AREVIEWOFTHESCIENTIFICLITERATURE ONRIPARIANBUFFER WIDTH,EXTENTAND

SethWenger

forthe

OfficeofPublicService&Outreach InstituteofEcology UniversityofGeorgia

RevisedVersion•March5,1999

InstituteofEcology,UniversityofGeorgia,Athens,Georgia,30602-2202 706.542.3948[email protected] 1 TheOfficeofPublicServiceandOutreachatthe InstituteofEcologyprovidesscientificandlegalex- pertisetothecitizensofGeorgiainthedevelopment ofpoliciesandpracticestoprotectournaturalheri- tage.Thegoalsoftheofficeareto: • Developandimplementaresearchagendatomeet communityneeds; • Provideanopportunityforstudents,facultyand stafftoworkwithotherdisciplinesinintegrated environmentaldecisionmakingandproblem- solvingtoimprovetheirabilitytounderstand, communicatewith,andinfluenceother disciplines; • Buildcapacityforservicelearninginthesciences byprovidingstudentsanopportunitytoapply skillslearnedinthetraditionalclassroomsetting topressingcommunityconcernsandproblems; • SupporthighqualityscienceeducationinK-12 schoolsbyprovidingprogramsforstudentsand instructionalsupportandtrainingforteachers; • Increaseawarenessoftheimportanceof addressingenvironmentalissuesproactively withintheuniversitycommunityandthegreater community. Thepublicationofthispaperwasmadepossible bysupportfromtheTurnerFoundation,R.E.M./ Athens,L.L.C.,andtheUniversityofGeorgiaOffice oftheVicePresidentforPublicServiceandOutreach. FormoreinformationabouttheOfficeofPublic ServiceandOutreachattheInstituteofEcology,please contactLaurieFowlerat706-542-3948.

2 EXECUTIVESUMMARY

ManylocalgovernmentsinGeorgiaare buffersshouldbesufficientundermanycondi- developingriparianbufferprotectionplansand tions.Itisespeciallyimportanttopreserve ordinanceswithoutthebenefitofscientifically- wetlands,whicharesitesofhighdenitrification basedguidelines.Toaddressthisproblem,over activity. 140articlesandbookswerereviewedtoestablish Tomaintainaquatic,theliterature alegally-defensiblebasisfordeterminingriparian indicatesthat10-30m(35-100ft)nativeforested bufferwidth,extentandvegetation.Thisdocu- riparianbuffersshouldbepreservedorrestored mentpresentstheresultsofthisreviewand alongall.Thiswillprovide proposesseveralsimpleformulaeforbuffer temperaturecontrolandinputsoflargewoody delineationthatcanbeappliedonamunicipalor debrisandotherorganicmatternecessaryfor county-widescale. aquaticorganisms.Whilenarrowbuffersoffer istheworstinmany considerablehabitatbenefitstomanyspecies, streamsand.Scientificresearchhasshown protectingdiverseterrestrialriparianwildlife thatvegetativebuffersareeffectiveattrapping communitiesrequiressomebuffersofatleast100 sedimentfromrunoffandatreducingchannel meters(300feet).Toprovideoptimalhabitat, .Studieshaveyieldedarangeofrecom- nativevegetationshouldbemaintainedor mendationsforbufferwidths;buffersasnarrow restoredinallbuffers. as4.6m(15ft)haveprovenfairlyeffectiveinthe Areviewofexistingmodelsforbufferwidth shortterm,althoughwiderbuffersprovide andeffectivenessshowedthatnoneareappropri- greatersedimentcontrol,especiallyonsteeper ateforcounty-levelbufferprotection.Models slopes.Long-termstudiessuggesttheneedfor werefoundtobeeithertoodata-intensivetobe muchwiderbuffers.Itappearsthata30m(100 practicalorelselackedverificationandcalibra- ft)bufferissufficientlywidetotrap tion.Potentialvariablesforuseinabufferwidth undermostcircumstances,althoughbuffers formulawereconsidered.Bufferslopeandthe shouldbeextendedforsteeperslopes.An presenceofwetlandsweredeterminedtobethe absoluteminimumwidthwouldbe9m(30ft). mostimportantandusefulfactorsindetermining Tobemosteffective,buffersmustextendalongall bufferwidth. streams,includingintermittentandephemeral channels.Buffersmustbeaugmentedbylimitson Threeoptionsforbufferguidelineswere impervioussurfacesandstrictlyenforcedon-site proposed.Allaredefensiblegiventhescientific sedimentcontrols.Bothgrassedandforested literature.Thefirstprovidesthegreatestlevelof buffersareeffectiveattrappingsediment,al- protectionforstreamcorridors,includinggood thoughforestedbuffersprovideotherbenefitsas controlofsedimentandothercontaminants, well. maintenanceofqualityaquatichabitat,andsome minimalterrestrialwildlifehabitat.Thesecond Buffersareshort-termsinksforphosphorus, optionshouldalsoprovidegoodprotectionunder butoverthelongtermtheireffectivenessis mostcircumstances,althoughseverestorms, limited.Inmanycasesphosphorusisattachedto floods,orpoormanagementofcontaminant sedimentororganicmatter,sobufferssufficiently sourcescouldmoreeasilyoverwhelmthebuffer. widetocontrolsedimentshouldalsoprovide adequateshort-termphosphoruscontrol.How- ever,long-termmanagementofphosphorus OptionOne: requireseffectiveon-sitemanagementofits • Basewidth:100ft(30.5m)plus2ft(0.61m) sources.Bufferscanprovideverygoodcontrolof per1%ofslope. ,includenitrate.Thewidthsnecessary forreducingnitrateconcentrationsvarybasedon • Extendtoedgeoffloodplain. localhydrology,soilfactors,slopeandother • Includeadjacentwetlands.Thebufferwidth variables.Inmostcases30m(100ft)buffers isextendedbythewidthofthewetlands, shouldprovidegoodcontrol,and15m(50ft) whichguaranteesthattheentirewetlandand anadditionalbufferareprotected.

3 • Existingimpervioussurfacesintheriparian Foralloptions,buffervegetationshould zonedonotcounttowardbufferwidth(i.e., consistofnativeforest.Restorationshouldbe thewidthisextendedbythewidthofthe conductedwhennecessaryandpossible. impervioussurface,justasforwetlands). Allmajorsourcesofcontaminationshouldbe • Slopesover25%donotcounttowardthe excludedfromthebuffer.Theseincludecon- width. structionresultinginmajorlanddisturbance, impervioussurfaces,roads,mining • Thebufferappliestoallperennialand activities,septictankdrainfields,agricultural intermittentstreams.Thesemay fields,wastedisposalsites,livestock,andclear cuttingof.Applicationofand OptionTwo: fertilizershouldalsobeprohibited,exceptasmay ThesameasOptionOne,except: beneededforbufferrestoration. • Basewidthis50ft(15.2m)plus2ft(0.61m) Allofthebufferoptionsdescribedabovewill per1%ofslope. providesomehabitatformanyterrestrialwildlife species.Toprovidehabitatforforestinterior • Entirefloodplainisnotnecessarilyincluded species,atleastsomeripariantractsofatleast inbuffer,althoughpotentialsourcesofsevere 300ftwidthshouldalsobepreserved.Identifica- contaminationshouldbeexcludedfromthe tionoftheseareasshouldbepartofanoverall, floodplain. county-widewildlifeprotectionplan. • Ephemeralstreamsarenotincluded;affected Forriparianbufferstobemosteffective, streamsarethosethatappearonUS somerelatedissuesmustalsobeaddressed.These GeologicalSurvey1:24,000topographic includereducingimpervioussurfaces,managing quadrangles.Alternatively,buffercanbe on-site,andminimizingbuffergaps. appliedtoallperennialstreamsplusall intermittentstreamsofsecondorderorlarger

OptionThree: • Fixedbufferwidthof100ft. • Thebufferappliestoallstreamsthatappear onUSGeologicalSurvey1:24,000 topographicquadranglesor,alternatively,all perennialstreamsplusallintermittentstreams ofsecondorderorlarger(asforOption Two).

4 Contents

EXECUTIVESUMMARY ...... 1 I.BACKGROUNDANDINTRODUCTION ...... 4 Acknowledgments ...... 6 ScopeofReview ...... 6 WhyAnotherLiteratureReview?...... 7 BackgroundonRiparianZones ...... 7 II.SEDIMENT...... 9 Effects ...... 9 Sources ...... 9 LiteratureReview ...... 11 SedimentinSurfaceRunoff ...... 12 ChannelErosion ...... 16 SummaryandRecommendations ...... 18 III.NUTRIENTSANDOTHERCONTAMINANTS ...... 19 A.PHOSPHORUS...... 19 Effects ...... 19 Sources ...... 19 LiteratureReview ...... 19 Vegetation ...... 21 SummaryandRecommendations ...... 22 B.NITROGEN...... 22 Effects ...... 22 Sources ...... 22 LiteratureReview ...... 23 SummaryandRecommendations ...... 30 C.OTHERCONTAMINANTS...... 30 OrganicMatterandBiologicalContaminants...... 30 PesticidesandMetals...... 31 SummaryandRecommendations ...... 31 IV.OTHERFACTORSINFLUENCINGAQUATICHABITAT ...... 32 WoodyDebrisandLitterInputs...... 32 TemperatureandLightControl ...... 33 SummaryandRecommendations ...... 34 V.TERRESTRIALWILDLIFEHABITAT ...... 35 LiteratureReview ...... 35 SummaryandRecommendations ...... 38 FloodControlandOtherRiparianBufferFunctions...... 38 VI.DEVELOPMENTOFRIPARIANBUFFERGUIDELINES ...... 39 A.ReviewofModelstoDetermineBufferWidthandEffectiveness ...... 39 B.FactorsInfluencingBufferWidth...... 41 C.BufferGuidelinesforWaterQualityProtection ...... 45 D.OtherConsiderations ...... 47 REFERENCES ...... 50

5 I.BackgroundandIntroduction

Riparianbuffershavegainedwideacceptance developedbyRichardLowranceandcolleagues). astoolsforprotectingwaterquality,maintaining However,theseguidelineshavethevirtueof wildlifehabitatandprovidingotherbenefitsto beingsimpleenoughtobeincorporatedintoa peopleandtheenvironment(Lowrance1998, countyormunicipalordinance. USEPA1998).TodayinGeorgia,asinmany Theguidelinesproposedinthisdocument otherstates,localgovernmentsaredeveloping shouldbeviewedasareasonableinterpretationof programstoprotectriparianbuffers.Lawssuch thebestavailablescientificresearch.Ifadditional astheGeorgiaPlanningActandtheMountain riparianbufferstudiesareconductedinNorth andCorridorProtectionActgivecounties Georgia,urbanareas,andotherneglectedregions, andmunicipalitiesstrongincentivestoincorpo- itmaybepossibletorefinetherecommendations. rateaquaticresourceprotectionintotheirplans However,thisinnowaymeansthatthecurrent andordinances.However,scientifically-based stateofourknowledgeisinsufficienttodevelop guidelinesforlocalriparianbufferordinancesare goodpolicyguidelinesandimplementeffective notreadilyavailable.Theminimumstandards bufferordinances.AsLowranceetalnotedin issuedbytheDepartmentofNaturalResources’ 1997: EnvironmentalProtectionDivision(EPD)arenot basedoncurrentscientificresearchanddonot “Researchissometimesappliedtobroad-scale provideastronglevelofresourceprotection. environmentalissueswithinadequateknowl- Manylocalgovernmentsareinterestedindevel- edgeorincompleteunderstanding.Public opingeffective,comprehensiveriparianbuffer policiestoencourageorrequirelandscape regulations,butfearthatwithoutsolidscientific managementtechniquessuchasriparian support,suchordinanceswouldnotbelegally (streamside)managementwilloftenneedto defensible. proceedwithbestprofessionaljudgment decisionsbasedonincompleteunderstanding.” Thepurposeofthisdocumentistoprovidea scientificfoundationforriparianbufferordi- Localofficialsandnaturalresourcemanagers nancesestablishedbylocalgovernmentsin aremakingdecisionsonriparianbufferstoday. Georgia.Toachievethisgoalmorethan140 Thescientificcommunitywouldberemissifit articlesandbookswerereviewedwithaneye failedtoprovidethesedecisionmakerswiththe towarddeterminingtheoptimalwidth,extent bestavailableinformation. (i.e.,whichstreamsareprotected)andvegetation Toensurethatthisreviewhascoveredthe (e.g.,forestorgrass)ofriparianbuffers.This mostrelevantresearchandhasmadereasonable taskischallengingduetothelackofresearchin conclusions,othermembersofthescientific certaingeographicregions.Althoughalarge communitywereaskedtoreviewitsfindings. numberofriparianbufferstudieshavebeen Thesereviewersincluded: conductedintheGeorgiaCoastalPlain(see Figure1),therehasbeenverylittleresearch • RichardLowrance,Ph.D.,USDA-Agricultural specifictothephysiographicprovincesofNorth ResearchService Georgia(Piedmont,BlueRidge,Valleyand Ridge)ortourbanandsuburbanareas.Never- • DavidCorrell,Ph.D.,Smithsonian theless,itisapparentinreviewingtheliterature EnvironmentalResearchCenter thattherearegeneraltrendswhichcutacross • CathyPringle,Ph.D.,UniversityofGeorgia geographicboundaries.Basedoncurrentre- • LaurieFowler,J.D.,L.L.M.,Universityof search,itispossibletodevelopdefensible Georgia guidelinesfordeterminingriparianbufferwidth, • JudyMeyer,Ph.D.,UniversityofGeorgia extentandvegetationthatareapplicabletomuch ofGeorgiaandbeyond.Naturally,theserecom- • RonaldBjorkland,UniversityofGeorgia mendationswillnotbeasaccurateasthose • MichaelPaul,UniversityofGeorgia suppliedbydata-intensivemodelsappliedona site-by-sitebasis(suchastheREMMmodel

6 BackgroundandIntroduction Figure1.PhysiographicProvincesofGeorgia. Although there has been a signficant amount of riparian buffer research in the Georgia Coastal Plain, there has been much less research conducted in the other physiographic provinces (Keys et al 1995, as modified by J. P. Schmidt)

BackgroundandIntroduction 7 Thecorrections,additionsandchangesmade • BobJames,GentlyDowntheRiver bythesereviewers,aswellasthecommentsand • CarlJordan,UniversityofGeorgia suggestionsotherpeoplehavemadeonanearlier draftofthisdocument,havebeenincorporated • ElizabethKramer,UniversityofGeorgia intothisrevisedversion. • JamesKundell,UniversityofGeorgia/Carl VinsonInstituteofGovernment Acknowledgments • SteveLawrence,NaturalResources ConservationService Thisreviewwouldhavebeenimpossible • JudyMeyer,UniversityofGeorgia withouttheassistanceandsupportofnumerous • KenPatton,Manager,CherokeeCounty people,andmuchofthecreditforthisprojectlies PlanningandZoningOffice withtheseindividuals.LaurieFowlersuggested theideaoftheprojectandhelpedtoguideits • MichaelPaul,UniversityofGeorgia progress,whileCathyPringlemadecertainit • ScottPohlman,UniversityofGeorgia remainedfocusedandmanageable.Ronald • ToddRasmussen,UniversityofGeorgia Bjorklandmadeextremelythoroughandthought- fulcommentsonadraftversionofthisdocument. • RebeccaSharitz,UniversityofGeorgia RichardLowranceandDavidCorrell,twoofthe • ChrisSkelton,GeorgiaDepartmentof leadingresearchersonriparianbuffers,were NaturalResources generousenoughtoprovideexpertcriticismand • BrianToth,J.P.SchmidtandKarenPayne, madeimportantcorrections.Manyothershave NARSAL,UniversityofGeorgia lenttheirexpertiseandhavepatientlytakentime toanswermyquestions.Someoftheirpersonal • DavidWalters,UniversityofGeorgia commentsandexpertopinionsareincludedin • TherestofthePringleandFowlerLabsand thisreview. myothercolleaguesattheInstituteof Ecology • KatherineBaer,SallyBetheaandAlice Champagne,UpperChattahoocheeRiver ScopeofReview Keeper Thereareliterallyhundredsofarticlesand • JimmyBramblett,NaturalResources dozensofbookswrittenonthesubjectofriparian ConservationService bufferzones.The1997versionofDavid • MiguelCabrera,UniversityofGeorgia Correll’sriparianbibliography(Correll1997), • RobertCooper,UniversityofGeorgia whichislimitedtoworksonnutrients,sediments andtoxiccontaminants,lists522citations.John • GailCowie,InstituteforCommunityand VanDeventerpublishedabibliographyin1992of AreaDevelopment anastounding3252articlesthatrelatetoriparian • BruceFerguson,UniversityofGeorgia researchandmanagement,thoughmostofthe • ChristaFrangiamore,UniversityofGeorgia literatureciteddoesnotdirectlyaddressbuffer • CharlieFrear,LimestoneValleyResource zones(Deventer1992).Giventhevolumeof ConservationandDevelopment literatureavailable,itwasapparentfromthe beginningthatthisreviewwouldhavetobe • ByronJ.“Bud”Freeman,Universityof limitedinsomeways.Prioritywasgivento: Georgia • articleswhichspecificallydealwiththeissues • MaryFreeman,UniversityofGeorgia ofriparianbufferwidth,extentand • RobinGoodloe,U.S.FishandWildlife vegetation Service • previousliteraturereviews • GeneHelfman,UniversityofGeorgia • articlesfocusedonGeorgiaandthePiedmont • TaraHottenstein,UniversityofGeorgia • seminalarticlesinthefield • RhettJackson,UniversityofGeorgia

8 BackgroundandIntroduction • recentarticles(1990-1998)especiallythose BackgroundonRiparianZones notincludedinpriorliteraturereviews Definitions • articlesfromrefereedjournals(although Beforeproceedingitwillbehelpfulto severalgoodgovernmentdocumentsand establishdefinitionsforsomekeyconcepts.The otherworksfromthe“greyliterature”are wordriparianisespeciallysubjecttoconfusion, included) andcurrentlythereappearstobenouniversally accepteddefinitionoftheterm.Oneofthebetter Over140sourcesareincludedinthisreview. definitionscomesfromLowranceetal(1985): “‘Riparianecosystems’arethecomplexassem- blageoforganismsandtheirenvironmentexisting WhyAnotherLiteratureReview? adjacenttoandnearflowingwater.”Malanson Asofthiswritingthereexistseveralexcellent (1991)offersanattractivelysimpledefinition: literaturereviewsonriparianbufferzones.The “theecosystemsadjacenttotheriver.”Bjorkland U.S.ArmyCorpsofEngineersNewEngland (unpublished)providesathoroughreviewof Divisionconducteda1991literaturereviewfor publisheddefinitionsfortheterm.Someofthese theStateofVermontcalledBufferStripsfor definitionsevenuse“riparian”torefertothe RiparianZoneManagementthatissimilarin edgesofbodiesofwaterotherthanstreamsand scopeandpurposetothisdocument.Itdiffers rivers.Thisbroaderusagereflectstheoriginal, frommostotherreviewsinthatitcoversvirtually legaldefinitionoftheterm,whichreferredto allofthefunctionsofriparianbuffers,including landadjoininganywaterbody(DavidCorrell, instreamandriparianwildlifehabitataswellas pers.com.).Inthisreviewthetermisusedintwo waterqualityfunctions.Italsosharesthis ways:(1)torefertothe“natural”riparianarea document’sfocusonbufferwidth,althoughit (Figure2),thezonealongstreamsandriversthat ultimatelymakesnowidthrecommendations. initsundisturbedstatehasafloralandfaunal AnotherthoroughandusefulreviewisDesbonnet communitydistinctfromsurroundingupland etal’s1994VegetatedBuffersintheCoastalZone: areas,and(2)inthemostgeneralsensetoreferto ASummaryReviewandBibliography.Despiteits thezonealongstreamsandriverswhichmight title,thisworkreviewsresearchfrommany benefitfromsometypeofprotection.Stream regions,notjustthecoastalzone.Thereviewis corridorandrivercorridorwillsometimesbe ratherweakonwildlifehabitatstudies,however, usedsynonymouslywithriparianzone. sinceitpredatesmuchofthebestliterature. Ariparianzonethatisaffordedsomedegree Lowranceandateamofriparianbufferresearch- ofprotectionisariparianbufferzone.Theword erscollaboratedona1997paperthatsynthesizes “buffer”isusedbecauseoneofthefunctionsof researchonsedimentandnutrientretentionand theprotectedareaistobufferthestreamfromthe presentsguidelinesforbuffersintheChesapeake impactofhumanlanduseactivities,suchas Baywatershed.Otherusefulreviewsinclude farmingandconstruction.Numerousotherterms Clinnicketal1985,Muscuttetal1993,Osborne arealsousedtorefertothisprotectedzone,both andKovacic1993,Castelleetal1994,Fennesy inthisdocumentandinthescientificliterature: andCronk1997andBjorkland(unpublished). riparianmanagementzone,riparianforested Asusefulasthesepreviousworkswere,anew bufferstrip,streambufferzoneandprotected reviewwasnecessarytoincluderecentstudies,to streamcorridorarealltakentobesynonymous considerthefullrangeofbufferfunctions(nutri- withriparianbufferzoneforthepurposesofthis entreduction,wildlifehabitat,etc.),andto review.Withinthisdocumentthetermisalso addresstheprimaryissueofconcern:determining frequentlyshortenedtobufferzone,riparian theoptimalwidth,extentandvegetationfor bufferorsimplybuffer.Notethatinsomefields, bufferzonesinGeorgia.Thisworksreliesheavily especiallyagriculturalresearch,thetermbufferis onpreviousreviews,althoughinmostcasesthe appliedinamoregeneralsensetoavarietyof originalresearcharticleswereconsultedaswell. conservationpractices.Thetermsvegetated bufferstripandvegetatedfilterstrip(VFS)are oftenusedtorefertostripsofgrassorother plantsinstalledbetweenorbelowagricultural

BackgroundandIntroduction 9 fieldstoreduceerosionandtrapcontaminants. “Vegetativebufferprograms,however,arerarely Forthesakeofclarity,thesetermsarenotusedin developedtofullyconsiderthemultiplebenefits thisreview. andusesthattheyoffertoresourcemanagersand tothegeneralpublic”(Desbonnetetal1994). Often,bufferprogramsaredevelopedforasingle SignificanceofRiparianZones goal,suchaspreventingerosionandsedimenta- Riparianzonesareatypeofecotone,or tion.Howeverimportantthisgoalmaybe, boundarybetweenecosystems.Likemanyother programswithsuchanarrowfocusinevitably ecotones,riparianbufferzonesareexceptionally undervaluebuffers(andriparianzonesingeneral) richin(Odum1978,Gregoryetal andmaylackpopularsupportifthisgoalisnot 1991,Malanson1993,Naimanetal1993). met.Ontheotherhand,programsthatpromote Naimanetal(1988)notedthatecotonescan themultiplefunctionsofbuffersarelikelyto displayagreatervariationincharacteristicsthan enjoyawiderandstrongerbaseofsupport, eitherofthesystemstheyconnect;ratherthan especiallywhenpeoplerecognizetheeconomic beingaveragesofthetwosystems,theyare benefitstheycanprovide.Itishopedthatthis somethingunique.Forthisreasonaloneriparian documentwillencouragetheestablishmentof zonescanbeconsideredvaluable.Inaddition, multifunctionalriparianbufferprotectionpro- however,riparianzonesperformarangeof grams. functionswitheconomicandsocialvalueto Thatsaid,itmustbeacknowledgedthat people: certainbufferfunctionsaregivenahigherpriority thanothersbylocalgovernments.Waterquality • Trapping/removingsedimentfromrunoff andaquatichabitatfunctionsaregenerally consideredofgreatestimportance.Ofslightly • Stabilizingstreambanksandreducingchannel lessconcernareterrestrialwildlifehabitat,the erosion floodwaterstoragefunctionsoftheriparian • Trapping/removingphosphorus,nitrogen,and buffer,recreationandaestheticvalues.The othernutrientsthatcanleadto organizationofthisreviewreflectsthishierarchy. ofaquaticecosystems Thenexttwosectionsreviewliteratureonthe • Trapping/removingothercontaminants,such waterqualityfunctionsofriparianbuffers. aspesticides Sectionfourreviewsaquatichabitatfunctions. • Storingfloodwaters,therebydecreasing Sectionfiveconsiderstheliteratureonbuffersas damagetoproperty terrestrialhabitat,alongwithotherfunctionsnot yetdiscussed.Finally,sectionsixdevelops • Maintaininghabitatforfishandotheraquatic guidelinesforbufferwidth,extentandvegetation, organismsbymoderatingwatertemperatures takingintoconsiderationvariousfactorsand andprovidingwoodydebris reviewingothermodelsofbufferfunction. • Providinghabitatforterrestrialorganisms Sectionsevenisadiscussionofimportantrelated • Improvingtheaestheticsofstreamcorridors issues,suchasimpervioussurfacelimitsand (whichcanincreasepropertyvalues) riparianbuffercrossings. • Offeringrecreationalandeducational Anoteonmeasurements:Riparianbuffer opportunities widthsgiveninthisreviewareforonesideofthe (basedonSchueler1995a,Malanson1993) streammeasuredfromthe.Therefore,a50 ft(15m)bufferona25ft(7.6m)streamwould actuallycreateacorridor125ft(38m)wide. Becausetheymaintainalloftheseservices, MeasurementsaregiveninmetricorEnglish riparianbufferscanbethoughtofasa“conserva- units,accordingtohowtheywerereportedinthe tionbargain”:preservingarelativelynarrowstrip literature,withtheconversioninparentheses. oflandalongstreamsandrivers—landthatis BufferrecommendationsaremadefirstinEnglish frequentlyunsuitableforotheruses—canhelp unitsbecauselegislationinGeorgiagenerallyuses maintaingoodwaterquality,providehabitatfor thissystem. wildlife,protectpeopleandbuildingsagainst floodwaters,andextendthelifeof.

