of the glass transition temperature (Tg) and conversion degree (α) measured using differential scanning calorimetry (DSC) and rotational viscometry (ARES). Also, the thermal decomposition was measured by thermogravimetry and differential thermal analysis (TG-DTA). The results were analyzed and summarized in the generalized phase diagram, as well as in the Tg-cure temperature-transformation (TgTT) cure diagram. The phase diagram has reference to the transformations (in liquid, ungelled glass, gelled glass and rubber state) encountered at time to gelation and vitrification. Whereas theT gTT diagram shows that there are three types of behavior related to the temperature of cure and makes a useful framework for understanding and analyzing the relations and interdependencies during the curing process of the epoxy system. Keywords: epoxy system, curing, gelation, vitrification, glass transition temperature, glass transition temperature-cure temperature-transformation diagram. Diagram temperatura zeszklenia-temperatura sieciowania-przemiana (TgTT) dla układu epoksydowego EPY® Streszczenie: Próbki układu epoksydowego EPY®, używanego do wytwarzania podkładek funda- mentowych maszyn, sieciowano izotermicznie stosując różne temperatury i różny czas sieciowania. Metodami różnicowej kalorymetrii skaningowej (DSC) i wiskozymetrii rotacyjnej (ARES) zbadano przemiany tak przygotowanych układów pod wpływem zmian temperatury wyznaczając temperaturę zeszklenia (Tg) i stopień konwersji (α). Badano także rozkład termiczny próbek za pomocą symulta- nicznej termograwimetrycznej i różnicowej analizy termicznej (TG-DTA).
    [Show full text]
  • To Make a Glass – Avoid the Crystal
    To make a glass – avoid the crystal Thomas Palberg1, Eckhard Bartsch2, Richard Beyer1, Maximilian Hofmann1, Nina Lorenz1,3, Janina Marquis1, Ran Niu1,4 and Tsuneo Okubo5 Abstract Colloidal model systems allow for a flexible tuning of particle sizes, particle spacings and mutual interactions at constant temperature. Colloidal suspensions typically crystallize as soon as the interactions get sufficiently strong and long-ranged. Several strategies have been successfully applied to avoid crystallization and instead produce colloidal glasses. Most of these amorphous solids are formed at high particle concentrations. This paper shortly reviews experimental attempts to produce amorphous colloidal solids using strategies based on topological, thermodynamic and kinetic considerations. We complement this overview by introducing a (transient) amorphous solid forming in a thoroughly deionized aqueous suspension of highly charged spheres at low salt concentration and very low volume fractions. Key words: colloidal model systems, colloidal glasses, structural glasses, light scattering, crystal nucleation, polydispersity, eutectic phases, frustration, dynamic arrest, Thomas Palberg [email protected] 1 Institute of Physics, Johannes Gutenberg University, D-55099 Mainz, Germany 2 Institute of Physical Chemistry, Albert-Ludwigs-University, D-79104 Freiburg, Germany 3 present address: Sentronics Metrology, Mannheim, Germany 4 on leave from: Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 5 Institute for Colloidal Organization, Hatoyama 3-1-112 Uji, Kyoto 611-0012, Japan Introduction Colloidal suspensions are well known experimental model systems to study the structural and dynamic properties of condensed matter [1, 2, 3, 4]. Typically, spherical particles of sub- micron size suspended in a liquid carrier medium are studied as a model for simple atomic solids and liquids [5].
    [Show full text]
  • Development of a Glass Matrix for Vitrification of Sulphate Bearing High
    BACKGROUND Radioactive waste is generated during various steps of nuclear fuel cycle viz. mining and milling of uranium ore, fuel fabrication, reactor operations and spent fuel reprocessing. In India, a closed loop option has been adopted where spent fuel is reprocessed to recover plutonium and un-used uranium. The typical Indian nuclear fuel cycle is presented in Fig-1. The majority of radioactivity in the entire nuclear fuel cycle is concentrated in high level radioactive waste (HLW), which is generated during reprocessing of spent nuclear fuel. Three stage strategy adopted for management of HLW includes - (i) immobilization of waste in stable and solid matrix, (ii) interim storage of conditioned waste product and (iii) deep underground disposal in geological formations. Borosilicate glass system has been adopted world-wide as a matrix for immobilization of HLW [1]. The presently stored HLW at Trombay is characterised by significant concentration of uranium, sodium and sulphate in addition to fission products, corrosion products and small amount of other actinides. Sulphate in the waste is derived from ferrous sulphamate used as a reducing agent for conversion of Pu+4 to Pu+3 during partitioning stage of reprocessing and is one of the troublesome constituent with respect to vitrification. Sulphate in the form of sodium sulphate can be accommodated in borosilicate matrix only to a limited extent i.e. 1 wt% maximum [2]. At higher sulphate concentrations, a separate phase of alkali sulphate known as “gall” is formed. Its presence in the glass is not desirable as this phase is enriched with Cs and has high solubility in water.