10 BackgroundandIntroduction II.Sediment

Intermsofvolume,sedimentisthelargest AlthoughmanyspeciesoffishfoundinGeorgia’s pollutantofstreamsandrivers(Cooper1993).In watersaresedimenttolerant,manyofthethreat- muchofGeorgia,sedimentlevelsinstreamshave enedandendangeredspecies,suchasdarters, historicallybeenhighduetoagriculturalactivi- tendtobeverysensitiveto(Kundelland ties.Thedeclineinrowcropacreageandim- Rasmussen1995,FreemanandBarnes1996, provementsinerosioncontrolpracticeshaveled Barnesetal1997,Burkheadetal1997).The todecreasedagriculturalsedimentation,butin manyendangeredspeciesofnativemusselsmay urbanizingpartsofthestatethesegainshavebeen bethemostsensitiveorganismsofall(Morrisand offsetbysedimentationfromconstruction Corkum1996). (KundellandRasmussen1995). Sources Effects Sedimentinstreamseithercomesfromrunoff Excessamountsofsedimentcanhavenumer- fromuplandsourcesorfromthechannelitself. ousdeleteriouseffectsonwaterqualityand Uplandsourcesincluderowcropagricultural streambiota.Forafulldiscussionofthistopic, refertoWaters1995andWoodandArmitage 1997.Thefollowingbrieflistsummarizesthe majorsedimenteffects.

• Sedimentinmunicipalwaterisharmfulto humansandtoindustrialprocesses. • Sedimentdepositedonstreambedsreduces habitatforfishandfortheinvertebratesthat manyfishconsume. • Suspendedsedimentreduceslight transmittance,decreasingalgalproduction. • Highconcentrationsoffinesuspended sedimentscausedirectmortalityformany fish. • Suspendedsedimentsreducetheabundance offilter-feedingorganisms,including mollusksandsomearthropods. • Sedimentationreducesthecapacityandthe usefullifeofreservoirs.

Sedimentmustbefilteredfrommunicipal watersuppliesatconsiderablecost.Thegreater theturbiditylevelsinwater,thehighertheprice oftreatment(KundellandRasmussen1995). Notethatbothsuspendedsediment(sometimes approximatedbyturbiditymeasurements)and benthicsedimenthavedetrimentalbiological Figure2.ViewofaRiverwithanIntact effects,andthatbenthicsedimentcanbecome RiparianZone. resuspendedduringhighflows.Certainfishare moreresponsivetosedimentsthanothers. This is the Etowah River in Cherokee County, GA.

Sediment 11 fields,exposedearthatconstructionsites,and uplandareas(Fricketal1998).However,cattle loggingroads,forexample.Channel-derived areraisedthroughoutGeorgia(GADepartment sedimentmayresultfromtheerosionofpoorly of1997)andfrequentlyarepermitted stabilizedbanksandfromscouringofthestream directaccesstostreamsandrivers,resultingin bed.Livestockwateringinstreamscancontribute bankerosion(pers.obs.;seeFigure4). significantlytobankdestabilizationanderosion (Waters1992).Notethatmuchchannel-derived sedimentmayoriginallyhavebeenupland Forestry sedimentthatistemporarilystoredinthestre- Streamsinforestedareasarenotnecessarily ambedorriparianzone(Trimble1970,Woodand pristine.Improperlystabilizedloggingroadscan Armitage1997). yieldover350tonsofsedimentperacreperyear (KundellandRasmussen1995).Someofthefirst researchonriparianbufferswasinitiatedto ConstructionSites determineloggingroadsetbacks(e.g.,Trimble Inurbanandurbanizingareas,constructionis andSartz1957).TheGeorgiaForestryCommis- likelytobethemajorsourceofsediment(see sionadvocatesBestManagementPractices(BMPs) Figure3).Streamsdrainingurbanareasoften forloggingoperations,butcomplianceisvolun- havehighersedimentloadsthanthoseinagricul- tary.ThemostrecentBMPshaveplacedlimitson turalwatersheds(CrawfordandLenat1989)and loggingin“streamsidemanagementzones” certainlyhavehigherratesthanforestedareas (buffers),whichvaryinwidthfrom20-100ft(6- (Wahletal1997).ArecentreportbytheU.S. 30m)dependingonslopeandstreamtype GeologicalSurveyfoundthaturbanstreamsin (GeorgiaForestryCommission1999). Georgiaarethemostdegraded(Fricketal1998). HistoricSedimentation Mining ManystreamsandriversinGeorgiahave Variousformsofminingcanproducesevere experiencedalonghistoryofsedimentation. sedimentation(Waters1992,Burkheadetal Throughoutthe1800sandupuntilthe1940s, 1997).Graveldredgingcanbeconsideredaform massivesoilerosionfromcottonfarmingand ofminingwhichisespeciallyharmfulbecauseit otherformsofrowcropagricultureledtosevere takesplacewithintheriveritself.Thishasdirect sedimentationofstreamsallacrosstheGeorgia negativeeffectsonstreamorgan- ismsandincreasesdownstream turbidity,aslocalresidentsand canoeistshaveobserved(Bob James,pers.com.).Inaddition, dredgingmayreleasesediment- boundcontaminants(Burruss Institute1998)andcontributesto streamdowncutting,bothatthe siteandupstream(Pringle1997).

AgriculturalSources AccordingtoWaters(1992), row-cropagricultureandlivestock arethetoptwosourcesofsediment nationwide.Rowcropagriculture Figure3.ImpactsofDevelopment. isnolongerwidelypracticedin This has been stripped of vegetation in prepara- muchofNorthGeorgia,andin tion for the construction of subdivisions. A properly enforced SouthGeorgiarow-cropagricul- riparian buffer ordinance could prevent this type of problem. turetendstobeconcentratedin

12 Sediment Piedmont(Trimble1970,Kundell andRasmussen1995).Some areas,suchastheupperChatta- hoocheeandEtowahRivers,were alsoimpactedbyhydraulicgold mining,when“entirehillsides” werewashedintostreams(Glenn 1911),leadingtorapidsedimen- tationandaggradationofrivers andfloodplains(Leigh1994). Thechannelsofmanystreams wereentirelyfilledwithsediment overtime.Forexample,thebed oftheEtowahRiveratCanton, GA,rose4.8ft(1.46m)between 1890and1949(Waltersunpub- lished).Withthedeclineofgold miningandagricultureinthe region,aswellastheadoptionof bettersoilconservationpractices, sedimentationratesdecreasedand Figure4.BankErosionfromLivestockIntrusion. manyPiedmontstreamsexperi- Livestock intrusion into the riparian zone results in stream bank enceddowncutting,aschannels erosion and water contamination. carveddeeperandwiderintothe loosebedsofsand(Trimble1970, Burke1996).Thereisevidence, however,thatasofthe1980ssedimentationis 3)byreducingthevelocityofsediment-bearing againincreasinginsomePiedmontrivers,perhaps stormflows,allowingsedimentstosettleout asaresultofconstruction(BurrussInstitute1998, ofwaterandbedepositedonland(this Waltersunpublished). includessedimentspreviouslysuspendedin Itappearslikelythatsedimentnowstoredin theriverthatareborneintotheriparian streamchannelscontinuestocausehighturbidity bufferduringfloods) duringstorms(Trimble1970;RhettJackson,pers. 4)bystabilizingstreambanks,preventingchannel com.).SedimentinthelargerPiedmontstreams erosion andriversmayalsoincreaseassandfromtributar- 5)bymoderatingstreamflowduringfloods, iesmigratesdownstream.Riparianbufferswill reducingbedscour,and probablylittleeffectonthissedimentsource (exceptastheycontributetobankstability),but 6)bycontributinglargewoodydebris(snags)to theyareessentialinpreventingadditionaldegra- streams;thesecantrapconsiderablesediment, dationtowaterquality,especiallyinsmaller atleasttemporarily tributaries. (adaptedinpartfromUSACE1991)

LiteratureReview Functionsone,twoandthreeareprimarily concernedwithpreventingterrestrialsediment Riparianbufferscanreducestreamsedimen- fromreachingthewater.Functionsfourandfive tationinsixways: involvereducingchannelerosion.Thisreviewof 1)bydisplacingsediment-producingactivities sediment-relatedliteratureisdividedintotwo awayfromflowingwater(setbacks) subsectionscorrespondingtothesetwomajor 2)bytrappingterrestrialsedimentsinsurface topics.Theliteratureonlargewoodydebrisis runoff reviewedseparatelyinthesectionregardingin- streamhabitatprotection.

Sediment 13 SedimentinSurfaceRunoff tweenabuffer’swidthanditsabilitytotrap sediments.Intheir1994review,Desbonnetetal Numerousstudieshavedocumentedthe determinedthatincreasingbufferwidthbya effectivenessofbuffersintrappingsediment factorof3.5providesa10%improvementin transportedbysurfacerunoff.Thechallengelies sedimentremoval.Accordingtothereviewers, indeterminingthenecessarywidthofthebuffer. themostefficientwidthofvegetatedbuffersfor sedimentremovalis25m(82ft).Fortotal Width suspendedsolids,bufferwidthsneedtoincrease byafactorof3.0fora10%increaseinremoval Oneofthegreatestchallengesintryingto efficiency,and60m(197ft)widebuffersprovide developbufferwidthrecommendationsisthat thegreatestefficiency.Itisimportanttonotethat moststudiesonlyexaminedoneorafewbuffer Desbonnetetalbasedthisrelationshipona widths.FennesyandCronk(1997)notedthis compositeofdatafromstudiesconductedwith problem: variousmethodsatdifferentlocation.Itmaynot “Oneprobleminassessingminimumwidths beappropriatetocomparesuchstudyresults.It necessarytoprotectadjacentsurfacewateris ismoreilluminatingtoexaminedatafromstudies thatmanystudiesthatmakerecommenda- thatcomparedmultiplewidthbuffersinthesame tionsregardingtheminimumwidthnecessary locationunderthesamestudyconditions.Six havearrivedatthefigureasabyproductof studies(Youngetal1980;PeterjohnandCorrell samplingdesignratherthanderivingit 1984;Magetteetal1987,1989;Dillahaetal experimentally.” 1988,1989)haveexaminedtheeffectivenessof Nevertheless,fromtheresearchthatexistsitis buffersoftwowidthsintrappingtotalsuspended evidentthatthereisapositivecorrelationbe- solids(TSS).Ineverycase,buffereffectiveness

Author Width (m) % Slope % Removal of TSS Dillaha et al (1988) 4.6 11 87 Dillaha et al (1988) 4.6 16 76 Dillaha et al (1988) 9.1 11 95 Dillaha et al (1988) 9.1 16 88 Dillaha et al (1989) 4.6 11 86 Dillaha et al (1989) 4.6 16 53 Dillaha et al (1989) 9.1 11 98 Dillaha et al (1989) 9.1 16 70 Magette et al (1989) 4.6 3.5 66 Magette et al (1989) 9.1 3.5 82 Peterjohn & Correll (1984) 19 5 90 Peterjohn & Correll (1984) 60 5 94 Young et al (1980) 21.3 4 75-81 Young et al (1980) 27.4 4 66-93

Table1.RiparianBufferWidth,SlopeandTSSRemovalRates. The ability of riparian buffers to trap suspended solids is positively correlated with width and negatively correlated with slope.

14 Sediment 100

90

80

70

60 Dillaha(88) 50 Dillaha (89) Magette et al (87) 40 Young et al (80) Peterjohn & Correll (84) 30 Magette et al (89)

Percent Removal of TSS 20

10

0 0 102030405060 Buffer Width

Figure5.RemovalofTSSbyBuffersofDifferentWidths. The ability of a riparian buffer to remove total suspended solids (TSS) from runoff is a function of the buffer's width. Note that with the exception of Peterjohn and Correll (1984) these are short- term studies; long-term studies have suggested that much wider buffers are necessary. This figure is only intended to convey the consistent relationship of buffer width and effectiveness.

increasedwithbufferwidth,althoughtherela- Coyneetal(1994)alsoconductedastudyof tionshipvaried.Table1andFigure5summarize similardesign,althoughtheyonlyusedstripsof9 theresultsofthesestudies[DatafromMagetteet m(30ft)widthandconductedonlyonerainfall al(1987)whichappearinFigure5weretaken simulationratherthanaseries.Theresearchers fromDesbonnetetal(1993)becausetheoriginal addedpoultrywastetoatestplotandfoundthat documentwasnotreadilyavailable]. thegrassbufferstrapped99%ofsediment.Young Inaseriesofstudiesusingorchardgrass etal(1980)testedtheefficiencyofbufferstripsof buffersdownslopefromasimulatedfeedlot, corn,orchardgrass,oatsandsorghum/sudangrass Dillahaetal(1988)reportedaverageTSSreduc- atreducingsurfacerunofffromfeedlots.They tionsof81%fora4.6m(15ft)bufferand91% foundthatbuffersof21.34m(70ft)reduced fora9.1m(30ft)buffer.Dillahaetal(1989) totalsuspendedsolidsbyanaverageof78%, laterrepeatedthestudyusingbuffersofthesame while27.43m(90ft)widebuffersreducedTSS widthandvegetationbelowfertilizedbare byanaverageof93%.Bufferslopeaveragedfour cropland.Thistimetheyfoundaveragesediment percent. reductionsof70%and84%forbuffersof4.6m PeterjohnandCorrell(1984)foundthata50 and9.1mwidth,respectively.Magetteetal m(164ft)riparianbufferinanagricultural (1989)conductedasimilarstudywithgrassed catchmentintheMid-AtlanticCoastalPlain buffersof4.6mand9.1mdownslopefromplots trapped94%ofsuspendedsedimentthatentered. towhichtheyaddedliquidnitrogenorchicken Ninetypercentwastrappedinthefirst19m(62 waste.Theyfoundaveragesedimentreductions ft).Averageslopeofthebufferwasaboutfive of66%and82%,respectively. percent.

Sediment 15 Onlyafewresearchershavefoundbuffer DaviesandNelson(1994)foundthatbuffers widthtobeunimportant.DanielsandGilliam canbehighlyeffectiveinreducingsedimentation (1996)foundthat6m(20ft)widegrassedbuffers tostreamsinloggedforests,andbufferwidthis and13m(43ft)or18m(59ft)widecombina- thedeterminingfactor.“Alleffectsoflogging tionforest/grassedbuffersallreducedsediments weredependentonbufferstripwidthandwere byabout80%.However,thewiderbuffers notsignificantlyaffectedby[buffer]slope,soil includedafarmvehicleaccessroadwhichpro- erodibilityortime(overonetofiveyears)since videdanadditionalsourceofsediment,so logging.”Theauthorsfoundthata30m(98ft) comparisonsarenotvalid.Gilliam(1994) bufferwasnecessarytopreventimpacts.These mentionsthata“narrow”bufferinthePiedmont recommendationsareinagreementwitha1985 wasfoundtotrap90%ofsediment.Rabeniand reviewoftheuseofriparianbufferstomitigate Smale(1996)suggestthatwidthofbuffermaynot theimpactsofloggingonforeststreams(Clinnick beasimportantasother,qualitativecharacteris- 1985).Onestudycitedinthatreviewfoundthat tics,suchaswhetherornotthetopographycan “streamswithbuffersofatleast30mwidth maintainsheetflow. exhibitedsimilarchannelstabilityandbiological Mostofthestudiesdescribedabovewere diversitytounloggedstreams,whereasstreams short-term.Thereissignificantevidencefrom withbufferslessthan30mshowedarangeof long-termanalysesthatwiderbuffersareneces- effectssimilartothosefoundwherenostream sarytomaintainsedimentcontrol.Lowranceetal protectionwasprovided”(Ermanetal1977,as (1986)usedsedimentbudgetstocalculatethata citedinClinnick1985). low-gradientriparianbufferecosysteminthe Thesedimenttrappingefficiencyofbuffers GeorgiaCoastalPlaintrappedlargeamountsof canbeexpectedtovarybasedonslope,soil sediment(35-52Mg/haperyear)between1880 infiltrationrate,andotherfactors.Slopemaybe and1979.LaterstudiesbyLowranceetal(1988) thebeststudiedoftheserelationships.Dillahaet basedoncesium-137concentrationsyieldeda al(1988,1989)foundthatasbufferslopein- muchhigherreductionrateof256Mg/haper creasedfrom11%to16%,sedimentremoval yearfortheperiodbetween1964and1985.The efficiencydeclinedby7-38%(SeeFigure6).The researchersfoundthatsedimentsfromagricul- mostthoroughinvestigationsoftherelationship turalfieldsweredepositedthroughoutthe betweenbufferwidthandslopehavebeen riparianforest.Thegreatestamount(depth)of conductedbyforestryresearchers.Trimbleand transportedsedimentwasfound30m(98ft) Sartz(1957)examinederosionofloggingroadsin insidetheforestandthegreatestcesiumsignal theHubbardBrookExperimentalForestinNew occurred80m(262ft)intotheforest.The Hampshiretodeterminehowfarroadsshouldbe resultsareconfoundedslightlybythehigher setbackfromstreams.Theysuggestedasimple affinityofcesium-137toclayparticles,whichare formula: transportedfartherthansandandsilt(possibly 25ft+(2.0ft)(%slope). leadingtoahighersignaldeeperinthebuffer), anddepositionofsedimentwithintheriparian Formunicipalwatershedswherewaterqualityis zonebyfloodwatersfromthestream.Asimilar ofveryhighimportance,thesetbackshouldbe Cs-137studybyCooperetal(1988)intheNorth doubled.TrimbleandSartz’formulawasthe CarolinaCoastalPlainreachedsimilarconclu- basisofaForestServicestandardformanyyears. sions.Theriparianbuffertrapped84-90%ofthe Swift(1986)proposedanalternativeformula sedimenterodedfromagriculturalfields,although basedonworkintheNantahalaNationalForest nearly50%wastransportedmorethan100m inwesternNorthCarolina.Hefoundthatwhen (328ft)intothebuffer.Slopesrangedfrom0- brushbarriersareemployedbelowaroad,erosion 20%.Thesetwostudiessuggestthatalthough isreduceddramatically.Heproposedabuffer riparianzonesareefficientsedimenttraps,the widthformulaof widthrequiredforlong-termretentionmaybe 32ft+(0.40ft)(%slope). substantiallymorethanisindicatedbyshort-term Ifbarriersarenotusedthebufferwidthshouldbe experiments.Buffersof30-100m(98-328ft)or increasedto: moremightbenecessary. 43ft+(1.39ft)(%slope)(Swift1986).

16 Sediment 100

90

80

70

60

50 4.6 m wide (88) 9.1 m wide (88) 40 4.6 m wide (89) 9.1 m wide (89) 30

Percent removal of TSS 20

10

0 0 5 10 15 20 Percent slope

Figure4.RemovalofTSSbyBuffersofDifferentSlopes. Studies by Dillaha et al revealed an inverse relationship between buffer slope and reduction of total suspended solids (TSS). Slope is an important variable to use in determining riparian buffer width.

Swiftonlymeasuredcoarsesedimentinhisstudy, Extent notsiltandclay,whicharetransportedmuch Itisveryimportantthatbuffersbecontinuous furtherthroughabuffer.Thissuggeststhathis alongstreams(RabeniandSmale1996).Gaps, bufferrecommendationsareinsufficientlywide. crossingsorotherbreaksintheriparianbuffer Lowranceetal(1997)madesomegeneraliza- allowdirectaccessofsurfaceflowtothestream, tionsaboutbuffereffectivenessindifferent compromisingtheeffectivenessofthesystem. physiographicprovinces.Theynotedthatbuffer Theproblemofbuffergapsisdiscussedfurtherin effectivenesshasbeenwellestablishedinthe SectionVI. CoastalPlain,wheremuchresearchhasbeen Riparianbuffersareespeciallyimportant conducted.ForthePiedmontandValleyand alongthesmallerheadwaterstreamswhichmake Ridgeprovinces,theypredictedsedimentreduc- upthemajorityofstreammilesinanybasin tionsof50-90%,althoughtheydidnotdiscuss (OsborneandKovavic1993,Binfordand widthsnecessarytoachievethisreduction.The Buchenau1993,HubbardandLowrance1994, BlueRidgeprovincewasnotdiscussedintheir Lowranceetal1997).Thesestreamshavethe review.DanielsandGilliam(1996)suggestedthat mostland-waterinteractionandhavethemost thehighlevelofrunofffromPiedmontfields opportunitiestoacceptandtransportsediment. makesbuffersvaluable.Theyalsopointedout, “Protectinggreenwaysalonglow-orderstreams however,thatsteeperslopesandlowersoil mayofferthegreatestbenefitsforthestream infiltrationratesmaymakePiedmontbuffersless networkasawhole”(BinfordandBuchenau effectiveintermsoftrappingefficiencythan 1993). buffersintheCoastalPlain. Ideally,therefore,asystemofriparianbuffers shouldprotectallstreamsandrivers,regardlessof

Sediment 17 size.Evenephemeralstreamsshouldbepro- helpconvertconcentratedflowtodispersedsheet tected,sincethesewaterwayscancarryappre- flow. ciableflowandsedimentduringstorms.Al- Itispossibleforbuffervegetationtobe thoughsuchuniversalprotectionwillgenerally inundatedwithsedimentsanddeclineineffective- notbefeasible,bufferordinancesshouldbe ness,althoughundernormalconditionsvegeta- writtentoprotectasmanystreammilesas tionshouldbeabletogrowthroughthesediment possible—atleastallperennialstreams,aswellas (Dillahaetal1989).Sedimentcanalsoaccumu- intermittentstreamsofsecondorderorlarger. latetothepointwhereitformsaleveethatblocks theflowofwaterfromtheslopetothestream Vegetation (Dillahaetal1989).Flowthenrunsparallelto thisbermuntilitreachesalowspot,atwhich Thestudiesreviewedabovehavefoundthat timeitcrossesintothestreaminconcentrated forpurposesoftrappingsediment,bothgrassand flow.Buffersonagriculturallandwithveryhigh forestedbuffersareeffective.Grassbuffers, erosionmayrequireregularmaintenanceto althoughmorelikelytobeinundatedbyexcep- remaineffectiveandshouldalwaysbeusedin tionallyhighlevelsofsediment,areusefulfor conjunctionwithothererosioncontrolmethods maintainingsheetflowandpreventingrilland (Barling1994).Theimportanceofon-site gullyerosion.Insum,however,forestedbuffers sedimentcontrolisdiscussedfurtherinalater haveotheradvantages(discussedinlatersections) section. whichrecommendthemovergrassinmostcases. Acombinationofgrassandforestedbuffershas beenadvocatedbymanyresearchers(e.g.Welsch ChannelErosion 1991,Lowranceetal1997)andrepresentsa Inalong-termstudybetween1983and1993, reasonablecompromise. StanleyTrimblefoundthatinSanDiegoCreekin suburbanLosAngeles,twothirdsofstream Limitations sedimentresultedfromchannelerosion.He concludedthat“streamchannelerosioncanbe Buffersaremosteffectivewhenuniform, themajorsourceofsedimentinurbanizing sheetflowthroughthebufferismaintained;they watersheds,withdeleteriousdownstreameffects” arelesseffectiveinstoppingsedimenttransported (Trimble1997).Clinnick’s1994reviewalso byconcentratedorchannelizedflow(Karrand notedtheimportanceofchannelerosion,citinga Schlosser1977,Dillahaetal1989,Osborneand 1990studybyGrissingeretalthatsuggestedthat Kovacic1993,DanielsandGilliam1996).When “betterthan80%ofthetotalsedimentyieldfor theseconditionsoccur,riparianbufferscannot GoodwinCreekinnorthernMississippioriginates slowtheflowsufficientlytoallowinfiltrationof aschannelandgullyerosion.”Likewise,Rabeni waterintothesoil,althoughsomesedimentmay andSmale(1995),Cooperetal(1993)and stillbetrappedbyvegetation.Clayparticlesare Lowranceetal(1985)foundthatthechannelcan unlikelytobetrappedbecausetheyformcolloids beasignificantsourceofsediment. insolution.Jordanetal(1993)reportedthat sedimentincreasedacrossa60m(197ft)wide Oneofthemostimportantrolesofprotected riparianbufferintheDelmarvaPeninsulabecause riparianbuffersistostabilizebanks.Astudy ofrillerosion.DanielsandGilliam(1996)noted (BeesonandDoyle1995)of748streambends thatephemeralchannelsintheNorthCarolina foundthat67%ofbendswithoutvegetation Piedmontwereineffectivesedimenttrapsduring sufferederosionduringastorm,whileonly14% high-flowevents.Theyrecommendeddispersing ofbendswithvegetationwereeroded.Non- theflowfromthesechannelsthroughariparian vegetatedbendsweremorethan30timesaslikely arearatherthanallowingthemtoemptydirectly tosufferexceptionallysevereerosionasfully intoaperennialstream.Sheetflowcanbe vegetatedbends.Theauthorsconcluded, encouragedbytheuseoflevelspreadersand unsurprisingly,that“thedenserandmorecom- otherstructuraltechniques.Welsch(1991) pletethevegetationaroundabend,generallythe recommendedplantingastripofgrass20ft(6.1 moreeffectiveitisinreducingerosion”(Beeson m)wideattheouteredgeofariparianbufferto andDoyle1995).BarlingandMoore(1994)note

18 Sediment thatbufferscanpreventtheformationofrillsand recognizethatsomeerosionisinevitableand gulliesinriparianareasthatareotherwisehighly streamchannelswillmigratelaterally,which susceptibletoerosion. couldeventuallymovethestreamoutsidethe Bankstabilizationwillnotbeeffectiveifthe protectedarea.Therefore,thebufferzoneshould underlyingcausesofchannelerosionarenot bewideenoughtopermitchannelmigration.To addressed.Themajorprobleminurbanand allowforallpossiblemigrationwouldrequirea suburbanareasisincreasedstormflowsdueto bufferthewidthoftheactive(100-year)flood- elevatedsurfacerunofffromimpervioussurfaces. plain(RhettJackson,pers.com.),butanarrower ThisisdiscussedinmoredetailinSectionVI.In buffermaystillpermitmigrationoverashorter ruralareas,livestockthatgrazeonbanksand periodoftime.Asageneralrule,bufferwidths enterstreamsareadirectsourceofseverechannel sufficientforotherpurposesshouldalsobe erosion(Figure4).Asolutionistofencethe sufficienttopreventbankerosionandallow livestockout(Waters1995)andprovidealternate reasonablestreammigration. meansofwateringtheanimals.Useofoffstream wateringtanksisthepreferredmethod,buta Extent narrow,stabilizedstreamaccesspointcanalsobe consideredasacompromise(Cohenetal1987). Allchannels,regardlessofstreamsizeand frequencyofflow,canbesubjecttoerosionifnot Streamchannelizationcontributestochannel properlystabilized.Intheir1985review, erosionbyincreasingstreampower,leadingto Clinnicketal(1985)note: incision(KarrandSchlosser1977,Malanson 1993).Formerly,streamchannelizationwas “Duringstormeventsitisoftentheephemeral encouragedbygovernmentagenciessuchasthe elementsofthestreamsystemthatactasa SoilConservationService(nowtheNatural sourceofsurfaceflowtopermanentstreams ResourcesConservationService).However, (HewlettandHibbert1967).Theprevention channelizationisnowrecognizedasashortterm ofsedimentaccessiontostreamsthusrelies solutiontodrainageproblemsthatresultsinlong- primarilyonprotectionoftheseephemeral termdamagetostreamsandagriculturalfields.In elements.” achannelizedstreaminIllinois,floodwatersfrom DanielsandGilliam(1986)foundthat onestormerodedasmuchas1150tonsofsoil forestedephemeralchannelsweretemporary fromasinglebankin1982(Roseboomand sedimentsinksduringdryseasonsbutwere Russell1985).In1978KarrandSchlosser(1978) sourcesofsedimentduringstormevents.Binford notedthat“moneyspentonpreventingsediments andBuchenau(1993)notethatsuchgulliesand fromenteringstreamswillhaveminimumreturn tributariesnaturallyhavedensegrowthand valueinimprovingthequalityofbiota,ifpresent shouldhaveexcellentcapacityforsedimentand channelizationpracticescontinuetodestroythe nutrientretention.Itisessentialtomaintainthese habitatofstreamorganisms.”Channelizationand ephemeralchannelsinavegetatedconditionto gravelminingcanalsoleadtoupstreamimpacts, allowthemtoslowwaterflow,trapsedimentand resultinginheadwarderosionandchannel topreventtheirservingassedimentsources downcutting(Pringle1997). (Cooperetal1987,BinfordandBuchenau1993). Clinnicketal(1985)advocateaminimumofa20 mwidebufferonephemeralchannels.Thismay Width notbepracticalinmanysituations,butatthe Fewstudieshaveattemptedtocorrelate least,thebanksandeventhebedofsuchchannels streambankstabilitywithriparianbufferwidth. shouldbevegetatedandlivestockintrusion Commonsensesuggeststhatrelativelynarrow shouldbeminimized. vegetativebuffersshouldbeeffectiveintheshort term(USACE1991).Aslongasbanksare stabilizedanddamagingactivitiesarekeptaway Vegetation fromthechannel,widthoftheriparianbuffer Tobeeffective,bankvegetationshouldhavea wouldnotappeartobeamajorfactorinprevent- good,deeprootstructurewhichholdssoil. ingbankerosion.However,itisimportantto Shieldsetal(1995)testeddifferentconfigurations

Sediment 19 ofvegetationandstructuralcontrolsinstabilizing sedimentsundermostcircumstances.Thisis banks.Theyfoundthatnativewoodyspecies, consistentwiththereviewofCastelleetal(1993), especiallywillow,arebestadaptedtorecolonizing whichfoundthatbuffersmustbe30mwideto andstabilizingbanks.Theauthorsnotedthatthe maintainahealthybiota.Thiswidthmaybe persistentexoticvinekudzumaybethemost extendedtoaccountforfactorssuchassteep seriousbarriertovegetationrestorationbecauseit slopesandlandusesthatyieldexcessiveerosion. canoutcompetenativevegetation.Otherrestora- Itispossibletoalsomakethecaseforanarrower tionecologistsbelievethatkudzuandcertain width,althoughthelong-termeffectivenessof otherexoticsmaystillhavearoleinstreambank suchabufferwouldbequestionable.Anabsolute restorationbecausetheycanprovidegoodroot minimumwidthwouldbe9m(30ft).For structure(CarlJordan,pers.com.). maximumeffectiveness,buffersmustextend Artificialmethodsofstreambankstabilization, alongallstreams,includingintermittentand suchasapplyingripraporencasingthechannelin ephemeralsegments.Theeffectivenessofa cement,maybeeffectiveinreducingbankerosion networkofbuffersisdirectlyrelatedtoitsextent; onsitebutwillincreaseerosiondownstreamand governmentsthatdonotapplybufferstocertain havenegativeimpactsonotherstreamfunctions. classesofstreamsshouldbeawarethatsuch Artificiallystabilizedbankslackthehabitat exemptionsreducebenefitssubstantially.Buffers benefitsofforestedbanksandcanbeexpensiveto needtobeaugmentedbylimitsonimpervious buildandmaintain.Overall,thenegativeconse- surfacesandstrictlyenforcedon-sitesediment quencesofartificialbankstabilizationgenerally controls(discussedinSectionVI). outweighthebenefits. Riparianbuffersshouldbeviewedasan essentialcomponentofacomprehensive,perfor- mance-basedapproachtosedimentreduction. SummaryandRecommendations Periodictestingofinstreamturbidityshouldbe Riparianbuffersaregenerallyveryeffectiveat conductedtoassesstheeffectivenessofsediment trappingsedimentinsurfacerunoffandat controlmeasures.KundellandRasmussen(1995) reducingchannelerosion.Studieshaveyieldeda recommendamaximuminstreamstandardof25 rangeofrecommendationsforbufferwidths; NTU(nephelometricturbidityunits),measuredat buffersasnarrowas4.6m(15ft)haveproven theendofadesignatedsegment(notbelowsiteof fairlyeffectiveintheshortterm,althoughwider impact).Regularmonitoringandenforcementof buffersprovidegreatersedimentcontrol,espe- thisstandardwillhelpensuretheeffectivenessof ciallyonsteeperslopes.Long-termstudies riparianbuffersandothersediment-control suggesttheneedforwiderbuffers.Itappearsthat practices. a30m(100ft)bufferissufficientlywidetotrap

20 Sediment III.NutrientsandOtherContaminants

streamvalleys,canalsobeimportantphosphorus A.Phosphorus sources.Theimpactoflawnfertilizationis unclearbutpotentiallyquitehigh.In1984,the EPAestimatedthatAmericansapplynearlya Effects milliontonsofchemicalfertilizerstotheirlawns Phosphorushaslongbeenimplicatedinthe peryear.Accordingtosurveys,about70%of eutrophication(overfertilization)of. lawnacreageisfertilizedregularlywhetherornot Eutrophicationunbalancesanaquaticecosystem, additionalnutrientsarerequired(Barth1995). leadingtomassivebloomsofsometypesofalgae. The1998USGSreportontheAppalachicola- Whenthesealgaedieoffanddecay,oxygenis Chattahoochee-Flintbasinreportedthehighest consumed,sometimestothepointwherefishand phosphoruslevelsinstreamsdrainingurban, otheranimalscannotsurvive.Eutrophicationcan suburbanandpoultry-producingregions(Fricket leadtootherharmfuleffects,suchastheblooms al1998). ofthedinoflagellatePfiesteriadocumentedinEast Coastestuariesinrecentyears.Pfiesteriahasbeen linkedtomassivefishkillsandreleasestoxinsthat LiteratureReview arepoisonoustohumans(Burkholder1998).In Width atleastsomeGeorgialakesandreservoirs,suchas Sincemostphosphorusarrivesinthebuffer Allatoona,phosphorusisthemostproblem- attachedtosediment(KarrandSchlosser1977, aticnutrientandpossiblythegreatestpollutant PeterjohnandCorrell1985,OsborneandKovacic overall(BurrussInstitute1998). 1993)ororganicmatter(MiguelCabrera,pers. com.),bufferwidthssufficienttoremovesedi- mentfromrunoffshouldalsotrapphosphorus. Sources Intheshorttermresearchershavefoundriparian Potentialnonpointsourcesofphosphorus buffersretainthemajorityoftotalphosphorus include: thatenters,andretentionincreaseswithbuffer width.StudiesinSwedenbyVoughtetal(1994) • Fertilizersappliedtoagriculturalfields determinedthatafter8m(26.2ft),grassed buffersretained66%ofphosphateinsurface • Animalwastesfromconcentratedanimal runoffwhileafter16m(52.5ft)95%was feedingoperations(CAFOs)spreadonto retained.Manderetal(1997)inEstoniafound fields totalphosphorustrappingefficienciesof67%and • Septicdrainfields 81%forriparianbufferwidthsof20m(65.6ft) • Leakingsewerpipes and28m(91.9ft),respectively. • Fertilizersappliedtolawns Anumberofstudies(Dillahaetal1988and 1989,Magette1987and1989)havedocumented theperformanceofgrassbufferstripsinreducing Therelativeimpactofeachofthesesourceswill totalphosphoruslevels(thedesignofthese varyacrossthestate.Croplandfertilizationis studieswasbrieflydescribedintheprevious probablynotamajorprobleminmostofnorth sectiononsediment).Theresultsaresummarized Georgia,butland-appliedchickenwastefrom inTable2.Theseauthorsallnotedthateffective- CAFOsislikelytobeasignificantsourceof nessofthebuffersdeclinedovertime(thedatain pollutioninsomewatersheds(BurrussInstitute Table2representaveragesofseveraltrials),and 1998,Fricketal1998).Therearehundredsof thatsolublephosphatereductionswerelower millionsofchickensraisedinNorthGeorgia thantotalphosphorusreductions.Inonecase, (BachtelandBoatright1996).Insuburbanareas Dillahaetal(1988)notedthatthebufferreleased septicdrainfieldsareprobablymoresignificant, morephosphorusthanentered.Presumablythis andsewerlines,especiallythosethatrunthrough increaserepresentedpreviouslytrappedphospho-

NutrientsandOtherContaminants 21 rusthatwasremobilized.Withtheexcep- tionofDillahaetal1988,thesestudiesshow Total P Removal thatincreasingbufferwidthreducesthe Study 4.6 m buffer 9.1 m buffer concentrationofphosphorusinrunoff. Desbonnetetalalsoobservedthiscorrela- 71.5% 57.5% tionintheir1993review.Basedondata Dillaha et al 1988 fromanumberofstudies,theyreportedthat 61% 79% bufferwidthmustincreasebyafactorof2.5 Dillaha et al 1989 toachievea10percentincreaseinphospho- 41% 53% rusremoval.Figure7displaystheresults Magette et al 1987 showninTable2alongwithresultsfrom 18% 46% Magette et al 1989 Voughtetal(1994)andManderetal (1997). Table2.RemovalofTotalPhosphorusby Limitations GrassBuffers. Thelong-termeffectivenessofriparian With one exception, studies by Dillaha et al and buffersinretainingavailablephosphateis Magette et al found a positive correlation between questionable.Whereasnitratecanbe the width of grass riparian buffers and the ability to denitrifiedandreleasedintotheatmosphere, trap total phosphorus in . phosphorusiseithertakenupbyvegetation, adsorbedontosoilororganicmatter, precipitatedwithmetals,orreleasedintothe theMarylandCoastalPlain.Ontheotherhand, streamorgroundwater(Lowrance1998).Itis Youngetal(1980)reportedlittledifferenceinthe possibleforabuffertobecome“saturated”with reductionsofsolublephosphateandtotalphos- phosphoruswhenallsoilbindingsitesarefilled; phorusacrossa21m(68.9ft)widebufferof anyadditionalphosphorusinputswillthenbe corn.Totalphosphorusdeclinedby67%,while offsetbyexportofsolublephosphate(Danieland solublephosphatewasreducedby69%. Moore1997;MiguelCabrera,pers.com.;Dave Thesediment-boundphosphorustrappedby Correll,pers.com.).Soilsbecomesaturatedat buffersmayslowlybeleachedintothestream, differentrates,dependingonfactorssuchas especiallyoncethebufferissaturated(Omerniket cationexchangecapacityandredoxpotential. al1981,OsborneandKovacic1993,Mander Harvestingvegetationmaybetheonlyreasonable 1997).Anumberofstudieshaveshowneitherno managementtechniquethatpermanentlyremoves netreductionoranetincreaseingroundwater phosphorusfromthesystem.Suchharvestingcan phosphateasitcrossestheriparianbuffer. destabilizetheriparianareaandleadtoerosion, Studiesinwhichswinewastewasappliedto30m however(USACE1991),andsoshouldbe (98.4ft)bufferstripsinSouthGeorgiashowedno restrictedtoareaswellawayfromthestream reductionofphosphateinshallowgroundwater bank.Welsch(1991)recommends15ft(4.6m), (Hubbard1997).Infact,phosphatelevels although25-50ft(7.6-15.2m)wouldprovidea increasedfrom0.5mg/Lto1.0mg/Loverthe greatermarginofsafety. courseofthestudy,althoughwhetherthisrepre- Riparianbuffersaretypicallyeffectiveat sentedatrendorananomalywasunclear. short-termcontrolofsediment-boundphosphorus PeterjohnandCorrell(1984)likewisefoundthat buthavelownetdissolvedphosphorusretention totalphosphorusconcentrationsinshallow (Lowranceetal1997).Forexample,Danielsand groundwaterroseattheir50-m(164ft)riparian Gilliam(1986)foundthatriparianbuffersof bufferstudysite.Inonetransect,phosphorus unspecifiedwidthreducedtotalphosphorusby concentrationsdoubledandinanotherthey 50%,whilesolublephosphatedeclinedbyonly quadrupled.AstudybyOsborneandKovacic 20%.PeterjohnandCorrell(1984)foundthat (1993)foundthatneithera16m(52.5ft)wide 84%oftotalphosphorusand73%ofsoluble forestedbuffernora39m(128ft)widegrass phosphatewereremovedfromsurfacerunoff bufferreducedsubsurfacephosphateloadsfrom passingacrossa50-m(164ft)riparianbufferin cropland.

22 NutrientsandOtherContaminants Note,however,thatevenwhensaturated, youngerriparianforeststandswashigherthan riparianbuffersmaystillperformavaluable thatinmorematurestands.Severalresearchers servicebyregulatingtheflowofphosphorusfrom (Lowranceetal1985,Groffmanetal1991, thelandtothestream.Sedimentsandorganic Voughtetal1994)suggestperiodicharvestingof materialsthatcarryphosphorusinrunoffduring riparianvegetationtomaintainhighernutrient stormscanbetrappedbyriparianvegetation. uptake.Suchharvestingisrecommendedinzones Thephosphoruswillstillslowlyleakintothe twoandthree(zonesgreaterthan15ft(4.6m) water,butthestreamisprotectedfromextreme fromthestream)ofthethree-zonesystempro- nutrientpulses(RonaldBjorkland,pers.com.). motedbytheUSDA(Welsch1991).Other researchershavenoted,however,thateven matureforestscanaccumulatenutrients(USACE Vegetation 1991),andHerson-Jonesetal(1995)declared Bothgrassandforestedbuffershavebeen that“Matureforestsarethoughttohavethe proveneffectiveatreducingtotalphosphorus, greatestcapacityformodulatingtheflowof andbothvegetationtypeshavealsobeenshown nutrientsandwaterthroughouttheecosystem.” tolosephosphatetothestream.Osborneand Similarly,phosphoruscouldbepermanently Kovacicfoundthatforestedbuffersleaked removedbeforeitreachesthebufferifanaddi- phosphatetothestreamfasterthangrassed tionalfieldofunfertilizedcropsormowed buffers.Manderetal(1997)foundthatuptakein

100%

90%

80%

70%

60%

50%

40% Dillaha et al 1988 (TP)

Removal Efficiency 30% Dillaha et al 1989 (TP) Maggette et al 1987 (TP) 20% Magette et al 1989 (TP) Mander et al 1997 (TP) 10% Vought et al 1994 (PO4)

0% 0 5 10 15 20 25 30 Buffer Width (m)

Figure7.PhosphorusRemovalfromSurfaceRunoffbyBuffersof DifferentWidths. All but one study (Dillaha et al 1988) showed that the phosphorus trapping ability of a riparian buffer increases with width. In most cases, the data points shown here repre- sent the averages of multiple runs.

NutrientsandOtherContaminants 23 hayfieldswereplantedbetweenthephosphorus bothforestedandgrassedbuffersareequally sourceandtheriparianbuffer.Youngetal(1980) useful. foundaveragetotalphosphorusreductionsof Duetotheirlimitations,riparianbuffers 83%in27m(89ft)and21m(69ft)wide shouldnotbeviewedasaprimarytoolfor croppedbuffers.Croppingallowsforproductive reducingphosphorusloadingofstreams.Every useoflandandpermanentremovalofmuch effortshouldbemadetoreducephosphorus phosphorusbeforerunoffreachestheriparian inputsattheirsources.Thiscanbeaccomplished buffer. througheffectiveerosioncontrolmethods; judiciousapplicationoffertilizers;properplace- Extent ment,inspectionandmaintenanceofsewerlines; andrestrictionsonthelandapplicationofwaste Asforsedimentcontrol,effectivenutrient fromconcentratedanimalfeedingoperations controlrequirescontinuousbuffersonallstreams. (CAFOs).Ifphosphorusismanagedresponsibly Gilliam(1994)hasnotedthatforpurposesof on-site,bufferscanstoresignificantamountsof nutrientreduction,“thereshouldbeastrong theexcess;butifphosphorusisuncontrolled, efforttopreserveawet,vegetatedbuffernextto bufferscanquicklybecomesaturatedandover- ephemeralandintermittentchannelsorstreams.” whelmed.Evenwiththeirlimits,buffersstill Despitetheirlimitations,riparianbuffersarestill performavaluableservicebydisplacingphospho- veryimportantbecausetheyseparatephosphorus- rus-producingactivitiesawayfromstreamsand producingactivitiesfromstreams.Everyunpro- regulatingtheflowofphosphorus. tectedstreamsegmentorgapinthestream representsapointatwhichpollutioncanhave directaccesstothewater.Inareaswithout buffers,phosphorus-ladensedimentsandsoluble phosphatecanrundirectlyintowaterwayswith verylittlechanceofremoval.Sorranoetal B.Nitrogen (1996)predictedthatinanagriculturalwatershed inWisconsin,convertingallriparian(within100 m(328ft)ofastream)agriculturallandtoforest Effects wouldreducephosphorusloadingby55%during Likephosphorus,nitrogencontributestothe ahighrunoffyear,evenassumingnonetretention eutrophicationofwaters.Nitrogenoccursin ofphosphorusbytheriparianzone. numerousorganicandinorganicformswhichare interconvertibleundersuitablecircumstances. - Nitrate(NO3 )hasbeenthetargetofmanybuffer SummaryandRecommendations programsbecauseitispotentiallytoxictohumans Althoughriparianbufferscaneffectivelytrap andanimalsatconcentrationsgreaterthan10mg/ phosphorusinrunoff,theydonotprovidelong- + L.Ammonium(NH4 )isanothercommonform termstorageandarenoteffectiveatfiltering ofnitrogenthatistoxictomanyaquaticorgan- solublephosphate.Phosphorustrappedina ismsandisreadilytakenupbyplantsandalgae. buffermaygraduallyleakintothestream,espe- Removalofnitrateandammoniumfromdrinking ciallyoncethebufferbecomesP-saturated. watercanbeasignificantwatertreatmentex- Harvestingofriparianvegetationdoesprovidea pense(Welsch1991). methodofpermanentlyremovingsomephospho- rusfromthesystem. Riparianzoneswideenoughtoprovide Sources sedimentcontrol(15-30m,increasingwithslope) Nonpointsourcesofnitrogenaresimilarto shouldprovideshort-termcontrolofsediment- thoseofphosphorus:fertilizersappliedtoagricul- boundphosphorus.Widersetbacksshouldbe turalfields;wastefromconcentratedanimal consideredforapplicationofanimalwaste, feedingoperations(CAFOs);septicdrainfields; fertilization,andotheractivitiesthatyieldlarge leakingsewerpipes;andfertilizersappliedto amountsofnutrients.Bufferzonesshouldbe lawns.Therelativesignificanceofthesesources placedonallstreams.Forphosphorusremoval, willvaryfromregiontoregion.