    [Show full text]
  • 18O Diffusion Through Amorphous Sio2 and Cristobalite J
    18O diffusion through amorphous SiO2 and cristobalite J. RodríguezViejo, F. Sibieude, M. T. ClavagueraMora, and C. Monty Citation: Applied Physics Letters 63, 1906 (1993); doi: 10.1063/1.110644 View online: http://dx.doi.org/10.1063/1.110644 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/63/14?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 158.109.223.71 On: Fri, 28 Feb 2014 09:54:08 180 diffusion through amorphous SiOs and cristobalite J. Rodriguez-Viejoa) and F. Sibieude Institut des Sciences et de G&ie des Matgriaux et Pro&d& C. N. R.S. BP 5, Odeillo, 66120 Font-Romeu, France M. T. Clavaguera-Mora Fisica de Materiales, Departamento de Fisica, Universidad Aut6noma de Barcelona, 08193 Bellaterra, Spain C. Monty Laborafoire de Physique des Matkriaux, C. N. R.S., I Place Aristide Briand, Beilevue, 92195 Meudon, Cedex, France (Received 26 January 1993; accepted for publication 6 July 1993) Secondary ion mass spectrometry was used to profile the diffusion of oxygen in polycrystalline P-cristobalite and vitreous SiOz. The tracer concentration profiles of cristobalite are consistent with a model based on two mechanisms: bulk and short-circuit diffusion. The profiles of partially crystallized samples containing vitreous SiOa and /3cristobalite were fitted using the sum of two complementary error functions and taking account of some interstitial-network exchange. The bulk oxygen diffusivity, in the temperature range 1240-1500 “C, is about five times greater for vitreous silica than for fl-cristobalite.
    [Show full text]
  • 22 Vitrification in Tissue Preservation: New Developments
    TF1231_C22.fm Page 603 Tuesday, April 6, 2004 11:13 PM Vitrification in Tissue 22 Preservation: New Developments Michael J. Taylor, Ying C. Song, and Kelvin G.M. Brockbank CONTENTS 22.1 Introduction ........................................................................................................................604 22.2 Background and Historical Perspective.............................................................................605 22.3 Evidence that Extracellular Ice Is Harmful.......................................................................606 22.4 Approaches to Ice-Free Cryopreservation.........................................................................608 22.4.1 Equilibrium Approach .........................................................................................608 22.4.2 Nonequilibrium Approach—Vitrification............................................................609 22.4.2.1 Stability of the Amorphous State .......................................................611 24.4.2.2 Material Properties and Cracking.......................................................612 24.4.2.3 Thermomechanical Stress during Cryopreservation of Tissues.........612 22.4.3 Alternative Strategies for Achieving Vitreous Cryopreservation........................615 22.4.4 Ice-Growth Inhibitors ..........................................................................................615 22.4.5 Preliminary Physical Studies on the Effect of Synthetic Ice Blocking Molecules.............................................................................................................616
    [Show full text]
  • The Function of Time in the Vitrification of Clays
    DEPARTMENT OF COMMERCE Technologic Papers of THE Bureau of Standards S. W. STRATTON, Director No. 17 THE FUNCTION OF TIME IN THE VITRIFICATION OF CLAYS BY G. H. BROWN, Assistant Ceramic Chemist and G. A. MURRAY, Laboratory Assistant Bureau of Standards [MAY 20, 1913] WASHINGTON GOVERNMENT PRINTING OFFICE 1913 . THE FUNCTION OF TIME IN THE VITRIFICATION OF CLAYS By G. H. Brown and G. A. Murray CONTENTS Page i. Introduction 3 (a) General statement 3 (b) Previous work 4 2. Description of work 6 3 Discussion of results 7 (a) Galesburg paving-brick shale 7 (6) Cleveland paving-brick shale 11 (c) Canton paving-brick shale 13 (d) Urbana surface clay 15 (e) Heron Lake surface clay 18 (/) West Decatur No. 3 fire clay 19 4. Cone-softening temperatures 22 5. Summary 25 1. INTRODUCTION (a) General Statement.—It is a well-known fact that time is an exceedingly important factor in the maturing of clays and bodies. A certain result may be obtained either by the use of a higher temperature for a shorter time or a lower temperature for a longer time. This fact we see constantly illustrated in the firing of all kinds of clay products, the melting of glass, the soften- ing of pyrometric cones, etc. Yet there are definite thermal limits to which such relations are confined. These correspond to the lowest temperature at which partial softening, which is a nec- essary condition of vitrification, can take place. It should be recognized also that the closing up of the pore system is not entirely due to the action of fluxes.