24 NutrientsandOtherContaminants pathways:iftheflowisshallowandpasses throughtherootzoneofriparianvegetation, LiteratureReview vegetativeuptakeanddenitrificationcanbe Intheir1994literaturereview,Desbonnetet significant.Iftheflowbypassestheriparianzone alconcludedthattotalnitrogenremovalratesfor andrechargesanaquiferorcontributestobase buffersaregood,butnitratereductionsare flowofastream,nitrogenlossmaybemuchless variableandlow.Thereissignificantevidence (seeFigure9).Thisreviewfirstlooksatthe thatthisisnotavalidconclusion.Anumberof bufferwidthnecessarytoremovenitrogenfrom studieseithernotincludedintheDesbonnetetal surfacerunoff,thenconsidersnitrogenremoval revieworpublishedmorerecentlyshowsignifi- fromsubsurfaceflow.Denitrificationisthen cantnitratereductions.FennesyandCronk examinedingreaterdetail. (1997)reviewedriparianbufferliteraturewitha focusonnitrogenreductionandconcludedthat riparianbuffersof20-30m(66-98ft)canremove Width nearly100%ofnitrate.Gilliam(1994)declares Reductionofvariousformsofnitrogenin that, surfacerunoffisreasonablywellcorrelatedwith “Eventhoughourunderstandingofthe bufferwidth.Dillahaetal(1988)foundthat4.6 - m(15ft)and9.1m(30ft)grassedfilterstrips processescausingthelossesofNO3 are incomplete,allwhohaveworkedinthis weremoderatelyeffectiveinremovingtotal researchareaagreethatriparianzonescanbe nitrogenfromsurfacerunofffromasimulated - feedlot,butineffectiveinremovingnitrate. tremendouslyeffectiveinNO3 removal.” OtherstudiesofsimilardesignbyDillahaetal Onalandscapelevel,channelizedtributarieswith (1989)andMagetteetal(1987,1989)yielded littleornoriparianbufferzonesmayhavetwoto similarresults.Totalnitrogenremovalefficiencies threetimestheannualnitrateconcentrationof inallstudiesincreasedwithbufferwidth(Table3). naturalstreamreacheswithwetlandorriparian buffers(Cooperetal1994). Intheirfeedlotstudies,Youngetal(1980) foundthat21.34m(70ft)buffersofcropped Therearetwomajorwaysinwhichariparian cornreducedtotalKjeldahlnitrogenby67%and bufferstripcanremovenitrogenpassingthrough ammoniumby71%,thoughnitrateincreased it,bothofwhichcanbesignificant: acrossthebuffer.Extrapolatingfromthedata, • Uptakebyvegetation Youngetalsuggestedthat36m(118ft)wide • Denitrification Denitrificationistheconversionofnitrateinto nitrogengasbyanaerobicmicroorganisms.It Total N Removal Study representsapermanentremovalofnitrogen 4.6 m buffer 9.1 m buffer fromtheriparianecosystemandmaybethe 67% 74% dominantmechanismofnitrogenreductionin Dillaha et al 1988 manyripariansystems.Denitrificationalso 54% 73% occurswithinstreamchannelsthemselves, Dillaha et al 1989 thoughatratesmuchlowerthaninriparian 17% 51% areas,especiallywetlands(Fennessyand Magette et al 1987 Cronk1997). 0% 48% Unlikephosphorus,nitrateisquitesoluble Magette et al 1989 andreadilymovesintoshallowgroundwater (Lowranceetal1985).Inmanyareas,most Table3.RemovalofTotalNitrogenbyGrass nitrateenterstheriparianzoneviasubsurface Buffers. pathways(Lowranceetal1984,1985, HaycockandPinay1993,Muscuttetal1993, Studies by Dillaha et al and Magette et al found a FennesyandCronk1997;butseeDillahaetal positive correlation between the width of grass 1988).Theamountofnitrogenreduction riparian buffers and the ability to trap total nitrogen dependsagreatdealonthenatureofthese in surface runoff.

NutrientsandOtherContaminants 25 buffersaresufficienttoprotectwaterquality. thatnitratereductioninsubsurfaceflowishigh, Voughtetal(1994)reportedsurfacenitrate althoughtheoptimalbufferwidthdependson reductionsof20%after8m(26.2ft)and50% factorssuchasthehydrologicpathwayand after16m(52.5ft)forgrassbuffersinSweden. denitrificationpotential.Hansonetal(1994) Theyconcludedthat“abufferstripof10-20m reportedthata31m(102ft)wideriparianbuffer will,inmostcases,retainthemajorpartofthe downslopefromaseptictankdrainfieldreduced nitrogenandphosphoruscarriedbysurface shallowgroundwaternitrateconcentrationsby runoff.”JacobsandGilliam(1985)foundthatin 94%,from8mg/Lto0.5mg/L.Jordanetal buffersdownslopefromCoastalPlainfields (1993)foundthata60m(197ft)wideriparian withoutartificialdrainage,thenitrateconcentra- bufferadjacenttocroplandintheDelmarva tioninsurfacerunoffwasreducedfrom7.9mg/l Peninsulareducedsubsurfacenitratelevelsfrom8 to0.1mg/l(99%).Thoughtheydidnotreport mg/Ltolessthan0.4mg/l(95%).Mostofthe widthofbufferstripsused,theauthorssaidthat changeoccurredabruptlywithintheriparian bufferstripsof16m(52.5ft)wereeffective. forestattheedgeofthefloodplain,where AstudybyDanielsandGilliam(1996)inthe conditionswereoptimalfordenitrification. NorthCarolinaPiedmontdeterminedthatgrassed Manderetal(1997)foundtotalgroundwater buffersof6m(20ft)widthandcombination nitrogenremovalefficienciesof81%and80%for grass-forestedbuffersof13m(42.7ft)and18m riparianbuffersitesof20m(65.7ft)and28m (59.1ft)widthretained20-50%ofammonium (91.9ft)width,respectively. and50%ofbothtotalnitrogenandnitrate. ResearchersattheUSDAAgriculturalStation Becausesiteshaddifferentcharacteristicsitisnot inTifton,Georgiaappliedswinewasteto30m possibletodeterminewhetherwidthwasafactor. (98.4ft)riparianbufferstripsofvarioustypes. Inaddition,liketheDillaha(1988,1989)and Preliminaryresultsfrom1996showedthat Magette(1987,1989)studiessummarizedabove, shallowgroundwaternitratelevelswerereduced DanielsandGilliamonlystudiedsurfaceflow,not from40mg/Latthetopoftheplotsto9mg/Lat subsurfaceflow.Sinceinmanycasesmostnitrate thelowerendoftheplots,areductionof78% passesthroughbuffersintheinterflow,studies (Hubbard1997).Previousresearchintheregion thatignoreitmaygreatlyunderestimate(or,in haddeterminedthatbufferslessthan15m(49.2 somecases,overesti- mate)nitratereduc- tion. Exchangeable Particulate Nitrate (mg/L) Intheirstudiesin NH4+ (mg/L) Org. N (mg/L) theMid-Atlantic CoastalPlain, Initial: 4.45 0.402 19.5 PeterjohnandCorrell Surface Runoff (1985)foundthata50 Final: 0.91 (79%) 0.087 (78%) 2.67 (86%) m(164ft)buffer reducedallformsof Initial: 7.40 0.075 0.207 nitrogeninsurface Subsurface Transect 1 0.274 0.267 runoff.Nitratein Final: 0.764 (90%) (increase) (increase) shallowgroundwater wasreducedconsider- Initial: 6.76 0.074 0.146 Subsurface ablyacrossthebuffer, Transect 2 0.441 0.243 Final: 0.101 (99%) butotherformsof (increase) (increase) nitrogenincreasedin thesubsurfaceflow. Theseresultsare Table4.NitrogenReductionsReportedbyPeterjohnand summarizedinTable4. Correll(1985). LikePeterjohnand Values show initial concentration of nutrients entering the 50-m buffer and Correll,manyother final concentrations after passing through the buffer. Values in parenthe- researchershavefound ses are the percent reductions across the buffer.

26 NutrientsandOtherContaminants ft)widecanremovesignificantamountsofnitrate mg/Ltoabout2.4mg/L(amaximum95% insurfaceandsubsurfaceflow(Hubbardand reduction). Lowrance1994).AnotherstudyintheTifton Inreviewingotherstudies,Voughtetal area(Lowrance1992)haddeterminedthata50- (1994)concludedthatnitratereductionin 60m(~160-200ft)wideriparianbufferreduced subsurfaceflowapproaches100%between10m groundwaternitratelevelsfrom13.52mg/Lto (33ft)and20m(66ft)intothebuffer;increasing 0.81mg/L(94%)atdepthsof1-2m(3.3-6.6ft). theriparianwidthbeyond20-25m(62-82ft)had Thegreatestreductionoccurredinthefirst10m nofurthereffect.PinayandDescamps,as (33ft).Stillanotherstudyusingamassbalance referencedbyMuscuttetal(1993),concluded approach(Lowrance1984)foundthatabufferof that30m(98ft)buffersaresufficientforremov- unspecifiedwidthremoved68%oftotalnitrogen. ingnitrogen.Resultsfromthesestudiesare OsborneandKovacic(1993)reportedthata summarizedinTable5andFigure8. 16m(52.5ft)wideforestedbufferinIllinois reducedshallowgroundwaternitratelevelsof10- 25mg/Ltolessthan1.0mg/L(amaximum96% Denitrification reduction).A39m(128ft)widegrassedbuffer Thereisanongoingdebateastowhichisthe inthesameareareducednitratelevelsof15-44 dominantmechanismfornitrogenremoval: denitrificationorvegetativeuptake.Fennessyand

100

90

80

70

60

50 Osborne and Kovacic (1993) Mander et al (1997) 40 Mander et al (1997) Hubbard (1997) Percent Removal 30 Hanson et al (1994) Osborne and Kovacic (1993) Jordan et al (1993) 20 Lowrance (1992) Haycock and Pinay (1993) 10 Haycock and Pinay (1993)

0 0 102030405060 Buffer Width

Figure8.SubsurfaceNitrateRemovalinSeveralStudies. Numerous studies of riparian buffers have reported high rates (>75%) of nitrate removal from shallow groundwater. There is not a clear correlation between nitrate removal rate and riparian buffer width, however.

NutrientsandOtherContaminants 27 Cronk(1997)claimthatdenitrificationisthe (Jordanetal1993). mostsignificant,andthereissomeevidenceto Soilmicroorganismshavethecapacityto supportthisview(e.g.,JacobsandGilliam1985, processnitrateatmuchhigherconcentrations PeterjohnandCorrell1985).Lowrance(1992) thantheynormallyexperience(DuffandTriska hasmadethecaseforvegetativeuptakeandhas 1990,Groffmanetal1991a,b,Lowrance1992, emphasizedthat,whichevermethodisdominant, Hansonetal1994,Schnabel1997).Denitrifica- vegetationisnecessaryfornitrogenremoval. tionratescanincreasequiterapidlyinresponseto Lowrance(1992)andHansonetal(1994)have nitrateincreases.Insomecases,microorganisms reportedsignificantnitratereductionsinshallow candenitrifyalloftheavailablenitrate,but groundwateronetotwometersdeepthatappear ammoniumandorganicNpassthroughthebuffer tobecorrelatedwithhighdenitrificationratesat becausetheyarenotprocessed(nitrified)quickly thesurface.Itappearsthatvegetationtakesup enough(Lowrance1992).Manysoilsarealso thenitrateandtransfersittothesurfacelayer, carbonlimitedorbecomecarbonlimitedathigh whereitisdenitrified.Intheend,localcondi- nitratelevels(Groffmanetal1991a,b;Hedinet tionswilllikelydeterminewhichmechanism al1998).Hedinetal(1998)reportedona dominates(Gilliam1994). carbon-limitedsitewithveryhighnitratelevels Denitrificationisoneofanumberofcoupled closetothestream;whensufficientcarbonwas processeswhicharebestdescribedbythermody- added,denitrificationlevelswereexceedingly namictheory(Hedin1998).Interestingly,thereis high(equivalentto6600kgN/haperyear).To asignificantinverserelationshipbetweendenitri- promotemorecarbonavailability,Hedinetal ficationandphosphorusremoval.Highlyreduc- recommendedmaintainingorganicallyrich ingconditionsthataresuitablefordenitrification riparianwetlands.DuffandTriska(1990) alsofavorreductionofironoxyhydroxides,which observeddenitrificationinthehyporheiczoneof canreleaseboundphosphorusandincreasethe asmallheadwaterstream.Intheirstudysite, phosphatethatisexportedfromthebuffer groundwaterhadahighconcentrationofdis-

Width (m) % Reduction Final Conc. (mg/L) Osborne and Kovacic (1993) 16 96 <1.0 Haycock and Pinay (1994) 16 84 N.R. Haycock and Pinay (1994) 20 99 N.R. Mander et al (1997) 20 81 N.R. Mander et al (1997) 28 80 N.R. Hubbard (1997) 30 78 9 Hanson et al (1994) 31 94 0.5 Osborne and Kovacic (1993) 39 95 <1.0 Jordan et al (1993) 60 95 0.4 Lowrance (1992) 60 94 0.81

Table5.NitrateRemovalinShallowGroundwater. Studies have demonstrated consistently high removal rates for nitrate from shallow groundwater passing through riparian buffers. “Final Conc.” is the concentration of nitrate in groundwater leaving the riparian buffer. Concentra- tions over 10 mg/L (ppm) are considered potentially harmful.

28 NutrientsandOtherContaminants solvedorganiccarbon(DOC)whichwasreduced conductedanalysesofdenitrificationinsurface asitpassedthroughtheriparianzone.Denitrifi- soilsatsitesinRhodeIsland.Theyreportedtotal cationwasgreatestfartherfromthestreamwhere nitrogenremovalefficienciesof40%to99%for nitratewasingreatestsupply.Rhodesetal overlandflowduringthesummer,butratesofless (1985)reported99%nitrateremovalinriparian than30%inthewinter.Additionalfieldstudies forestsandwetlandsatahigh-altitudeundis- conductedbythesameteamfailedtofindan turbedwatershedinNevada. influenceofseasonalityonnitrateremoval.They Denitrificationtakesplaceunderconditions theorizedthatelevatedwatertablesinwintermay ofreducedoxygenavailabilityandiscorrelated havebroughtdenitrifyingbacteriaintocontact withsoilmoisture.Ratesaretypicallyveryhigh withmorenitrate-ladenwater,compensatingfor inwetlands(Groffmanetal1991a,b;Hansonet thelackofvegetativeuptake(Groffmanetal al1994;Collieretal1995b).Infieldstudiesin 1991b). RhodeIslandGroffmanetalreportedthat Thecharacteristicsofgroundwaterflowwill variabilityinnitratereductioninsubsurfaceflows determinewherewithintheriparianbuffer (rangingfrom14%to97%)wasalmostentirely denitrificationwilloccur.Lowrance(1992) explainedbysoilmoisture.Wetlandsoilshad foundthatmostnitratelossoccurredatthe consistentlyhighnitrateremoval,whilebetter buffer-fieldinterface.Hedinetal(1998)and draineduplandsoilshadlowerandmorevariable Schnabeletal(1997)studiedsystemsinwhich nitrateremovalefficiencies.Sincedenitrification shallowgroundwaterwithveryhighnitrate isthemostpermanentmethodforremoving concentrationsenteredthebufferveryclosetothe nitrogen,goodmanagementpracticescallfor stream.Somestudies(e.g.Jordanetal1993) preservationofareasofhighdenitrification haveshownthatdenitrificationratesaregreatest activity,suchaswetlands(Collieretal1995b, attheedgeofthefloodplain.Inallcases,nitrate Hedinetal1998).Note,however,thatdenitrifi- removaloccurredatlocationswherethewater cationhasalsobeenobservedunderwelloxygen- tablewasnearthesurfaceandbothcarbonand atedsoilconditions,presumablyindicatingthat nitratewereingoodsupply.Determiningall therecanbesitesoflocalanoxia(DuffandTriska thesefactorsinthefieldisnoteasyandthe 1990). hydrologyofmanyriparianareasisstillpoorly Nitratelossdoesnotappeartobelimitedto understood,makingaccuratepredictionsof warmmonths.Inastudyduringthewinter nitrogenremovaldifficult(Gilliam1994). seasoninBritain,HaycockandPinay(1993) Itappearsthatfewresearchershavedocu- reportedthata20m(65.6ft)widepoplar mentednitratereductionsinsubsurfaceflowin forestedsiteretained99%ofthenitratethat thePiedmontorBlueRidgephysiographic entered,nomatterhowhightheloadlevel.A16 provinces.Lowranceetal(1997)citeddatafrom m(52.5ft)widegrassriparianzoneretained studiesbyDanielsandGilliamthatshowlarge nearly100%ofnitrateatlowerconcentrations reductionsingroundwaternitratelevelsinNorth butonly84%athighconcentrations.Allflow CarolinaPiedmontlocations.Thestudysites wassubsurface.Inthepoplarsitenitratereduc- werecharacterizedbyhighwatertablesand tionwasessentiallycompleteafterthefirst5m shallowgroundwaterflowthroughtherootzone (16ft)offlow.Bacterialdenitrificationwas ofriparianvegetation(seeFigure9-a).When assumedtobethemechanismfornitrateloss, theseconditionsarepresent,asinareasofthin sincethevegetationwasdormantanduptakerates soils,highratesofnitratereductionshouldoccur wouldbelow.Thevariationbetweenthesites (Lowranceetal1997).However,inPiedmont mayhavebeenduetothelargeramountsof soilsunderlainbyschist/gneissbedrock,an carboncontributedbythepoplars(Haycockand appreciableamountofflowmaymoveinto Pinay1993).Lowrance(1992)andOsborneand regionalaquifersinthesaprolite,bypassingthe Kovacic(1993)alsoreportednitrateremoval riparianrootzoneandcontributingtothebase ratesthatwereindependentofseason.Lowrance flowofstreams(Figure9-b).Amoderatelevelof notedthatdormantseasonnitrateremovalisnot denitrificationisexpectedundertheseconditions justduetodenitrificationbutcanresultfrom (Lowranceetal1997).InPiedmontsoilsunder- uptakebyaswell.Groffmanetal(1991b) lainbymarblebedrock,mostflowmayenter

NutrientsandOtherContaminants 29 Figure9.DifferentPossibleGroundwaterFlowPaths. Based in part of Lowrance et al (1997).

FigureFigure 9a. 8a. Groundwater Groundwater flow flow paths paths across across a riparian a riparian buffer buffer with shallow with shallow soils or soils an aquitard or an (semi-imperviousaquitard (semi-impervious layer). Flow layer). should Flowpass shouldthrough passthe root through zone, allowingroot zone, significant allowing re- movalsignificant of nutrients removal and of contaminants. nutrients and contaminants.

FigureFigure 9b. 8b. Groundwater Groundwater flow flow paths paths across across a riparian a riparian buffer buffer with moderately with moderately deep soils. deep Some flowsoils. should Some passes flow throughpasses thethrough root zone, root zone,but some but bypasses some bypasses the riparian the area. riparian The area area of greatestThe area nutrient of greatest removal nutrient may be removal very close may to bethe verystream. close to stream.

FigureFigure 9c. 8c. Groundwater Groundwater flow flow paths paths across across a riparian a riparian buffer buffer across in a a wide, wide, flat flat floodplain floodplain with awith high a water high table.water Areatable. of Areagreatest of greatest nutrient removal nutrient will removal likely be will the likely edge be of the the edgefloodplain. of the floodplain.

30 NutrientsandOtherContaminants Figure 9d.8d. GroundwaterGroundwater flow flow paths paths across across a riparian a riparian buffer buffer with verywith deepvery soilsdeep or soils fractured or bedrock.fractured Muchbedrock. groundwater Much groundwater bypasses the bypasses riparian buffer, the riparian and nutrient buffer, removal and nutrient may be lower thanremoval in other may systems. be lower than in other systems.

regionalaquifersandnitratelossinriparianareas timesina27mwidebufferalongaThames, isprobablymuchlesssignificant(Lowranceetal Englandheadwaterstreamrangedfrom12days 1997)(Figure9-d).However,intheirstudyof tooverthreeyears(FennessyandCronk1997). ripariansitesintheValleyandRidgephysi- ResearchontheGeorgiaCoastalPlainshowed ographicprovince,Schnabeletal(1997)found thatitcantakeseveralseasonsfornutrientsand significantdenitrificationrateswherenitrate-rich contaminantstopassthrougha50-mwide groundwateremergedclosetothestreambank. riparianbufferwhereshallowlateralflowisthe Thesesiteshadflow-restrictivelayers8-10m dominantpathway(HubbardandLowrance (26.2-32.8ft)belowthesurface,aswould 1996).Ontheotherhand,whenoverlandflow Piedmontsoilswithmarblebedrock.Thedeeper occurs,watercanpassthroughthebufferina flowpathschangedthelocationofdenitrification matterofminutes.Modelshavebeendeveloped activitybutdidnotpreventnitratereduction. topredictbuffereffectivenessbasedondetention Hedin(1997)alsoobservedasimilarphenom- time(Phillips1989a,b),buttheiraccuracyis enonatasiteinMichiganwithdeepglacialsoils. unproven. EvenwithintheCoastalPlainhydrologycan varysignificantly,affectinghownutrientreduc- Extent tiontakesplace.Humanmodificationsalsoalter thesepatterns.JacobsandGilliam(1985)found Asdiscussedinprevioussections,protection thatatasiteintheMiddleCoastalPlainofNorth ofwaterqualityrequirespreservationofbuffers Carolinamosttransportwasviasubsurface onasmanystreamsaspossible. pathways.InaLowerCoastalPlainsite,onthe otherhand,mostmovementwasbysurfaceflow. Vegetation Fieldsinthisareaweredrainedbyditches,anda denseclayBlayerpreventeddeepersubsurface Bothgrassandforestedbuffershavebeen flow. showntoreducenitrogeneffectively.Instudiesin RhodeIsland,Groffmanetal(1991a)foundthat Ratesofnutrientreductionareinfluencedby whennitratewasaddedtosoilcores,soilsfrom thelengthoftimewaterisretainedinthebuffer grassplotsexhibiteddenitrificationratesanorder (FennessyandCronk1997),whichinturnis ofmagnitudehigherthanthosefromforested determinedbyslope,rainfall,soilcharacteristics, plots.Schnabeletal(1997)alsoreportedhigher hydrologicflowpath,andthewidthofbuffer denitrificationratesforgrassedbuffersites. (Phillips1989a,b).Retentiontimemayactually HaycockandPinay(1993)andOsborneand belongerthanwouldbeindicatedbythese Kovacic(1993),ontheotherhand,foundhigher factors,becausesomeresearchershaveshownthat ratesofnitrateretentioninforestedbuffers. theflowofwaterisnotperpendiculartothe Lowrancehasconcludedthatoverall,grass channelbutobliquetothechannel.Residence buffersarenoteffectiveatremovingnutrients

NutrientsandOtherContaminants 31 fromshallowgroundwater(Lowrance1998). Secondly,whenorganicmatterisbrokendownby Bothgrassandforestedbuffershaveproven aerobicbacteriainwater,oxygenisconsumed effectiveinremovingsurfacenutrientsfrom rapidly.Highlevelsoforganicmatterwithhigh surfacerunoff,althoughgrassbuffershavebeen biologicaloxygendemand(BOD)canuseupall moreheavilystudied. oftheavailableoxygeninastream,riverorlake, killingfishandotherorganisms.Whereassurface watersnaturallyhaveaBODof0.5to7mg/L, SummaryandRecommendations chickenwastesmayhaveaBODof24,000to Thenitrogenremovalcapacityofriparian 67,000mg/L(Cooperetal1993). buffershasbeenwellestablished.Nitrogen Fecalcoliformisusedasanindicatorof removalinsurfacerunoffhasbeencorrelated pathogenicmicroorganisms.Thelevelsoffecal withbufferwidth,butratesappeartobelower coliformcanvarytemporallyatasinglesiteand thanforsubsurfacereduction.Studieshave canbequitehigh,eveninareasofGeorgia documentedhighlevelsofnitrateremovalfrom consideredlessimpacted.Atamonitoringstation shallowgroundwater,whichisthedominant inLakeAllatoonanearwheretheEtowahRiver modeofnitratetransportthroughmanybuffers. entersthe,fecalcoliformlevelsranging Nitratemayberemovedbybothvegetative from1.8colonies(inMay)to24,000colonies(in uptakeanddenitrification.Thebufferwidth November)per100mlwererecorded.For necessaryfornitratereductiondependsgreatlyon reference,therecommendedlimitforwaterthat thehydrologicflowpaths,andnumerousstudies peopledirectlycontact(i.e.,the“primarycontact wouldberequiredtofullycharacterizethe standard”)is200colonies/100ml. pathwaysofshallowgroundwaterflowinallareas Sourcesoforganicmatterandbiological ofGeorgia.However,basedonexistingresearch, contaminantsincludeleakingsewerpipes,im- mostareasofGeorgiashouldgenerallysupport properlyfunctioningsepticsystems,animalwaste significantnitrogenremovalintheriparianbuffer. sprayedontofieldsandanimalwastelagoons. Becausethedistributionofdenitrification Burkholderetal(1998)documentedalargefish sitesvaryspatially,widerbufferswillonaverage killindeoxygenatedwaterafteraswinelagoon includemoredenitrificationsitesthannarrower rupturedintotheNeuseRiverinNorthCarolina. buffers.Aminimalwidthof15m(50ft)is Riparianbufferscantrapwastetransportedin probablynecessaryformostbufferstoreduce surfacerunoffinthesamewaythattheytrap nitrogenlevels.Widerbuffersof30m(100ft)or sedimentsandassociatednutrients.Inthefaceof greaterwouldbemorelikelytoincludeother veryhighwastelevels,however,trappingeffi- areasofdenitrificationactivityandprovidemore ciencymaynotbeadequatetoreducecontami- nitrogenremoval.Buffersshouldbepreserved nantstoasafelevel.Coyneetal(1995)applied alongasmanystreamsaspossible,anditis poultrymanuretotwotestplotsandmeasured especiallyimportanttopreserveriparianwet- fecalcoliformreductionacross9m(30ft)wide lands,whicharesitesofhighnitrogenremoval. grassfilterstrips.Afterartificialrainwasapplied, researchersfoundthatfecalcoliformconcentra- tionswerereducedby74%and34%inthetwo strips.Nevertheless,runoffexceededtheprimary contactstandardineverysample.A1973study C.OtherContaminants byYoungetalfoundthata60m(197ft)long grassfilterstripreducedfecalcoliformby87%, totalcoliformby84%andBODby62%(Karr OrganicMatterandBiological andSchlosser1977).Cooperetal(1993)found Contaminants thatconstructedwetlandsremoved76%ofBOD whencoupledbehindananaerobiclagoon.There Humanandanimalwastecontributeto donotappeartobeotherstudieswhichhave aquaticdegradationinwaysotherthannutrient addressedthisissue. contamination.First,thesewastescarrywith themanarrayofpathogenicmicroorganisms.

32 NutrientsandOtherContaminants PesticidesandMetals 9.1µg/L,respectively,tolessthan1µg/L.The chemicalstookthreeyearstoentergroundwater, Pesticidesareintendedtobetoxic.When anditappearedthattheyfirstmovedlaterally thesechemicalsareintroducedintoaquatic acrossthebufferbeforeinfiltratingdeeply. systemstheycancausebothdirectmortalityto Hatfieldetal(1995)foundthatgrassedfilter organismsandvarioussublethaleffects(Cooperet stripsof40ft(12.2m)and60ft(24.4m)re- al1993).Althoughanumberofthemostpersis- moved10-40%oftheatrazine,cyanazineand tentandtoxicpesticideshavebeenbannedinthe metolachlorpassingacrossthem.Aroraetal U.S.,manythatarecurrentlyappliedarestill (1996)foundthat20.12m(66ft)wideriparian quitedangerous.AccordingtoCooperetal buffersof3%sloperetained8-100%ofthe (1993),“Someinsecticidesincurrentusenotonly herbicides(atrazine,metolachlorandcyanazine) accumulate,theycanbeastoxicasandoften thatenteredduringstormevents.Thevariation moretoxicthanbannedorganochlorines.” wasrelatedtotheamountofrunoffthatoccurred Besidestheiruseinrowcropagriculture, duringthestorms.Noneofthesestudiesexam- pesticidesaregainingfavorinforestryinthe inedthelong-termfateofpesticidesortheir Southeast(Nearyetal1993)andarecommonly degradationproducts. usedonlawnsandplantingsinurbanareas.The Nearyetal(1993)reviewedrecentstudiesin EPAestimatesthatnearly70millionpoundsof theSoutheastontheuseofbuffersinreducing activeingredientsareappliedtourban pesticidecontaminationofwater.Theyfound lawnseachyear.Onesurveyof500homesfound thatcasesofhighconcentrationsofpesticidesin that50differentpesticideswereused(Schueler wateronlyoccurredwhennobufferwasusedor 1995a,b).Evenlong-bannedinsecticideslike whentheywereappliedwithinthebuffer(i.e.,the DDTandchlordanearecommonlyfoundin bufferwasviolated).Regularuseofbufferstrips urbanstreams.Chlorpyrifosalsoappearsin keptpesticideresidueconcentrationswithin runoffatlevelstoxictoarangeofwildlife water-qualitystandards.Nearyconcludedthat includinggeese,songbirdsandamphibians “Generallyspeaking,bufferstripsof15m(49ft) (Schueler1995b).ArecentstudybytheU.S. orlargerareeffectiveinminimizingpesticide GeologicalSurveyfoundthaturbanandsuburban residuecontaminationofstreamflow.” streamsintheAtlantaregionhadlevelsof diazinonandcarbarylthatexceededaquaticlife Herson-Jonesetal(1995)concludedthat criteria(Fricketal1998).Heavymetalsare urbanbuffershaveshownamoderatetohigh usuallyassociatedwithindustrialactivities,and abilitytoremoveorretainhydrocarbonsand concentrationstendtobehighestinstreams metalsfromsurfacerunoff.Theyciteddatafrom drainingurbanareas(CrawfordandLenat1989). a1992studybytheMetropolitanSeattleControlDepartmentwhichfound Buffersareveryimportantindisplacing removalratesexceeding40%forlead,60%for pesticideapplicationawayfromstreams,prevent- copper,zincandiron,and70%foroilandgrease. ingdirectcontaminationandreducingthedanger StudiesinRhodeIsland(Groffmanetal1991b) ofdrift.Manypesticidesarebrokendownwithin alsofoundhighmetalretentionrates.The buffersoils,whilemetalsmaybindtosoilpar- authorsreportedthatriparianbuffersretainedall ticles.Greaterbufferwidthincreasesthereten- thecopperthatwasaddedtothem.Thisreten- tiontimeforchemicals(allowingmoreopportuni- tiondependsoncationexchangecapacity(CEC) tiesforcontaminantstodecompose)andprovides ofthesoil,however,anditispossibleforbuffer moresitesforbindingmetals.Fricketal(1998) CECtobecomesaturated,justasitcanunder attributetheunexpectedlylowpesticidelevelsin highphosphorusloads. agriculturalCoastalPlainstreamstothelargely intactforestedwetlandsandfloodplains. Themechanismsofpesticidetransportare SummaryandRecommendations notwellunderstood(Muscuttetal1993). Basedonthelimitedstudiesavailable, Lowranceetal(1997)examinedchangesin riparianbuffersareusefulforreducinglevelsof pesticideconcentrationscrossinga50-m(164ft) biologicalcontaminantsandorganicmatter,but widebufferintheGeorgiaCoastalPlain.Atra- bythemselvesmaynotbesufficienttoprotect zineandAlachlorwerereducedfrom34µg/Land

NutrientsandOtherContaminants 33 waterquality.Buffersatleast9m(~30ft)wide Bufferscanremovepesticidesandheavy andprobablymuchwiderareneeded;width metals,butthewidthnecessaryisunclearfrom shouldbeextendedforsteeperslopesthatwould theexistingresearch.Neary’s(1993)recommen- reducebuffercontacttime.Everyeffortshould dationof15m(49ft)shouldbeviewedasa bemadetoreducethesecontaminantsattheir minimumwidth,sincethestudiesbyHatfieldet source,anditiswisesttoprohibitsourceswithin al(1995)andLowranceetal(1997)suggestthat thefloodplain,regardlessofbufferwidth. significantlywiderbuffersmayberequired.

IV.OtherFactorsInfluencingAquaticHabitat

Aquatichabitatqualityisveryimportantin “ofalltheecologicalfunctionsofriparianareas, theSoutheast,whichhasahighleveloffishand theprocessofwoodydebrisloadingintochan- musseldiversity.Probablythemostimportant nels,lakesandfloodplainsrequiresthelongest factoraffectingthehabitatofaquaticorganismsis timeforrecoveryafterharvest”(Gregoryand sediment,discussedindetailinSectionII.This Ashkenas1990).Collieretal(1995a)recom- sectionwilldiscussotherfactorsthatinfluencethe mendabufferwidthofatleastoneheightto habitatofstreamorganismsandthecharacteris- maintaininputsofLWD,althoughforstability ticsofbuffersrequiredtosupporthighquality purposes(i.e.,topreventwindthrow)theysuggest habitat. thatawidthequaltothreetreeheightsmaybe necessary. Thetypeandamountofriparianvegetationis WoodyDebrisandLitterInputs correlatedwithdifferentfishcommunities(Baltz Largewoodydebris(LWD)depositedintothe andMoyle1984),andstudiesindicatethatnative streamfromtheriparianzoneprovidesessential vegetationisimportantforproperstreamfunc- habitatformanyfish.AccordingtoMayetal tioning(AbelhoandGraça1996,Karrand (1996),LWDisthemostimportantfactorin Schlosser1978).Streamorganismsmaynotbe determininghabitatforsalmonids(salmon,trout adaptedtotheleaffallpatternsorthechemical andrelatedfish).Leaflitterandotherorganic characteristicsofleavesfromnonnativetrees, matterfromriparianforests,includingterrestrial suggestingthatmanagementschemesshould invertebratesthatdropintothewater,arean includethemaintenanceandrestorationofnative importantsourceoffoodandenergytostream vegetation(AbelhoandGraça1996). systems. Removalofriparianforestscancausea InstudiesinAlaska,researchersfoundthat fundamentalshiftinstreamenergydynamics, duringthewinter,salmonidsurvivaldepended movingthesystemfromheterotrophy(where upontheamountofdebrisinstreams(Murphyet productionisbasedoninputsofleavesandother al1986).Streamreachesthatwereprotectedby terrestrialmatter)toautotrophy(whereproduc- 15-130m(49-427ft)wideriparianbufferswere tionisbasedonalgae)(Allan1995).Thisshift foundtobesimilarinhabitatqualitytoold alsoalterstheseasonaldynamicsofthestream growthreaches.Clearcuttingledtoshort-term (SchlosserandKarr1981).Streamswithriparian increasesinsummersalmonidpopulations vegetationexperienceapeakinorganicmatterin becauseoverallstreamproductionincreased,but thefall,butstreamswithoutriparianvegetation inthewintertherewasinsufficientdebristo experiencepeaksinthesummer. provideshelterforfish.Forestedstreamcorridors Aquaticinvertebratesareimportantcompo- arenecessarytoprovideregularinputsofLWD nentsofthestreamsystem,somuchsothatthey andremovalofriparianforestcanhavelong-term arecommonlyusedasindicatorsofstreamhealth. negativeeffects.GregoryandAshkenasnotethat

34 AquaticHabitat Aquaticinvertebratesarethemajorfoodsource Factorsotherthanshadingaffectstream formany,ifnotmostfreshwaterfish.Riparian temperature,however.cancauseprofound vegetation,inturn,providesleavesandother changestothestreamthermalregimethat formsoflitterthatfeedtheseinvertebrates. overridetheinfluenceofriparianforests.Im- Additionally,mostaquaticinvertebratesemerge poundmentsthatreleasewaterfromthetop fromthestreamasadultsandusetheriparian increasedownstreamwatertemperature,while zoneforreproduction(Erman1984).Riparian bottom-releasedamsdecreasedownstreamwater vegetationalsoinfluencestheamountandtypeof temperature.Additionally,dischargesofcooling terrestrialinvertebratesthatfallintostreams. waterfrompowerplantscangreatlyincrease Somefish,suchasbrowntrout,mayrelyon watertemperature. terrestrialinvertebratesformostoftheirfood Onsmallstreams,however,shadingislikely (Dahl1998).AstudyinNewZealandfoundthat tobethemostimportantfactor.Astudyby pasturestreamshadamuchlowerbiomass(1/6th Bartonetal(1985)foundthatmostofthe to1/12th)ofterrestrialinvertebratesthaneither variationinthemaximumwatertemperaturewas ungrazedgrasslandorforeststreams(Edwards relatedtothefractionofforestedbankwithin2.5 andHuryn1996).Otherfactors,suchasaltitude kmupstreamofthestudysite,whilemaximum andstreamwidth,werenotfoundtobesignifi- weeklytemperaturewascorrelatedwithbuffer cantinthestudy.Ofcourse,theimportanceof lengthandwidth.Thisregressionaccountedfor terrestrialorganismsasafoodsourceismost 90%oftemperaturevariability.Theauthors importantinheadwaterstreamsandlesssignifi- reportedthatwatertemperaturewastheonly cantinlargerstreamsandriversthathavehigher importantfactordeterminingthepresenceof algalproduction(Vannoteetal1980). trout.Forthesefishtobepresent,80%ofbanks within2.5kmupstreamhadtohaveforestsofat least10m(33ft)wide,orsufficienttoshadethe TemperatureandLightControl stream(Bartonetal1985).InGeorgia,Gregory InGeorgia,likemostoftheU.S.,thenative etal(inpress)foundthatmeanwatertempera- vegetationinriparianzonesishardwoodforest. turesinsomeCoastalPlainstreamswithno Theseforestskeepheadwaterstreamscoolby ripariancoverapproached37°Cinthesummer, providingshadeforthesurfacewaterandreduc- whilenearbystreamswithforestedriparianzones ingthetemperatureoftheshallowgroundwater were15°cooler.Temperatureinthestreams thatfeedsthestream.Removingtheseriparian variedbyasmuchas20°Cinthewinterand forestswillincreasestreamtemperatures,and spring.Theauthorssuggestedthatthethermal evenminorchangesintemperaturecancause variabilitywaslikelytobeafactorinthevariabil- majorchangesinthefishcommunity(Baltzand ityinaquaticinvertebratecommunitiesthey Moyle1984). foundinthestreams. Althoughincreasesintemperatureandlight AstudyofmusselsinOntariofounddramatic cangenerateincreasedaquaticproductionin differencesbetweenmusselcommunitiesin somecases,manyaquaticorganismscanonly forestedandagriculturalcatchments(Morrisand survivewithinarelativenarrowtemperature Corkum1996).Agriculturalstreamswere range(Allen1995).Troutareawell-knownand dominatedbyonespeciesoftolerantmussel commerciallyimportantexampleofafishthat (Pyganodongrandis),whichrepresented62.5%of cannottoleratehightemperatures.Thermal individualsinthoserivers(andonly1%in fluctuationscanhavearangeofdirecteffectson forestedbasins).Theauthorsidentifiedtempera- mussels,includingreproductiveproblemsand tureasanimportantvariableinfluencingtheshift, death(MorrisandCorkum1996).Higherwater althoughnutrientsmayalsohavebeenafactor. temperaturesalsodecreasesoxygen solubility, Inareviewofseveralarticlesonthesubject, whichharmsmanyorganismsandalsoreduces OsborneandKovacic(1993)concludedthat thewater’scapacitytoassimilateorganicmateri- bufferwidthsof10-30m(33-98ft)caneffec- alsandincreasestherateatwhichnutrients tivelymaintainstreamtemperatures.Shadinghas solubilizeandbecomereadilyavailable(Karrand thegreatestimpactonsmallerstreams.Collieret Schlosser1978). al(1995b)notethat“generally,protectingor

AquaticHabitat 35 plantingsmallheadwaterstreamsachievesthe dance.”Theresearchersrecommendeda30m greatesttemperaturereductionperunitlengthof (98ft)buffertomitigatetheseeffects.Ata riparianshade.”Thisagainindicatestheneedto minimum,a50ft(15m)bufferappearsnecessary establishbuffersoneventhesmalleststreams toprovidewoodydebrisinputstothestream.No whenpossible. treeharvestingshouldoccurwithin25ft(12m) ofthestream(50ft/15mispreferable),and harvestingintheremainderofthebuffershould SummaryandRecommendations leavesomematureandsenescenttrees.Native Removalofriparianforestshasaprofoundly vegetationshouldbepreservedwheneverpos- negativeeffectonstreambiota.Daviesand sible.Tomaintainstreamtemperatures,riparian Nelson(1994)summarizedtherangeofeffects buffersmustbeatleast10m(30ft)wide,for- clearcuttingcanhaveonstreamcommunities: ested,andbecontinuousalongallstreamchan- “Loggingsignificantlyincreasedrifflesediment, nelstomaintainproperstreamtemperatures.Itis lengthofopenstream,periphyticalgalcover, importanttonotethatwhilesomeotherriparian watertemperatureandsnagvolume.Logging functions(e.g.,sedimentandnutrientretention) alsosignificantlydecreasedrifflemacroinverte- canbeperformedadequatelybygrassedbuffers, brateabundance,particularlyofstonefliesand forestedbuffersofnativevegetationarevitalto leptophlebiidmayflies,andbrowntroutabun- thehealthofstreambiota.

Min. Width Article Widths Studied (m) Recommendation (m)

Hodges and Krementz (1996) 36-2088 100

Keller et al (1993) 25-800 100

Kilgo et al (1998) 25-500 both narrow and wide

Kinley & Newhouse (1997) 14-70 70

Smith & Schaefer (1992) 20-150 no recommendation

Spackman and Hughes (1995) 25-200 150-175

Thurmond et al (1995) 15-50 15

Triquet et al (1990) 15-23 no recommendation

Table6.RiparianBufferRecommendationsfromAvianStudies. The recommendations of the literature on riparian corridor widths for are summarized here. The second column shows the range of buffer widths studied by the authors. The third column shows the authors’ recommenda- tions for the minimum corridor widths necessary to support populations.

36 AquaticHabitat V.TerrestrialWildlifeHabitat

Ripariancorridorssupportanexceptional beabsent.Birdsassociatedwithmatureforests levelofbiodiversity,duetonaturaldisturbance virtuallydisappearedfromtheclearcutsite, regimes,adiversityofandsmall-scale thoughatthebufferstripsitethedeclinewas climaticvariation(Naimanetal1993).Gregory muchless(Triquetetal1990). andAshkenas(1990)foundthatriparianforests Kelleretal(1993)assessedbirdspeciesat117 intheWillametteNationalForestsupportap- ripariancorridorsof25m(82.0ft)to800m proximatelytwicethenumberofspeciesthanare (2624ft)widthinMarylandandDelaware.They foundinuplandforests.Riparianzonesalso foundthatthetotalnumberofneotropical supportmanyrarespecies(Naimanetal1993). migrantspeciesincreasedwithforestwidth,and Riparianareasareadeclininghabitat,however. tenspeciesincreasedinabundanceaswidth Malanson(1993)estimatesthat70%ofnatural increased.Kelleretalrecommendedpreserving ripariancommunitieshavebeenlost;insome ripariancorridorsatleast100m(328ft)wide, areaslossesmaybeashighas98%.Naimanetal andevenwidercorridorswhenpossible.Where (1993)putthelossatanaverage80%forNorth intactriparianareasexist,theysuggestedgiving AmericaandEurope. prioritytothewidestcorridorsavailable.How- ever,theysaideffortstocreateorincrease riparianforestwidthshouldfocusfirstonstreams LiteratureReview withnovegetationandthenonnarrow(<50m/ GregoryandAshkenas(1990)havenotedthat 164ft)forests:“Thepresenceofevenanarrow riparianbuffersestablishedforwaterqualityand riparianforestdramaticallyenhancesanarea’s fisheriesneedsmaynotmeetthehabitatrequire- abilitytosupportsongbirdscomparedtoastream mentsofterrestrialwildlife.Theabilityofa surroundedonlybyagriculturalfieldsorherba- streamcorridortosupportwildlifeisusually ceousriparianhabitats”(Kelleretal1993). directlyrelatedtoitswidth(SchaeferandBrown InsurveysinVermontforests,Spackmanand 1992).Narrowbuffersmaysupportalimited Hughes(1995)foundthat90%ofbirdspeciesare numberofspecies,butwidebufferswillbe includedwithin150-175m(492-574ft)buffers requiredtomaintainpopulationsofriparian- alongmoststreams.Attwostreamsthedistance dependentinteriorspecies.Generally,most wasless.Formostsites,90%ofplantspeciesare researchersadvocatepreservingaswideabuffer representedwithin15m(49ft)ofthestream. aspossible.SchaeferandBrown(1992)have BecauseSpackmanandHughesstudiedriparian suggestedthataprotectedrivercorridorshould areasthatwerepartofintactmatureforests, coverthefloodplainandanadditionalupland however,theirfindingsarenotcompletely areaonatleastononeside.Otherresearchers relevanttoriparianbuffersboundedbyopen haveattemptedtoquantifythenecessarywidth fieldsorurbandevelopment. accordingtotheneedsofvariousriparian- dependentspecies. Kilgoetal(1998)studiedbirdrichnessand abundanceinbottomlandhardwoodforestsin SouthernSouthCarolina.Widthsofforests Birds rangedfromlessthan50m(164ft)toover1000 Overthelastdecadetherehasbeenan m(3280ft),measuredonbothsidesofthestream abundanceofresearchontheuseofriparian (exceptontheSavannahRiver,whereforeston corridorsbybirds.Therecommendationsof onlyonesidewasmeasuredbecausetheriverwas manyofthesestudiesaresummarizedinTable6. aflightbarrier).Uphilllandcoverwaseither closed-canopypineorfield-scrub.Theauthors Triquetetal(1990)examinedbirdpopula- reportedthatspeciesrichnessshowedastrong tionsinmatureforest,clearcutforest,and positivecorrelationwithbottomlandforestwidth, clearcutswitha15-23m(49-76ft)wideriparian eventhoughtheadjacenthabitatwasalsofor- buffer.Theyfoundthatretainingthebuffer ested.Theydidnotfindasignificantbuffering provideshabitatforsomespeciesofmature-forest effectofthepinehabitat.Thatis,siteswithfield- andedge-dwellingsongbirdsthatotherwisewould

TerrestrialHabitat 37 scrubhabitatuphillratherthanpineforest densityandrichnessweregreaterinHogtown showednodecreaseinbirdabundanceand Creek. richness.Thismaybeduetothegreatwidthof KinleyandNewhouse(1997)studiedbreed- mostofthebufferstheresearchersstudied.Kilgo ingbirdpopulationsinriparianbuffersof14m etal(1998)recommendprotectingbothnarrow (46.0ft),37m(121ft)and70m(230ft)in andwideriparianbuffers,althoughtheypointout BritishColumbia.Theyfoundthatdensitiesof theimportanceofpreservingthefewremaining allbirdsincreasedasbufferwidthincreased,and areasofwidebottomlandhardwoodforest. theyconcludedthat“narrowerriparianreserve InastudyintheAltamahabasinofthe zonesareoflessvaluethanwiderreservezones.” GeorgiaCoastalPlain,HodgesandKrementz Researchershavefrequentlyreportedbird (1996)measureddensitiesofneotropicalmigrant densitiesandrichnessthatareequalorgreaterin birdsinnarrow(36-330m/118-1082ft),medium narrowbuffersorclearcutareas.After (440660m/1443-2165ft)andwide(1520-2088 clearcutting,birddiversityandabundancemay m/~0.95-1.3mi)ripariancorridors.Theyfound increasebecauseoftheinfluxofopen-habitatand asignificantincreaseinbirddensitiesforseveral edge-habitatbirds(e.g.,Triquetetal1990).This speciesbetween50m(164ft)and100m(328ft). isanexampleoftheedgeeffect:boundarieslike Beyond100m,therewaslittleincreaseassociated forestedges(andriparianzones)tendtobe withwidercorridors.Theresearcherssuggested especiallyrichinbiodiversity.Itisamanagement that“forestcorridorsofabout100mshouldbe probleminsomeecosystemstomaximizeboth sufficienttomaintainfunctionalassemblagesof edgehabitatandinteriorhabitat.Inaddition, thesixmostcommonspeciesofbreeding manyspeciesrequiremorethanoneecological neotropicalmigratorybirds.” systeminwhichtocompletetheirlifecycles Thurmondetal(1995)examinedbird (Naimanetal1988).However,generallyspeak- populationsinnarrowerripariancorridorsinthe ing,animalsthatexploitimpactedareasandedges OgeecheeRiverbasinintheUpperCoastalPlain aremorelikelytobehabitatgeneraliststhatare ofGeorgia.Riparianbuffersof50ft(15.2m), lessinneedofprotection.Measurementsof 100ft(31m)and164ft(50m)adjoiningpine speciesrichnessandpopulationdensityareless plantationsoflessthanfiveyearsagewere usefulthanindicesofsimilaritybetweendevel- comparedtomatureriparianareas.Theauthors opedandundevelopedsites.Managementonthe foundthatbreedingforestinteriorspecieswere localscaleformaximumrichnessanddensitywill virtuallyabsentfromallbufferstrips,although almostcertainlyresultinthelossofhabitat overallabundanceanddensitiesinthesestrips specialists. werehigherthanintheadjacentpineplantations. Theyconcludedthatnarrowprotectedstream corridorsareimportantinmaintaininggreater Mammals birddiversityeventhoughtheyareinsufficentfor Fewstudieshaveexplicitlyaddressedthe protectinginteriorspecies. issueofhowwideriparianbuffersneedtobeto SmithandSchaefer(1992)foundsmall supportmammalpopulations.Cross(1985) differencesbetweenbirdpopulationsinnarrow foundthatriparianzonesinmixedconiferforest (20-60m/66-197ft)andwide(75-150m/246- sitesinsouthwestOregonsupportedahigher 492ft)naturallyvegetatedbuffersinanurbanized diversityanddensityofsmallmammalspecies NorthFloridawatershed.Area-sensitivespecies thanuplandhabitat.Diversityandspecies suchasAcadianFlycatchersandHoodedWarblers compositionina67m(220ft)wideriparian werenotfoundinthenarrowbuffers.Summer bufferborderedbyaclearcutwerefoundtobe Tanagerswerenotrecordedanywhereinthe comparabletoundisturbedsites. urbanizedarea,buttheywerefoundinanearby Largemammals,aswellaslargereptilessuch undisturbedriparianforest.Theresearchers asalligators,arealsoimportantfortherolethey foundthatduringspring,birdspeciesdiversity playindeterminingthestructureofstreamsand andevennesswerelessinHogtownCreek,but riparianzones(NaimanandRogers1997).For averagedensitywasgreater.Duringwinter,bird example,beaverscreatewetlandsinareaswhere theywouldotherwisenotexist,increasingthe