    [Show full text]
  • Vitrification (Freezing)
    VITRIFICATION (FREEZING) Vitrification of oocytes and blastocysts is the process by which the solution containing the oocyte or embryo is cooled so rapidly that the water molecules do not have the time to form ice crystals and instantly solidify into a “glass-like” structure. VITRIFICATION (FREEZING) This concept is based upon the idea that if the cell is dehydrated to a certain degree and then cooled fast enough, The first human pregnancy from a everything will “freeze” in place and damage will not have frozen and subsequently thawed time to occur; crystals will not be able to organize themselves embryo was achieved in Australia and a vitrified amorphous, a glass-like solid, will form instead in 1984. The method used to of ice. Vitrification cools the embryos an amazing 7,000 times preserve that embryo is called faster than conventional slow freezing techniques (2,000- “slow freezing” and it is still the 2,500 Celsius per minute). Since no ice forms, the risk of preferred method for preserving rupturing the cell is reduced. embryos throughout the world today. Slow freezing is a reliable Vitrification involves exposure of the cell to high concentrations and established technique that has of cryoprotectants for brief periods of time, followed by rapid cooling by touching a block which has been cooled in liquid served the IVF community well for over 20 years. nitrogen. The high osmolarity of the vitrification solution rapidly Slow-freezing cools the embryos gradually, approximately dehydrates the cell and liquid nitrogen quickly solidifies the cell - 0.3° C /minute until it has been cooled to below -30° C and so that the remaining intracellular water does not have time to is therefore fully frozen.
    [Show full text]
  • Bulk Vitrification Castable Refractory Block Protection Study
    PNNL-15193 Bulk Vitrification Castable Refractory Block Protection Study P. Hrma J. Matyas L.M. Bagaasen K.B.C. Minister A.E. Beck M.J. Schweiger T.M. Brouns D.M. Strachan D.D. Caldwell B.P. Tinsley M.L. Elliott G.W. Hollenberg April 2005 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S.
    [Show full text]
  • Vitrification Is a Spontaneous Non-Equilibrium Transition Driven By
    Vitrification is a spontaneous non-equilibrium transition driven by osmotic pressure J. Galen Wang and Roseanna N. Zia∗ Department of Chemical Engineering, Stanford University, Stanford, CA 94305 February 28, 2021 Abstract Persistent dynamics in colloidal glasses suggest the existence of a non-equilibrium driving force for structural relaxation during glassy aging. But the implicit assumption in the literature that colloidal glasses form within the metastable state bypasses the search for a driving force for vit- rification and glassy aging and its connection with a metastable state. The natural relation of osmotic pressure to number-density gradients motivates us to investigate the osmotic pressure as this driving force. We use dynamic simulation to quench a polydipserse hard-sphere colloidal liquid into the putative glass region while monitoring structural relaxation and osmotic pressure. Following quenches to various depths in volume fraction φ (where φRCP ≈ 0:678 for 7% poly- dispersity), the osmotic pressure overshoots its metastable value, then decreases with age toward the metastable pressure, driving redistribution of coordination number and interparticle voids that smooths structural heterogeneity with age. For quenches to 0:56 ≤ φ ≤ 0:58, accessible post-quench volume redistributes with age, allowing the glass to relax into a strong supercooled liquid and easily reach a metastable state. At higher volume fractions, 0:59 ≤ φ < 0:64, this redistribution encounters a barrier that is subsequently overcome by osmotic pressure, allowing the system to relax toward the metastable state. But for φ ≥ 0:64, the overshoot is small com- pared to the high metastable pressure; redistribution of volume stops as particles acquire contacts and get stuck, freezing the system far from the metastable state.
    [Show full text]