38 TerrestrialHabitat overalldiversityoftheaquaticcommunityin Manyfloodplainplantsrequireregularcycles thoseregions(SnodgrassandMeffe1998). offloodingforseeddispersalandgermination. Removaloflargeanimalsleadstosimplification regulationoftheSavannahRiverhas oftheecosystemandlossofdiversity(Naiman desynchronizedtheconditionsnecessaryfor andRogers1997). germinationoftupeloandcypressseeds (Schneideretal1989;Sharitzetal1990).Asa result,theseonce-dominantspeciesarenolonger ReptilesandAmphibians reproducingeffectively,whichmayultimatelylead Riparianzonesareoftenrichinbothdiversity toashiftintheforestcomposition.Similarly, andabundanceofreptilesandamphibians.In dam-alteredflowregimeshavepreventedregen- somemountainousareasthenumberandbiomass erationofcottonwoodtreesinareasofthe ofsalamanderscanexceedthatofbirdsand westernUnitedStates(Poffetal1997). mammals(BrodeandBury1984). Intermsofvegetationrequiredforterrestrial Reptilesandamphibiansvaryintheirdepen- wildlife,itisalmostaxiomaticthatnativeplants denceuponriparianareas.Manyamphibians arenecessarytosupporthealthypopulationsof spendtheirentireliveswithinthestreamand nativespecies.Studieshaveshownthatpine riparianzone,whileotherspeciesuseitfor plantationsandothermonocultureornonnative breedingoraspartofalargerrange(Brodeand vegetationtendtosupportalowerabundanceand Bury1984).InWesternOregonreptilesand diversityofwildlife(e.g.,Dickson1978).Native amphibiansthataredependentuponriparian riparianvegetationshouldalwaysbeprotected areasmayrequirebuffersof75-100m(246-328 andrestoredwhennecessary.Preservingthe ft)(GomezandAnthony1996).Theauthors naturalhydrologyofthestreamsystemwillalso notedthatmanyspeciesmayalsorequirepreser- helppreservenativeplants. vationoflargeareasofoldgrowthandupland habitataswell.Likewise,inastudyofCarolina Bays,BurkeandGibbons(1995)foundthata275 RiparianBuffersasMovementCorridors m(902ft)uplandbufferisrequiredtoprotectall Oneoftheincidentalbenefitsfrequently nestandhibernationsitesforcertainfreshwater ascribedtoriparianbuffersistheiruseasmove- turtles.Beyondacertainwidth,however,habitat mentcorridorsforterrestrialwildlife.Riparian heterogeneityisprobablymoreimportantthan corridorsmaybemoresuitableinthisrolethan habitatwidth.Burbrinketal(1998)foundthat othertypesofcorridorsbecausetheytendtobe 100m(328ft)naturallyvegetatedriparianzones environmentallydiverse(Cross1985).However, supportedreptileandamphibiandiversitiesthat therehasbeenconsiderabledebateconcerning wereashighas1km(0.62mi)widenaturally whetheranimalsactuallyusecorridorsand vegetatedriparianzones. whethercorridorsshouldbeaconservation priority.ReedNoss(1983,1987)hasbeena strongadvocateofmovementcorridorsfor Vegetation connectingpreservesandmaintaininggenetic Relativelyfewriparianstudieshavefocused exchangebetweenanimalpopulations.Simberloff ontheneedsofnativeterrestrialvegetation. andCox(1987)andSimberloffetal(1992)have Gregoryetal(1992)observedthat“riparian pointedoutthatcorridorshavesomepotential zonesarecommonlyrecognizedascorridorsfor negativeconsequencesandarenotalwaysthe movementofanimalswithindrainages,butthey wisestuseofconservationfunds.Alackof alsoplayanimportantrolewithinlandscapesas empiricalresearchonbothsidesoftheissuehas corridorsfordispersalofplants.”Riparianzones preventedresolutionofthedebate. provideareasofhabitatheterogeneityandcan Harrison(1992)suggestedminimumcorridor supporthighplantdiversity.IntheVermont widthsformigrationoflargemammals,butthe Appalachians,SpackmanandHughes(1995) scaleofhisrecommendations(0.6to22kmwide) foundthat90%ofplantspeciessurveyedwere isnotappropriateformostripariancorridors. representedwithin15m(49ft)ofthestream. Machtansetal(1996)examinedsongbirdabun- dancein100m(328ft)widebufferstripsadja-

TerrestrialHabitat 39 centtoclearcutforesttodeterminewhetherbirds physicalandbiologicalcharacteristicsofthe usedthemasmovementcorridors.Theyfound riparianzone(Junketal1989).Asdiscussed thatjuvenilesdousethecorridorsfordispersal, above,manyriparianplantsrelyoncyclesof butthattheadultsinthebufferareprobably floodingforseeddispersalandrecruitment,while residents.Giventhelackofconsensusand manyfishspeciesuseriparianzonesasnurseries, researchontheuseofriparianbuffersasmove- spawninggroundsorfeedingareasduringhigh mentcorridors,itismoredefensibletobase flows.Ahealthyriparianzoneandahealthy bufferwidthonhabitatrequirementsofterrestrial streamsystemrequiresthemaintenanceofthe organisms.Becausethereisgeneralagreement naturalflowregime(Poffetal1997). thatriparianbuffersofferimportanthigh-quality Ofcourse,whilefloodsaregoodforthe habitat,thereislittleneedtodebatetheirmerits streamandtheriparianzone,theycanbevery asmovementcorridorsatthistime. damagingtohumanstructuresandactivities. Removalofriparianvegetation,drainageof wetlandsanddevelopmentoffloodplainsleadsto SummaryandRecommendations largermagnitudefloodsthatcausegreaterdamage Whilenarrowbuffersofferconsiderable toproperty(Poffetal1997,FIFMTF1996). habitatbenefitstomanyspecies,protecting Micheneretal(1998)reportedthatfloodingin diverseterrestrialriparianwildlifecommunities SouthGeorgiain1994and1997wasgreatly requiressomebuffersofatleast100m(~300ft). amelioratedbythelargelyintactnaturalriparian Birdabundanceanddiversitymaybehighin areas.Riparianwetlandsareespeciallyvaluable impactedareas,butsensitiveinterior-dwelling forfloodwaterstorage. specieswillbelostunlesssomewideriparian Otherfactorscanexacerbatefloodingand tractsarepreserved.Toprovideoptimalhabitat, needtobeconsidered.Channelization,although nativeforestvegetationshouldbemaintainedor inmanycasesconductedforfloodcontrol restoredinallbuffers.Riparianbuffersmayalso purposes,canactuallyincreasethemagnitudeof serveasmovementcorridors,butconsideringthe floodingdownstream(RoseboomandRussell contentiousnessofthisissueitismostdefensible 1985,Poffetal1997).TheFederalInteragency tobasebufferwidthonhabitatrequirements. FloodplainManagementTaskForcenowdiscour- Howeverdesirabletheymightbe,however, agessuchstructuralcontrolsonfloodingand 300ftwidebuffersarenotpracticalonall promotesthepreservationoffloodplainsina streamsinmostareas.Therefore,minimum naturalstate(FIFMTF1996).Impervious riparianbufferwidthshouldbebasedonwater surfacesalsogreatlyincreasestreamstormflows, qualityandaquatichabitatfunctions.Thisshould asdiscussedinSectionVID. resultinanabundanceofnarrowripariancorri- Toprovidemaximumprotectionfromfloods dorsthatwilloffergoodhabitatformanyterres- andmaximumstorageoffloodwaters,abuffer trialspecies.Inaddition,atleastafewwide(300- shouldincludetheentirefloodplain.Shortof 1000ft/~90300m)ripariancorridorsandlarge this,thebuffershouldbeaswideaspossibleand blocksofuplandforestshouldbeidentifiedand includealladjacentwetlands. targetedforpreservation.Thiswillprovide habitatforthosespeciesthatrelyonareasof Asoutlinedintheintroduction,riparian interiorforest.Protectionofthesewideriparian buffersperformanumberofotherimportant corridorsforterrestrialwildlifeshouldbeapart functions,suchasprovidingrecreationaland ofanoverallhabitat-protectionplanforthe aestheticbenefits.Thesearebeyondthescopeof countyorregion. thisdocument,althoughsomeoftheeconomic benefitsofbuffersarediscussedinaseparate paper. FloodControlandOtherRiparianBuffer Functions Floodingisanaturalfeatureofaquaticand riparianecosystems.Thefrequency,durationand magnitudeoffloodshelpstodetermineboththe

40 TerrestrialHabitat VI.DevelopmentofRiparianBufferGuidelines

Fromtheliteraturediscussedabove,itis WhereB=buffereffectiveness,K=saturated relativelyeasytorecommendguidelinesforbuffer hydraulicconductivity,L=widthofbuffer, extentandvegetation: s=slope,andn=Manning’sroughnesscoefficient. Extent:Buffersshouldbeplacedonall Subscriptsbandrdenotethebufferinquestion perennial,intermittentandephemeralstreamsto andthereferencebuffer,respectively. themaximumextentfeasible.Theoverall Thesecondformula,theDetentionModel, effectivenessofthebufferisafunctionofhow considersbothoverlandflowandsubsurfaceflow. manystreammilesareincluded.Agoodpractical goalistoprotectallperennialstreamsaswellas B /B =(n /n )0.6(L /L )2(K /K )0.4(s /s )- allintermittentstreamsofsecondorderand b r b r b r b r b r 0.7(C /C ) higher. b r Vegetation:Buffersshouldconsistofnative forestalongthestreamtomaintainaquatic WhereC=soilmoisturestoragecapacityand habitat.Furtherfromthestream(atleast25-50 theothervariablesarethesameasintheabove ft),someharvestingoftreesmaybepermissible equation. andanouterbeltofmowedgrasscanbeuseful AsnotedbyMuscuttetal(1993),Phillipsdid forretainingnutrientsanddissipatingtheenergy notverifyhismodelsexperimentally,norwere ofrunoff. theyfield-testedorcalibrated.Itisalsoimportant Width,however,issomewhatmoreproblem- tonotethattheequationsareonlyasgoodasthe atic.Althoughsomebufferfunctionsdonot referencebufferselectedforcomparison.The demandgreatwidth,others(especiallyremovalof parametersforreferencebuffersinPhillips’ sediment)requiresignificantwidthundersome studieswerenotbasedonrealreferencesites,but conditions.CurrentregulationsinGeorgia ratherwerebasedontypicalrecordedvaluesfrom mandatefixedwidthbuffers,regardlessof theregionsunderstudy.Phillipsadmitshis topographicconditionsorotherfactors.How- choicesare“somewhatarbitrary”(Phillips ever,itisevidentfromthediscussionsofarthat 1989b).Althoughhissecondmodelisdesigned numerousvariablesinfluencebufferfunction. toaddressnitrogenremoval,manyfactors Thequestionis,whichofthesevariablesarethe influencingdenitrificationandvegetativeuptake mostimportant?Isitpossibletoincorporatethe ofnutrients(thetwomajormechanismsfor mostsignificantfactorsintoavariable-width nitrogenreduction)areignored.Thus,according formula?Tohelpanswerthesequestions,several tothemodel,wetlandareasarepoorriparian previouslydevelopedmodelsandformulaefor buffers,apredictionthatrunscountertoboth describingbufferfunctionordeterminingbuffer scientificresearchandcommonsense.Neverthe- widtharereviewed. less,Phillips’modelmayrepresentagoodstarting pointandcouldprovesomewhatusefulifexperi- mentallyverifiedandcalibrated. A.ReviewofModelstoDetermineBuffer DespitethelimitationsofPhillips’model, WidthandEffectiveness Xiang(1993,1996)andXiangandStratton Phillips(1989a,1989b)derivedtwoequa- (1996)usedPhillips’detentionmodelasabasis tionstodescribebufferperformance,bothof foraseriesofstudiesusingaGeographicInforma- whichcompareagivenbufferwithareference tionSystem(GIS)todelineatebuffersinNorth buffer.Thefirst(theHydraulicModel)focuses Carolina.Althoughthesestudiesprovidean exclusivelyonoverlandflowofsedimentsand excellentexampleoftheutilityofGISforlarge- sediment-boundcontaminants: scaledelineationandstudyofbuffers,theyare stillbasedonanuntestedformula.

Bb/Br=(Kb/Kr)(Lb/Lr)0.4(sb/sr)-1.3(nb/nr)0.6

RiparianBufferGuidelines 41 TheRiparianEcosystemManagementModel case,WEPPpredictedan85%reductioninsoil simulatesthedailyprocessingofwater,sediment, losswhileCREAMSpredicteda10%reduction. carbon,andnutrientsinathree-zonebuffer Noattemptwasmadetoverifypredictionswith system(Lowrance1998).Itisacomputer fieldobservations. simulationthatallowsbuffermanagerstodeter- minethewaterqualityimpactsofbuffersystems ofdifferentwidths,slopes,soils,andvegetation. Mander(1997)alsodevelopedamodelfor Sofarithasbeentestedandcalibratedatsites bufferwidth: nearTifton,Georgia,intheCoastalPlain,and 1/2 additionalverificationisplannedforothersites P=(tqfi )/(mKin) aroundthecountry.Initialtestingrevealedthat REMMisaccurateatpredictingbufferfunction WhereP=bufferwidth,t=aconversionconstant undermanyconditions,butattimesappreciable (0.00069),q=themeanintensityofoverland errorwasobserved(Lowrance1998). flow,f=eitherthedistancebetweenstreamand REMMisprobablythemostdetailedand watershedboundaryortheratioofcatchment realisticmodelofriparianbufferfunctiondevel- areatostreamsegmentlength,i=slope,m= opedsofar.Onceithasbeentestedandcali- roughnesscoefficient(notManning’s),Ki=water bratedfordifferentregions,itshouldbeavery infiltrationrateandn=soiladsorptioncapacity. usefultoolfordeterminingbuffercharacteristics Atthistime,theredoesnotappeartobeany onasite-by-sitebasis.Sensitivityanalysesmay publishedverificationofMander’smodel. alsorevealwhichenvironmentalfactorsarethe mostsignificantindifferentareas,andthis informationcouldbeusedtodevelopasimpler Nieswandetal(1990)determinedthatslope modelthatcouldbeappliedcounty-ormunicipal- andwidthwerethemainfactorsinfluencingthe ity-wide.Atthispoint,however,REMMistoo effectivenessofbuffersintrappingsedimentand data-intensivetobeusefulforpolicypurposes. associatedpollutants.Theydevelopedasimple formulafordeterminingwidthbasedonamodi- fiedManning’sequation: WilliamsandNicks(1988)usedtheChemi- cal,Runoff,andErosionfromAgricultural W=k(s1/2) ManagementSystems(CREAMS)modelto evaluategrassfilterstripsofwidthsof3-15m, slopesof2.4-10%andvariousroughnesscoeffi- WhereW=widthofbufferinfeet cientsona1.6hawheatsite.Theyconcluded k=50ft(constant) thatCREAMS“canbeausefultoolforevaluating s=percentslopeexpressedasawhole filterstripeffectivenessinreducingsediment number(e.g.,5%slope=5) yield.”Theauthorsonlyconductedoneexperi- mentalverification,however,whichshowed Theconstant“50ft”issomewhatarbitrary;it moderatelyclosecorrelation(erosionwasoveres- waschosenbasedoncommonbufferrecommen- timatedby38%).Flannaganetal(1989)found dations,withtheassumptionthata50ftbufferat thatunderidealconditions,CREAMScan onepercentslopeprovidesadequateprotectionto effectivelypredictsedimentdepositioningrass streams.Theauthorsalsorecommendthatslopes filterstrips.Theauthorsdevelopedasimplified greaterthan15%andimpervioussurfacesare versionofthemodelwithextremelygood ineffectiveandshouldnotbecreditedinbuffer correlation(r2=0.99)totheoriginal.Inalater widthcalculations(Nieswandetal1990). study,WilliamsandNicks(1993)usedCREAMS andWEPP(WaterErosionPredictionProject)to Anunusualsystemofdeterminingbuffer evaluatetheeffectivenessofriparianbuffersof widthwasdevelopedbyBuddetal(1988)fora 20-30mat200ConservationReserveProgram countyeastofSeattle,Washington.Whilenota sitesinCentralandEasternU.S.Onlyselected formulaormodelassuch,itisworthmentioning resultswerereported.PredictionsfromWEPP becauseitpurportstoconsidervariousstream andCREAMSvaried,sometimesgreatly:inone corridorvariables.Themethodforwidthdeter-

42 RiparianBufferGuidelines minationinvolvesasubjectiveevaluationof Clinnick(1985)identifiedsoiltype,slopeand streambuffercharacteristics,suchaserosion coverfactorsasimportantvariables.Binfordand potential,wildlifehabitatquality,etc.,alongwith Buchenau(1993)thoughtthemostimportant thethreatstothestreamsegment.Basedonthese factorswerecatchmentsize,slope,andlanduse. factors,theassessorrecommendsawidthfor FennessyandCronk(1997)identifieddetention protectedbuffers,muchasadoctorrecommends timeasthemostimportantvariable;thisis aprescriptionforapatient.Itisunclear,how- actuallyanaggregateofseveralvariables,includ- ever,howtheassessoractuallydeterminesthe ingslope,soilfactors,surfacecovercharacteris- width.Norulesorguidelinesaresupplied. tics,hydrologicalfactors,andothers.Osborne WhenBuddetal(1988)appliedthismethodto andKovacic(1993)suggestedthatfactorsinflu- Bear-EvansCreekinWashington,theyalmost encingnutrientremovalefficiencyofbuffers invariablyrecommendedawidthof50feet, includesedimentationrates,drainagecharacteris- regardlessoflocalconditions.Clearlytheresults tics,soilcharacteristics(i.e.redoxpotential), ofsuchasurveywillreflectthebiasesofthe organicmattercontentandtype,temperature, assessor,andwithoutguidelinessuchaprotocolis successionalstatusandnutrientloadingrates. oflittlepracticaluse. Thefollowingisadiscussionofeachofthese Itisevidentthatnoneofthesemodelsare factorsandconsiderationsonthepracticalityof appropriatefordelineatingriparianbuffersatthe incorporatingthemintoavariable-widthbuffer countyscale.Somearetoodata-intensivetobe formulathatcanreadilybeappliedcounty-wide. easilyappliedonlargescale,somehavenotbeen Aswillbeseenbelow,inmanycasesitisclearthat properlyfield-testedorcalibrated,somedonot somefactorsareimportant,butpracticalconsid- accountforfactorsinfluencingsignificantpro- erationsmakeitdifficulttoincorporatethemona cesses,andsomeyieldinconsistentresultswith largescale.Thepurposeofthispaperisto oneanother.Anew,simpleformulaisneeded. developguidelinesthatarenotonlyscientifically Thenextsectionconsiderswhatvariablesshould defensibleandreasonablyaccurate,butthatcan beincorporatedintothisformula. alsobereadilyappliedtoanypropertywith minimaleffortanddatacollection.Whenitis possibletoconductadetailedanalysisofon-site B.FactorsInfluencingBufferWidth conditionstodeterminetheoptimalbufferfora Itisevidentfromtheprecedingsectionsthat specifictractofland,additionalvariablesshould therearearangeofvariablesthatinfluencethe beconsidered.Inthatcase,amoreaccurate effectivenessofbuffers.Theseinclude: model,suchasREMM,shouldbeused.

• slopeofbanksandareascontributingflowto Slope thestreamsegment Theslopeofthelandoneithersideofthe • rainfall streammaybethemostsignificantvariablein determiningeffectivenessofthebufferintrapping • soilinfiltrationrate(saturatedhydraulic sedimentandretainingnutrients.Thesteeperthe conductivity)andothersoilfactors(redox slope,thehigherthevelocityofoverlandflow potential,pH,temperature) andthelesstimeittakesnutrientsandother • soilmoisturecontent contaminantstopassthroughthebuffer,whether • floodplainwidth attachedtosedimentsormovinginsubsurface • catchmentsize flow.Slopeisavariableinvirtuallyallmodelsof buffereffectivenessandshoulddefinitelybe • landuse includedinaformulaforbufferwidth. • impervioussurfaces AlthoughNieswandetal(1990)makeacase • vegetation,includinglitterandothersurface forawidththatvariesexponentiallywithslope, covercharacteristics(oftenquantifiedasa researchbyTrimbleandSartz(1957)andSwift roughnesscoefficientsuchasManning’sN) (1986)foundalinearrelationshipintheirfield studies.TrimbleandSartzsuggestedthatwidth shouldincreasebyeithertwoorfourfeetforeach

RiparianBufferGuidelines 43 percentincreaseinslope;Swiftsuggestedthat sedimentandnutrientsthatenterthem.Inareas widthshouldincreaseeither0.40or1.39feetfor thatexperienceseasonalstormsofhighintensity, eachpercentincreaseinslope.SinceSwift widerbuffersmaybenecessary.However,there ignoredsmallsiltandclayparticles,hisvariables donotappeartobeanystudiesthatquantifythe areapttobelow.Therefore,thisreviewfollows relationshipbetweenrainfallandbuffereffective- TrimbleandSartz’recommendationofincreasing ness.Severalstudies(e.g.Dillahaetal1988, thebufferby2ftper1%increaseinslope. 1989;Magetteetal1987,1989)describedinthis Manyresearchershavenotedthatverysteep reviewsimulatedheavyrainfallconditionsontest slopescannoteffectivelyremovecontaminants, plots,butthestudieswereshort-termandrainfall thoughthereisdebateoverwhatconstitutesa intensitycomparisonswerenotmade.Magette steepslope.Amongtherecommendationsare: (1987)reportedthatbuffereffectivenessdeclined asrainfalleventsincreased.Others(Cooperetal 1987,Lowranceetal1988)haveexaminedthe • 40%slope(Cohenetal1987) effectivenessofbuffersoverasufficientlylong • 25%slope(Schueler1995a) timeframetoincludelargestorms.Theselong- • 15%slope(Nieswandetal1990) termstudiesindicatedtheneedforwiderbuffers thanwererecommendedbymostshort-term • 10%slope(Herson-Jonesetal1995) studies.Groffmanetal(1991b)suggestedthat denitrificationratesarelowerduringstorms Georgia’sminimumstandardsforMountain becausebufferresidencetimesaredecreased,but SlopeProtectionapplytocertainslopesover noempiricalevidencewasavailable.Hansonetal 25%.Soilsurveystypicallydonotrecommend (1994)reportedincreasesindenitrificationrates agricultureonslopesover10%becauseofthe inresponsetostorms.Precipitationisincorpo- erosionhazard.Ontheotherhand,Swiftfound ratedintothe“R”factoroftheUniversalSoilLoss thatriparianbuffersonloggingroadswereableto Equation,whichprovidesaroughestimateof trapsedimentevenonextremelysteep(80%) erosionfromagriculturalfieldsorotherplots.It slopes,thoughagainsmallparticlesarenot maybepossibletousethisfactorinaformulafor considered.Thereappeartobenootherstudies bufferwidth;thiswarrantsfurtherinvestigation. whichevaluatebuffereffectivenessatgreaterthan Buffersshouldbedesignedtoeffectively moderateslopes.Anycutoffwillbesomewhat handlerunoffandsubsurfaceflow-ratesfroma arbitrary,but25%appearstobereasonablegiven one-yearstormevent.Justasforother therangeshownabove,untilfurtherresearchcan stormwaterbestmanagementpractices,allow- clarifytheissue.Therefore,thebufferwidth ancesshouldbemadeforexceptional(10-yearor shouldincreasebytwofeetforeachslopepercent 25-year)events.Intheabsenceofharddata, upto25%.Slopessteeperthanthisarenot however,itisnotpossibletodrawavalidrela- creditedtowardthebufferwidth. tionshipbetweenrainfallpatternsandbuffer width.Whenpossible,buffereffectivenessshould Rainfall beassessedthroughstreamwaterqualitymeasure- mentsduringorafterstorms.Whenbuffersare Thepatternandintensityofrainfallare foundtobeineffectivetheyshouldbewidenedor importantfactorsindeterminingtheeffectiveness additionalon-sitecontrolsshouldbeimple- ofbuffers.DanielsandGilliam(1996)foundthat mented. mostofthesedimentthatpassedthrougha riparianbufferdidsoduringasinglestorm.One studycitedbyKarrandSchlosser(1976)found CatchmentSize/HydraulicLoading that75%ofagriculturalerosionoccursduring Itislogicalthatanincreaseincatchmentsize fourstormsayear,butanotherstudytheycite willdemandanincreaseinbufferwidth.Thatis, foundthatsmallerraineventscausedatleast50% astreamsegmentthatdrainsfiveacreswillcollect oferosionandtherewassignificantregional morepollutantsthanonedrainingtwoacres,and variability.Itwouldbeexpectedthatinregions alargerbufferwillberequired.Therelationship whererainfallisuniformandlight,narrower maynotbesosimple,however.Sorranoetal buffersmayeffectivelymanagemostofthe (1996)arguethatsediment/nutrientloading

44 RiparianBufferGuidelines modelsthatdirectlycorrelateloadingratewith includingsoilfactorsasvariableswouldadd catchmentareaignorethefactthatasdistance greatlytotheaccuracyofamodel.Ofcourse,it fromthestreamincreases,sedimentsandnutri- maybereasonabletoconsiderverygeneralsoil entsarelesslikelytoactuallyentersurfacewater. characteristics,suchwhetherasoilishydric Inotherwords,theareasclosesttostream (frequentlyflooded)andtheoverallhydrologyof channelsarefarmoreimportantthanmoredistal thearea.Incaseswhereon-siteanalysisis areas,andanincreaseincontributingareadoes possible,itmaybereasonabletoadjustbuffer notnecessarilycorrespondtoanincreasein widthaccordingly. contaminantloading.Hatfieldetal(1995) reportedthatcatchmentsizehadlittleinfluence onpesticideremovalbybufferstrips. SoilMoisture&Wetlands Additionally,denitrificationratesusually Denitrificationratesshowapositivecorrela- increasetoaccommodateincreasednitrate tionwithsoilmoisturecontent(e.g.Groffmanet loadingrates,aslongascarbondoesnotbecome al1991a,b,Hansonetal1994,Schnabeletal limiting.HaycockandPinay(1993)reported 1997).Wetlands,thosesoilswiththehighest 99%nitratereductionsin20m(66ft)wide moisturelevels,havelongbeenrecognizedfor woodedriparianbuffersregardlessofthelevelof theirvalueintrappingsedimentandnutrients. nitrateloading.Manderetal(1997)foundthat Theyarealsorecognizedasimportantanimal nutrientretentionbearsastronglog-logrelation- habitatandarevaluableinreducingfloodim- shipwithnutrientload;i.e.,asloadincreases, pacts. retentionincreases(Theyalsomakearather Riparianwetlandsaresignificantenoughto unconvincingcasethatretentionefficiency meritautomaticinclusioninabuffersystem.The declinesslightlywithhigherloads).Itappears widthofthebuffershouldbeextendedbythe thatincreasednutrientand/orhydraulicloaddoes widthofalladjacentwetlands.Forexample,ifa notnecessarilyrequireawiderbuffer.Inany sitethatwouldotherwisehavea75ft(22.9m) case,therelationshipissufficientlycomplexthat widebufferisfoundtoincludepartofa50ft catchmentsizeisnotareasonablevariableto (15.2m)wideareaofriparianwetlands,total includeinasimplebuffermodel. bufferwidthshouldbeextendedto125ft(38m). Constructedwetlandsarebecomingmorecom- monasacomponentinhumanandanimalwaste SoilFactors treatmentsystems.However,naturalwetlands Soilcharacteristicsdetermineinlargepart requirebuffersoftheirownandshouldneverbe whetherornotoverlandflowoccurs,howfast usedtoprocessuntreatedwaste(Lowrance waterandcontaminantsmovetothestream,and 1997b,Hubbard1997). otherfactorsrelevanttotheeffectivenessofthe riparianbuffer.Denitrificationratesarestrongly influencedbysoilmoistureandsoilpH Floodplain (Groffmanetal1991a,b). Thefloodplainrepresentstheregionof However,determiningsoilcharacteristicson materialinterchangebetweenlandandstream,as acounty-widescaleissomewhatproblematic. wellasthelimitsofstreamchannelmigration. AccordingtoSteveLawrenceoftheNatural Studiesreviewedabovehaveshownthatthe ResourcesConservationService,soilsurveymaps entirefloodplaincanbeasiteofsignificant maynotbesufficientlyaccurateforapplicationin contaminantremoval.Forthisreason,itmakes amodelforbufferwidth(pers.com.).The sensetoextendthebuffertotheedgeofthe minimummappingunitis3-4acres,andinevita- floodplainwheneverpossible.Intheirbuffer blysome“inclusions”occur:thesearesmallareas guidelinesforWillametteNationalForest,Gre- ofdifferentsoiltypelumpedinwiththedominant goryandAshkenas(1990)declarethat“the soiltype.Mappingaccuracyisevenlowerfor riparianmanagementzoneshouldincludethe soilsthathavebeendisturbedbyconstructionor entire[100year]floodplain.Failuretodosowill otheractivities(ElizabethKramer,pers.com.). seriouslyjeopardizetheriparianmanagement Therefore,withoutdetailedandpotentially objectivesduringmajorfloods.”Schueler(1995) expensiveon-sitesoilanalyses,itisunlikelythat alsorecommendsincludingthefloodplain.

RiparianBufferGuidelines 45 Includingtheentirefloodplainis,naturally,also cientlywidebuffermightallowaloggingroadto thebestwaytominimizedamagefromfloods. bebuilttooclose,damagingthestreamwith sediment.Furthermore,landusesofthesame generalcategory(e.g.,farming)couldhavevery Therefore,wheneverfeasible,theriparian differenteffectsonastream.Forexample,one buffershouldbeextendedtotheedgeofthe100- propertyzonedagriculturalmightbeplantedto yearfloodplain.Evenwhenthisisnotpossible, cottonandproducemassivesedimentloads,while certainactivitiesandstructuresshouldbeex- anothermightbeplantedtounmanagedpine cludedfromthefloodplainbecauseoftherisk trees.Administrationofsuchaprogramwouldbe theyposetothestream.Theseincludeanimal difficultandsubjecttofrequentchallenges. wastelagoons,animalwastesprayfields,hazard- ousandmunicipalwastedisposalfacilities,and Amorepracticalapproachistoestablish otherpotentialsourcesofseverecontamination. riparianbufferwidthsthataresufficientlywideto mitigatethegreatmajorityoflanduseimpacts. Specificactivitiesthatareespeciallydamaging LandUse shouldbesubjecttoadditionalsetbacks.In Urbanandagriculturalwatershedsexperience addition,pollutionshouldbemanagedon-site, greatersedimentationandeutrophicationthan impervioussurfacesshouldbelimitedandripar- forestedwatersheds(CrawfordandLenat1989). ianbufferbypassesshouldbeminimized(see AstudyincoastalSouthCarolinafoundthata below).Thesecontrolsmaydomoretoimprove streamdrainingan11haurbanizedwatershed streamwaterqualityandhabitatthanadditional hada66%greatersedimentloadthanastream increasesintheriparianbufferwidth. draininga37haforestedwatershed,despiteits smallercatchmentarea(Wahletal1997).Studies Impervioussurfaces byCrawfordandLenat(1989)clearlyshowed thatforallindicators(sediment,nutrients,metals, Becauseimpervioussurfaceareaissoclosely fish,invertebrates),urbanstreamsaremore correlatedwithstreamwaterquality,itmaybe heavilyimpactedthaneitherforestedoragricul- consideredasavariablefordeterminingbuffer turalstreams.Agriculturalwatershedsalso width.Itisfarmoreeffective,however,totreat displayseriousimpacts,althoughtheycanstill impervioussurfaceasacontrollablevariableand retainahealthy(ifaltered)biota(Crawfordand implementimpervioussurfacelimitsandcontrols. Lenat1989).ArecentstudybytheU.S.Geologi- Thisisdiscussedinmoredetailinalatersection. calSurveyfoundthatPiedmont,Georgiastreams Inanycase,however,preexistingimpervious drainingwatershedsthataremostlyforested surfacesnearthestreamwillnoteffectively maintainthehealthiestfishcommunities.Agricul- performbufferfunctionsandshouldnotcount turalandsuburbanstreamsareworse,andurban towardbufferwidth.Forexample,ifa30ftwide streamstendtobethemostdegraded. roadparallelsastream,theriparianbuffershould beincreasedby30ftontheroadside. Incorporatinglanduseintoaformulafor riparianbufferwidthpresentssomepractical difficulties,however,becausetherelationshipis Vegetation quitecomplex.Forexample,eventhoughurban Vegetationcharacteristicsmayinfluence streamstendtosuffergreaterimpactsthanother buffereffectivenessandthereforenecessary streams,urbanbuffersalsotendtobelesseffec- width.However,inthisreportvegetationis tivebecausestormdrainsdeliveralargepropor- consideredafactorundermanagementandnota tionofrunoffdirectlytothechannel.Therefore, widthvariable. wideningabufferinanurbanareamayhaveless ofaneffectonwaterqualitythanwideninga bufferinanagriculturalarea.Inasimilarvein, doesapristinestreamrunningthroughaforest needasmallerorlargerbufferthananagricul- turalstream?Althoughthestreammaynot appeartobethreatened,theabsenceofasuffi-

46 RiparianBufferGuidelines C.BufferGuidelinesforWaterQuality • Slopesover25%donotcounttowardthe Protection width. Intheprevioussectionitwasestablishedthat • Thebufferappliestoallperennialand bufferwidthshouldvarybasedonslopeand intermittentstreams.Thesemaybedefined shouldincludewetlands.Onefinaltaskremains onthebasisofUSDAsoilsurveymaps,USGS beforebufferguidelinesarepresented:todeter- topographicmaps,orothermethodwhich minetheminimumwidthofthebuffer.Without mostaccuratelyrepresentstrueconditions. consideringterrestrialhabitat,mostrecommenda- tionsforminimumbufferwidthsrangefrom15m OptionTwo: (~50ft)to30m(~100ft).Itmightbepossible ThesameasOptionOne,except: todeterminethecorrectwidthfromwithinthis rangebyconductingadditionalresearchinthe • Basewidthis50ft(15.2m)plus2ft(0.61m) regionofinterest.Intheabsenceofthis,how- per1%ofslope. ever,thechoiceofminimumwidthamountstoa • Entirefloodplainisnotnecessarilyincluded choiceregardingmarginofsafetyor,conversely, inbuffer,althoughpotentialsourcesofsevere acceptablerisk.Thegreatertheminimumbuffer contaminationbeexcludedfromthe width,thegreaterthemarginofsafetyintermsof floodplain. waterqualityandhabitatpreservation.Accord- • Thebufferappliestoallperennialand ingly,severaloptionsareproposed:Thefirsttwo intermittentstreams.Thesemaybedefined arevariable-widthoptions,onewitha100ftbase onthebasisofUSDAsoilsurveymaps,USGS width,andonewitha50ftbasewidth.Thefirst topographicmaps,orothermethodwhich canbeconsideredthe“conservative”option:it mostaccuratelyrepresentstrueconditions. meetsorexceedsmanybufferwidthrecommen- dations,andthereforeshouldensurehighandsupportgoodhabitatfornative Figure9showsanexampleofhowOption aquaticorganisms.Thesecondisthe“riskier” Twocanbeappliedtoatheoreticalriparian option:itshould,undermostconditions,provide landscape. goodprotectiontothestreamandgoodhabitat preservation,althoughheavyrain,floods,orpoor managementofcontaminantsourcescouldmore OptionThree: easilyoverwhelmthebuffer.Alloftheseoptions • Fixedbufferwidthof100ft. aredefensiblegiventheliteraturereviewedhere. • Thebufferappliestoallperennialand Asathirdoption,a100ftfixed-widthriparian intermittentstreams.Thesemaybedefined bufferisrecommendedforlocalgovernmentsthat onthebasisofUSDAsoilsurveymaps,USGS finditimpracticaltoadministeravariable-width topographicmaps,orothermethodwhich buffer. mostaccuratelyrepresentstrueconditions.

OptionOne: Allofthebufferoptionsdescribedwill • Basewidth:100ft(30.5m)plus2ft(0.61m) providehabitatformanyterrestrialwildlife per1%ofslope. species.However,significantlywiderbuffersare necessarytoprovidehabitatforforestinterior • Extendtoedgeoffloodplain. species,manyofwhicharespeciesofspecial • Includeadjacentwetlands.Thebufferwidth concern.Themostcommonrecommendationin isextendedbythewidthofthewetlands, theliteratureonwildlife(mostofwhichfocuses whichguaranteesthattheentirewetlandand onbirds)isfora100m(300ft)riparianbuffer. anadditionalbufferareprotected. Althoughthisisnotpracticalinmanycases,local • Existingimpervioussurfacesintheriparian governmentsshouldpreserveatleastsome zonedonotcounttowardbufferwidth(i.e., ripariantractsof300footwidthorgreater. thewidthisextendedbythewidthofthe Identificationoftheseareasshouldbepartofan impervioussurface,justasforwetlands). overall,county-widewildlifeprotectionplan.

RiparianBufferGuidelines 47 ActivitiesProhibitedintheBuffer morestringentthantheminimumstandardsmay Asageneralrule,allsourcesofcontamination alsowishtomakethisexemption. shouldbeexcludedfromthebuffer.These include: TheThree-ZoneBufferSystem • landdisturbingactivities Athree-zoneriparianbuffersystemhasbeen • impervioussurfaces suggestedforagriculturalareastoallowsome limiteduseofriparianlandwhilepreserving • loggingroads bufferfunctionality(Welsch1991).Zoneone, • mining whichextendsfromthebankto15ft(4.6m) • septictankdrainfields withinthebuffer,isundisturbedforest.Zonetwo • agriculturalfields isamanagedforest,beginning15ft(4.6m)from thebankandextendingto75ft(22.9m).Peri- • wastedisposalsites odicharvestingandsomedisturbanceisaccept- • applicationofpesticidesandfertilizer(except ablewithinthiszone.Zone3isagrassedstrip, asnecessaryforbufferrestoration) beginning75ft(22.9m)fromthebankand • livestock extendingtothebuffer’sedgeat95ft(29.0m). Controlledgrazingandmowingmaybepermitted inthiszone. Oneexemptiontothislistthatlocalgovern- mentsmaywishtoconsiderisconstructionofa Whilethethree-zonesystemrepresentsa singlefamilyhome.Minimumstandardsforriver goodcompromiseforbuffersonagriculturalland, corridorprotectionissuedbytheEnvironmental itintroducesanaddedlevelofcomplexitytoa ProtectionDivisioncannotbylawprohibitthe bufferordinancethatmaynotbewarranted, buildingofasingle-familydwellingwithinthe especiallyifavariable-widthsystemisused. bufferforprotectedRiverCorridors(OCGA12- Localgovernmentsmaywanttoencouragethe 2-8).Localgovernmentsthatdevelopordinances three-zonesystemasavoluntarypracticeon

Figure9.ApplyingaFlexibleWidthBuffer. This diagram illustrates how Buffer Option 2 is applied to a hypothetical landscape. The average slope of the stream valley here is 12%, which means the buffer should be 50+24= 74 ft wide. The width of the wetland and the steep slope are added to the total width, so the buffer actually covers some 109 ft. If an impervious surface were present, its width would also be added to the total.

10% slope

30% slope

Wetland 10% slope Channel limit of buffer

25 ft 25 ft 40 ft 10 ft 9 ft not counted not counted

48 RiparianBufferGuidelines agriculturallands.Additionalinformationis severerainstorms.Impervioussurfaces,onthe availablefromtheNaturalResourcesConserva- otherhand,transfermostprecipitationinto tionService. runoff,leadingtoincreasedsurfaceerosion, higherandfasterstormflowsinstreams,and increasedchannelerosion.Asaconsequence, IsThisPossible? urbanstreamscharacteristicallyhavegreatly Anordinancethatestablishes100ftorwider elevatedsedimentlevels(Wahletal1997,Fricket buffersonallperennialstreamsmaysound al1998).Flowfromimpervioussurfacesalso unrealisticortooheavy-handedformostlocal carriespollutantsdirectlytostreams,bypassing governments.Butsuchanordinanceisnotas thenaturalfiltrationthatwouldoccurbypassage draconianasitfirstsounds.Itisimportantto throughsoil.Impervioussurfacesaresoclosely bearinmindthatinmostareas,suchlanduse correlatedwithurbanwaterpollutionthatthey lawsmustofnecessityexemptexistinglanduses: arecommonlyusedasanindicatorofoverall nolocalgovernmentisgoingtotellasmall streamquality(ArnoldandGibbons1996).May propertyownerthathemustmovehishouseor etal(1997)notethatimpervioussurfacesarethe converthislawntoforest(althoughhecouldbe “majorcontributortochangesinwatershed activelyencouragedtodothelatter).Thepeople hydrologythatdrivemanyofthephysicalchanges whoaremostaffectedaredevelopers,whomust affectingurbanstreams.”Trimble(1997)ascribed nowincorporatebuffersintotheirdesigns.This thecauseoflarge-scalechannelerosioninSan willnotnecessarilyhaveanegativeeconomic DiegoCreektoincreasedimpervioussurfacesin impact.Severalstudieshaveshownthatpeople thewatershed.Impervioussurfacesalsodecrease willpayapremiumtoliveorworknear groundwaterrechargeandstreambaseflowlevels greenwaysorotherprotectedareas,andthis (FergusonandSuckling1990).Inastudyof allowsthedevelopertorecoupatleastsomeof PeachtreeCreekinAtlanta,FergusonandSuck- thecostsofnotdevelopinguptothestreambank. ling(1990)alsolinkedimpervioussurfacestoan Finally,anybufferordinanceshouldalways increaseinevapotranspiration;waterevaporates includeclear,fairrulesforvariances,whichwill quicklyfromimpervioussurfaces,creatinga insurethatanyonewhoisunfairlyimpactedby warmmicroclimatewhichincreasestranspiration thelawcanobtainrelief.Moreinformationon ratesintreesandplants.Thisfurtherreduces howlocalgovernmentscandevelopandimple- streamflows,exceptduringrainstorms.Inshort, mentriparianbufferordinancesisincludedina impervioussurfacescause“flashy”streamswith separate“GuidebookforDevelopingLocal lowbaseflowsandveryhighstormflows. RiparianBufferOrdinances,”availablefromthe Riparianbufferscannotprotectastreamfrom UniversityofGeorgiaInstituteofEcologyOffice channelerosionifthestreamisconstantlyscoured ofPublicServiceandOutreach.Thedocument byhighstormflowscausedbyrunofffrom discussesvarioustoolsforprotectingbuffers,case impervioussurfaces.Allmunicipalitiesand studiesofexistingbufferprotectionprograms, countiesexperiencingurbanandsuburbangrowth importantissuesofconcernssuchas“takings,” shouldconsiderenactingimpervioussurface andincludesmodelriparianbufferordinances. controlsinadditiontoriparianbufferordinances. Theselimitscanrangefrom10-12%,thepointat whichstreamsareconsideredimpacted,to30%, thepointatwhichstreamscanbeconsidered D.OtherConsiderations degraded(Klein1979).Ifexistingtechnologies Establishingasystemofprotectedriparian werevigorouslyapplied,impervioussurfaces buffersisanimportantstepinpreservinghealthy couldbenearlyeliminated(BruceFerguson,pers. streams.However,anumberofotherstepsmust com.).Furtherinformationonreducingimpervi- betakenifbuffersaretobetrulyeffective. oussurfacesisavailableinthepublicationLand DevelopmentProvisionstoProtectGeorgiaWater Quality(UGASED1997)andinarecentpublica- ReducingImperviousSurfaces tionoftheEtowahInitiative(Millerand Sutherland1999). Inanaturalforestedwatershed,overland flowisquiterare,occurringonlyduringthemost

RiparianBufferGuidelines 49 On-SiteManagementofPollutants Nutrients Becauseriparianzonescanbecomesaturated Riparianbuffersalonearenotenoughto withphosphorus,itisveryimportanttomanage mitigatetheeffectsofotherwiseuncontrolled sourcesofthisnutrient.Septicdrainfieldsand uplandactivities(BinfordandBuchenau1993). sewerpipescanleaksolublephosphorusand AsBarling(1994)notes,“bufferstripsshould shouldbelocatedasfarfromstreamsaspossible. onlybeconsideredasasecondaryconservation Frequently,however,sewerpipesarerouted practiceaftercontrollingthegenerationof throughstreamcorridors,creatinganextreme pollutantsattheirsource.”Inmanycasesitmay hazardiftheyshouldleak.Althoughareviewof beeasier,cheaperandpreferabletoprevent setbackrecommendationsforseptictankdrain pollutantsfrommovingoffsiteinthefirstplace. fieldsandsewerpipesisbeyondthescopeofthis document,aminimumdistanceof100ft(~30m) Sediment appearsprudentconsideringthemagnitudeofthe risk.Sewerpipesshouldonlycrossstreamswhen Inthecaseofagriculturalregions,erosion absolutelynecessary. reductioneffortsshouldfocusonkeepingsoilin fields,whereitisusable,ratherthantrappingitin ConcentratedAnimalFeedingOperations theriparianzone,whereitismuchmoredifficult (CAFOs)typicallydisposeoflargeamountsof tosalvage.TheNaturalResourcesConservation nutrient-richwastebyholdingitinwastelagoons Service,theGeorgiaSoilandWaterConservation andapplyingittofieldseitherasfertilizeror Commission,extensionagenciesandother simplyasadisposalmethod(Linville1997). governmentalandnon-governmentalorganiza- LargeCAFOsmaybeconsideredpointsource tionscanprovidedetailedinformationoneffec- pollutersandcanberequiredtoobtainafederal tivebestmanagementpracticestoreduceerosion. permit(issuedinGeorgiabytheEPD),but ItisessentialtofollowtheseBMPsinadditionto nationallyonly12%ofCAFOsareactually protectingfunctioningriparianbufferstrips. permitted(Linville1997).Wastelagoonspillscan Localgovernmentsneedtotakeacoordinating bedevastatingtorivers(Burkholder1997, roleinensuringthatthevariousagenciesandthe Linville1997),andplacementofsuchlagoons agriculturalcommunitycooperatetoreachwater shouldbecarefullyregulated.Itisprobablybest qualitygoalsforthebasin. todetermineplacementonasite-by-sitebasisto ensurethatifaspilloccurs,itseffectonthe Likewise,BMPsmustbefaithfullyimple- streamsystemwillbeminimized.Attheleast, mentedandenforcedinconstructionprojects.A lagoonsshouldbelocatedoutsideofriparian reviewbyBrownandCaraco(1997)foundthatin buffersandthe100-yearfloodplain. manycases,halfofallpracticesspecifiedin erosionandsedimentcontrol(ESC)planswere Becauseriparianbuffersaregenerallyeffec- notimplementedcorrectlyandwerenotworking. tiveatremovingnitrogenfromanimalwaste Contractorshabituallysavedmoneybycutting (Groffmanetal1991a),manureapplication ESCinstallationandmaintenance.Surveysalso strategiesshouldbebasedonphosphorus,espe- foundthatESCpracticesratedas“mosteffective” ciallyinwatershedswhereitisalimitingnutrient byexpertswereseldomappliedwhilethoserated (DanielandMoore1997,MiguelCabrera,pers. “ineffective”arestillwidelyused.Theauthors com.).StudiesbyMiguelCabrerahaveshown alsoreportthatafieldassessmentofsiltfences thattheconcentrationofphosphorusinrunoffis foundthat42%wereimproperlyinstalledand proportionaltotheamountappliedtothefield, 66%wereinadequatelymaintained.They andthatcurrentapplicationratesaremanytimes concludethatwhileasubstantialamountof higherthantheyshouldbetomaintainphospho- moneyisnowspentonESCpractices,“muchof rusatacceptablelevels(pers.com.).Newap- thismoneyisnotbeingwellspent—practicesare proachestophosphorusmanagementaregaining poorlyorinappropriatelyinstalled,andverylittle acceptanceandholdsomepromiseforreducing isspentonmaintainingthem”(BrownandCaraco theamountofphosphorusthatcanreachthe 1997).KundellandRasmussen(1995)have stream.However,evenwiththebestavailable notedtheimportanceofinspectionsandenforce- controls,manureapplicationrateslikelywillneed mentofBMPsinGeorgia.

50 RiparianBufferGuidelines tobereducedsubstantiallytopreventphosphorus riparianbufferwithfieldsdrainedbyditchesand pollutionofstreams(MiguelCabrera,pers.com.). draintile.Theyobservedhighnitratereduction intheriparianbuffer,butmuchlowernitrateloss indrainageditchesandverylittlenitrateremoval RiparianBufferCrossings/Bypasses forfieldsdrainedbytile.Nitratelevelsintile drainsinGeorgiaagriculturalfieldshavebeen Roadcrossingsandotherbreaksinthe foundtobeseveraltimeshigherthanthelevelsin riparianbuffereffectivelyreducebufferwidthto theshallowaquifer(Fricketal1998).Construct- zeroandallowsedimentandothercontaminants ingriparianwetlandsattheoutfallofthedrain topassdirectlyintothestream(Swift1986). tilewouldhelptoslowthetransportofpollutants Buffercrossings,orevenjustnarrowpointsinthe intothestreamandpermitnutrientuptakeand buffer,maybethelocationsofthemajorityof removal(OsborneandKovacic1993). contaminanttransporttothestream(Welleretal 1998).Allbuffercrossingsshouldbeminimized, Similarly,inurbanareas,stormdrainscarry butwhentheyarenecessary,Schueler(1995) contaminant-ladenwaterfromimpervious suggeststhefollowingguidelines: surfacesdirectlyintostreams.Thispractice shouldbediscontinued.Ideally,runoffshouldbe allowedtoinfiltrateintothesoilascloseas • Crossingwidthshouldbeminimized possibletothesource.Ifsomedrainageis • Direct(90degree)crossinganglesare required,outflowshouldeitherbedirectedinthe preferabletoobliquecrossingangles formofsheetflowacrossasuitablywideriparian bufferorintoastormwaterdetentionpondsor • Constructionshouldbecapableofsurviving constructedwetlands.Whennecessary,con- 100-yearfloods structedwetlandsmaybeincorporatedintothe • Free-spanbridgesarepreferableto riparianbufferiftheyareproperlylocatedanddo culvertizingorpipingthestream notharmexistingwetlandsorothercritical riparianfeatures(Schueler1995a). Specialcaremustbetakentostabilizebanks aroundthebuffercrossing.Crossingsshouldbe regularlymonitored,especiallyafterseverestorms ForMoreInformation andfloods,todetermineifexcessivesedimenta- Foradditionalinformationonhowlocal tionisoccurring.Sewerlineswhichcrossstreams governmentscandevelopriparianbufferordi- shouldalsobeinspectedtoensuretheyarenot nances,a“GuidebookforDevelopingLocal leakingordamagedinanyway. RiparianBufferOrdinances,”isavailablefromthe Itisalsoessentialtominimizepracticeswhich UniversityofGeorgiaInstituteofEcologyOffice causewaterflowtobypasstheriparianzone. ofPublicServiceandOutreach(phone:706-542- Draintilesusedtoimprovedrainagefrom 3948;email:[email protected]).For agriculturalfieldsdischargeflowdirectlyintothe additionalscientificinformationonriparian stream(FennessyandCronk1997,Osborneand buffers,allofthesourcescitedinthisrevieware Kovacic1993,Voughtetal1994).Jacobsand listedintheReferencessectionwhichfollows. Gilliam(1985)comparedfieldsdrainedbya

RiparianBufferGuidelines 51 References

Allan,J.D.,1995.StreamEcology:Structure Ontariostreams.NorthAmericanJournalof andFunctionofRunningWaters.London,UK: FisheriesManagement5:364-378. ChapmanandHall. Beeson,C.E.andP.E.Doyle.1995.Com- Abelho,M.andM.A.S.Graça.1996.Effects parisonofbankerosionatvegetatedandnon- ofeucalyptusonleaflitterdynamics vegetatedchannelbends.WaterResourcesBulletin andmacroinvertebratecommunitystructureof 31(6):983-990. streamsinCentralPortugal.Hydrobiologia324: 195-204. Binford,M.W.andM.J.Buchenau.1993. Ripariangreenwaysandwaterresources.In: Anderson,K.,B.R.Dubrow,S.Paladino,M. Smith,D.S.andP.Cawood,eds.Ecologyof PaulandT.Schofield.Dateunknown.Intercounty Greenways.Minneapolis,MN:Universityof CooperationontheUpperEtowah:AWindowof MinnesotaPress. Opportunity.Atlanta,GA:GeorgiaInstituteof Technology. Bjorkland,R.J.Unpublished.RiparianZones: TheMultipleUseEcosystems—AReview. Arnold,C.L.,Jr.andC.J.Gibbons.1996. ImperviousSurfaceCoverage:Theemergenceof Black,S.,P.Broadhurst,J.HightowerandS. akeyenvironmentalindicator.APAJournal Schauman.1985.Thevalueofriparianhabitat 62(2):243-258. andwildlifetotheresidentsofarapidlyurbaniz- ingcommunity.In:RiparianEcosystemsandtheir Arora,K.,S.K.Mickelson,J.L.Baker,D.P. Management:ReconcilingConflictingUses(First Tierney,C.J.Peters.1996.Herbicideretentionby NorthAmericanRiparianConference).Ft.Collins, vegetativebufferstripsfromrunoffundernatural CO:RockyMountainForestandRangeExperi- rainfall.TransactionsoftheASAE2155-2162. mentStation(Gen.Tech.ReportRM-120). Baltz,D.M.andP.B.Moyle.1984.The Brode,J.M.andR.B.Bury,1984.The influenceofriparianvegetationonstreamfish importanceofripariansystemstoamphibiansand communitiesofCalifornia.Pp183-187inR.E. reptiles.Pp30-36inR.E.WarnerandK.M. WarnerandK.M.Hendrix(eds),California Hendrix(eds.),CaliforniaRiparianSystems: RiparianSystems:Ecology,Conservationand Ecology,ConservationandManagement.Berkeley, Management.Berkeley,CA:UniversityofCalifor- CA:UniversityofCalifornia. niaPress. Brown,W.E.andD.S.Caraco.1997.Muddy Barling,R.D.andI.D.Moore.1994.Roleof WaterIn—MuddyWaterOut?WatershedProtec- bufferstripsinmanagementofwaterwaypollu- tionTechniques2(3):393-403. tion:Areview.EnvironmentalManagement 18(4):543-558. Budd,W.W.,P.L.Cohen,P.R.Saundersand F.R.Steiner.1987.Streamcorridormanagement Barnes,K.H.,J.L.MeyerandB.J.Freeman. inthePacificNorthwest:I.Determinationof 1997.SedimentationandGeorgia’sfishes:An stream-corridorwidths.EnvironmentalManage- analysisofexistinginformationandfuture ment11(5):587597. research.In:Hatcher,K.J.,ed.,Proceedingsofthe 1997GeorgiaWaterResourcesConference. Burbrink,F.T.,C.A.PhillipsandE.J.Heske. Athens,GA:UniversityofGeorgia. 1998.AriparianzoneinsouthernIllinoisasa potentialdispersalcorridorforreptilesand Barth,C.A.1995.Nutrientmovementfrom amphibians.BiologicalConservation86:107-115. thelawntothestream?WatershedProtection Techniques2(1):239-246. Burke,M.A.1996.HistoricEvolutionof ChannelMorphologyandRiverineWetland Barton,D.R.,W.D.TaylorandR.M.Biette. HydrologicFunctionsinthePiedmontofGeorgia 1985.Dimensionsofriparianbufferstrips (Master’sThesis).Athens,GA:Universityof requiredtomaintaintrouthabitatinsouthern Georgia.

52 References Burke,V.J.andJ.W.Gibbons.1995.Terres- Cooper,C.M.1993.Biologicaleffectsof trialbufferzonesandwetlandconservation:A agriculturallyderivedsurfacewaterpollutantson casestudyoffreshwaterturtlesinaCarolinaBay. aquaticsystems—areview.JournalofEnviron- ConservationBiology9(6):1365-1369. mentalQuality22:402-408. Burkhead,N.M.,S.J.Walsh,B.J.Freeman Cooper,J.R.,J.W.Gilliam,R.B.Danielsand andJ.D.Williams.1997.Statusandrestoration W.P.Robarge.1987.Riparianareasasfiltersfor oftheEtowahRiver,animperiledSouthern agriculturalsediment.SoilScienceSocietyof AppalachianEcosystem.In:Benz,G.W.andD.E. AmericaJournal51:416-420. Collins,eds.,AquaticFaunainPeril:TheSouthern Perspective.Decatur,GA:SoutheastAquatic Correll,D.S.1997.VegetatedStreamRipar- ResearchInstitute(SpecialPublication1). ianZones:TheirEffectsonStreamNutrients, Sediments,andToxicSubstances(AnAnnotated Burkholder,J.M.,M.A.Mallin,H.B. andIndexedBibliography).[http:// Glasgow,Jr.,L.M.Larsen,M.R.McIver,G.C. www.serc.si.edu/documents/ripzone.html]. Shank,N.Deamer-Melia,D.S.Briley,J.Springer, Accessed9/25/98. B.W.Touchette,andE.K.Hannon.1997. Impactstoacoastalriverandestuaryfrom Coyne,M.S.,R.A.Gilfillen,R.W.Rhodes ruptureofalargeswinewasteholdinglagoon. andR.L.,Blevins.1995.Soilandfecalcoliform JournalofEnvironmentalQuality26:1451-1466. trappingbygrassfilterstripsduringsimulated rain.JournalofSoilandWaterConservation A.L.BurrussInstituteofPublicService 50(4):405-408. (BurrussInstitute),KennesawStateUniversity. 1998.LakeAllatoonaPhaseIDiagnostic-Feasibil- Crawford,J.K.andD.R.Lenat.1989. ityStudyReportfor1992-1997.Kennesaw,GA: Effectsoflanduseonthewaterqualityandbiota A.L.BurrussInstituteofPublicService, ofthreestreamsinthePiedmontProvinceof KennesawStateUniversity. NorthCarolina.In:WaterResourcesInvestigation Report89-4007.Raleigh,NC:USGeological Castelle,A.J.,A.W.JohnsonandC.Conolly. Survey. 1994.Wetlandandstreambufferrequirements— Areview.JournalofEnvironmentalQuality Cross,S.P.1985.Responsesofsmallmam- 23:878-882. malstoforestriparianperturbations.In:Riparian EcosystemsandTheirManagement:Reconciling Clinnick,P.F.1985.Bufferstripmanagement ConflictingUses(FirstNorthAmericanRiparian inforestoperations:Areview.AustralianForestry Conference).Ft.Collins,CO:RockyMountain 48(1):34-45. ForestandRangeExperimentStation(Gen.Tech. ReportRM-120). Cohen,P.,P.R.Saunders,W.W.BuddandF. R.Steiner.1987.Streamcorridormanagementin Dahl,J.1998.Theimpactofvertebrateand thePacificNorthwest:II.Managementstrategies. invertebratepredatorsonabenthicstream EnvironmentalManagement11(5):599-605. assemblage.Oecologia117:217-226. Collier,K.J.,A.B.Cooper,R.J.Davies- Daniel,T.C.andP.A.Moore.1997.Manag- Colley,J.C.Rutherford,C.M.Smith,R.B. ingPhosphorusinManure:Causes,Concernsand Williamson.1995a.ManagingRiparianZones:A BMPs.In:ProceedingsoftheSoutheasternSus- ContributiontoProtectingNewZealand’sRivers tainableAnimalWasteWorkshop.Athens,GA: andStreams.Vol.1:Concepts.Wellington,NZ: UniversityofGeorgia. DepartmentofConservation. Daniels,R.B.andJ.W.Gilliam.1996. Collier,K.J.,A.B.Cooper,R.J.Davies- Sedimentandchemicalloadreductionbygrass Colley,J.C.Rutherford,C.M.Smith,R.B. andriparianfilters.SoilScienceSocietyof Williamson.1995a.ManagingRiparianZones:A AmericaJournal60:246-251. ContributiontoProtectingNewZealand’sRivers andStreams.Vol.2:Guidelines.Wellington,NZ: Davies,P.E.andM.Nelson.1994.Relation- DepartmentofConservation. shipsbetweenriparianbufferwidthsandthe effectsofloggingonstreamhabitat,invertebrate

References 53 communitycompositionandfishabundance. EnvironmentalScienceandTechnology27(4):285- AustralianJournalofMarineandFreshwater 317. Resources45:1289-1305. Ferguson,B.K.andP.W.Suckling.1990. Desbonnet,A.,P.Pogue,V.LeeandN.Wolf. Changingrainfall-runoffrelationshipsinthe 1994.VegetatedBuffersintheCoastalZone:A urbanizingPeachtreeCreekWatershed,Atlanta, SummaryReviewandBibliography.Providence, Georgia.WaterResourcesBulletin26(2):313-322. RI:UniversityofRhodeIsland. Flanagan,D.C.,G.R.Foster,W.H.Neibling, Dickson,J.G.1978.Forestbirdcommuni- andJ.P.Burt.1989.Simplifiedequationsforfilter tiesofthebottomlandhardwoods.Pages66-73 stripdesign.TransactionsoftheASAE22:2001- in:R.M.DeGraaf,tech.coord.,Proceedingsof 2007. theWorkshopManagementofSouthernForestsfor NongameBirds.Asheville,NC:Southeastern Freeman,B.J.andK.H.Barnes.1996. ForestExperimentalStation(U.S.ForestService IdentificationandMappingofCriticalHabitatsin GeneralTechnicalReportSE-14). theEtowahRiverCorridorofNorthernGeorgia (AnnualReport).Athens,GA:Universityof Dillaha,T.A.,J.H.Sherrard,D.Lee,S. Georgia. Mostaghimi,V.O.Shanholtz.1988.Evaluationof vegetativefilterstripsasabestmanagement Frick,E.A.,D.J.Hippe,G.R.Buell,C.A. practiceforfeedlots.JournaloftheWaterPollu- Couch,E.H.Hopkins,D.J.Wangsness,J.W. tionControlFederation60(7):1231-1238. Garrett.1998.WaterQualityintheApalachicola- Chattahoochee-FlintBasin,Georgia,Alabama, Dillaha,T.A.,R.B.Reneau,S.Mostaghimi, andFlorida,1992-1995.U.S.GeologicalSurvey D.Lee.1989.VegetativeFilterStripsforAgricul- Circular1164. turalNonpointSourcePollutionControl.Transac- tionsoftheASAE32(2):513-519. GeorgiaDepartmentofAgriculture.1997. GeorgiaAgriculturalFacts.Athens,GA:Georgia Duff,J.H.andF.J.Triska.1990.Denitrifica- AgriculturalStatisticsService. tioninsedimentsfromthehyporheiczone adjacenttoasmallforestedstream.Canadian GeorgiaForestryCommission.1999. JournalofFisheriesandAquaticScience47:1140- Georgia’sBestManagementPracticesforForestry. 1147. Macon,GA:GeorgiaForestryCommission. Edwards,E.D.andA.D.Huryn.1996. Gilliam,J.W.1994.Riparianwetlandsand Effectofriparianlanduseoncontributionsof waterquality.JournalofEnvironmentalQuality terrestrialinvertebratestostreams.Hydrobiologia 23:896900. 337:151-159. Glenn,L.C.1911.DenudationandErosion Erman,N.A.1984.Theuseofriparian intheSouthernAppalachians.USGSProfessional systemsbyaquaticinsects.Pp177-182inR.E. PaperNumber72. WarnerandK.M.Hendrix(eds),California Gomez,D.M.andR.G.Anthony.1996. RiparianSystems:Ecology,Conservationand Amphibianandreptileabundanceinriparianand Management.Berkeley,CA:UniversityofCalifor- upslopeareasoffiveforesttypesinwestern niaPress. Oregon.NorthwestScience79(2):109-119. FederalInteragencyFloodplainManagement Gregory,B.,C.M.Pringle,G.VellidisandR. TaskForce(FIFMTF).1996.ProtectingFlood- R.Lowrance.InPress.Usingbenthicmacroinver- plainResources:AGuidebookforCommunities. tebrateassemblagestoassesstheeffectivenessof FederalEmergencyManagementAgency(FEMA riparianforestbufferzonesinintermittent 268/June1996). SoutheasternCoastalPlainstreams. Fennessy,M.S.andJ.K.Cronk.1997.The Gregory,S.andL.Ashkenas.1990.Field effectivenessandrestorationpotentialofriparian GuideforRiparianManagement.USDAForest ecotonesforthemanagementofnonpointsource Service. pollution,particularlynitrate.CriticalReviewsin

54 References Gregory,S.V.,F.J.Swanson,A.McKeeand AltamahaRiver,Georgia.WilsonBulletin108(3): K.W.Cummins.1991.AnEcosystemPerspective 495-506. ofRiparianZones:Focusonlinksbetweenland andwater.Bioscience41(8):540-551. Hubbard,R.K.1997.Riparianbuffersystems formanaginganimalwaste.Proceedingsofthe Groffman,P.M.,E.A.Axelrod,J.L. SoutheasternSustainableAnimalWasteWorkshop. LemonyonandW.M.Sullivan.1991a.Denitrifi- Athens,GA:UniversityofGeorgia. cationingrassandforestvegetatedfilterstrips. JournalofEnvironmentalQuality20:671-674. Hubbard,R.K.andR.R.Lowrance.1994. Riparianforestbuffersystemresearchatthe Groffman,P.M.,A.J.Gold,T.P.Husband, CoastalPlainExperimentalStation,Tifton, R.C.Simmons,W.R.Eddleman.1991b.An Georgia.Water,AirandSoilPollution77:409- InvestigationIntoMultipleUsesofVegetated 432. BufferStrips.Kingston,RI:UniversityofRhode Island. Hubbard,R.K.andR.R.Lowrance.1996. Solutetransportandfilteringthroughariparian Hanson,G.C.,P.M.GroffmanandA.J. forest.TransactionsoftheASAE39(2):477-488. Gold.1994.Denitrificationinriparianwetlands receivinghighandlowgroundwaternitrate Jacobs,T.C.andJ.W.Gilliam.1985.Ripar- inputs.JournalofEnvironmentalQuality23:917- ianlossesofnitratefromagriculturaldrainage 922. waters.JournalofEnvironmentalQuality14(4): 472-478. Harrison,R.L.1992.Towardatheoryof inter-refugecorridordesign.ConservationBiology Jordan,T.E.,D.L.CorrellandD.E.Weller. 6(2):293-295. 1993.Nutrientinterceptionbyariparianforest receivinginputsfromadjacentcropland.Journal Hatfield,J.L.,S.K.Mickelson,J.L.Baker, ofEnvironmentalQuality22:467-473. K.Arora,D.P.Tierney,andC.J.Peter.1995. Bufferstrips:Landscapemodificationtoreduce Junk,W.J.,P.B.BayleyandR.E.Sparks. off-siteherbicidemovement.In:CleanWater, 1989.Thefloodpulseconceptinriver-floodplain CleanEnvironment,21stCentury:TeamAgricul- systems.Pp110-127inD.P.Dodge(ed.)Proceed- ture,WorkingtoProtectWaterResources,Vol.1. ingsoftheInternationalLargeRiverSymposium. St.Joseph,MI:AmericanSocietyofAgricultural CanadianSpecialPublicationinFisheriesand Engineers. AquaticScience106. Haycock,N.E.andG.Pinay.1993.Ground- Karr,J.R.andI.J.Schlosser.1977.Impactof waternitratedynamicsingrassandpoplar NearstreamVegetationandStreamMorphologyon vegetatedriparianbufferstripsduringwinter. WaterQualityandStreamBiota.Athens,GA:U.S. JournalofEnvironmentalQuality22:273-278. EPAEcologicalResearchSeries(EPA-600/3-77/ 097). Hedin,L.O.,J.C.vonFischer,N.E.Ostrum, B.P.Kennedy,M.G.BrownandG.P.Robertson. Karr,J.R.andI.J.Schlosser.1978.Water 1998.Thermodynamicconstraintsonnitrogen resourcesandtheland-waterinterface.Science transformationsandotherbiogeochemical 201:229-234. processesatsoil-streaminterfaces.Ecology Keller,C.E.,C.S.RobbinsandJ.S.Hatfield. 79(2):684-703. 1993.Aviancommunitiesinriparianforestsof Herson-Jones,L.M.,M.HeratyandB. differentwidthsinMarylandandDelaware. Jordan.1995.RiparianBufferStrategiesfor Wetlands13(2):137-144. UrbanWatersheds.Washington,DC:Metropoli- Keys,Jr.,J.,C.Carpenter,S.Hooks,F. tanWashingtonCouncilofGovernments. Koenig,W.H.McNab,W.RusselandM.L. Hodges,M.F.Jr.andD.G.Krementz.1996. Smith.1995.EcologicalUnitsoftheEastern Neotropicalmigratorybreedingbirdcommunities UnitedStates--FirstApproximation.Atlanta,GA: inriparianforestsofdifferentwidthsalongthe U.S.D.A.ForestService.

References 55 Kilgo,J.C.,R.A.Sargent,B.R.Chapman,K. nonpointpollution.JournalofSoilandWater V.Miller.1998.Effectofstandwidthandadja- Conservation40(1):87-91. centhabitatonbreedingbirdcommunitiesin bottomlandhardwoods.JournalofWildlife Lowrance,R.,J.K.SharpeandJ.M. Management62(1):72-83. Sheridan.1986.Long-termsedimentdeposition intheriparianzoneofaCoastalPlainwatershed. Kinley,T.A.andN.J.Newhouse.1997. JournalofSoilandWaterConservation41(4):266- Relationshipofriparianreservezonewidthto 271. birddensityanddiversityinSoutheasternBritish Columbia.NorthwestScience71(2):75-86. Lowrance,R.R.,S.McIntyreandC.Lance. 1988.Erosionanddepositioninafield/forest Klein,R.D.1979.Urbanizationandstream systemestimatedusingcesium-137activity. qualityimpairment.WaterResourcesBulletin JournalofSoilandWaterConservation43:195- 15(4):948-963. 99. Kundell,J.E.andT.C.Rasmussen.1995. Lowrance,R.,G.Vellidis,R.D.Wauchope,P. ErosionandSedimentation:ScientificandRegula- GayandD.D.Bosch.1997.Herbicidetransport toryIssues.Athens,GA:UniversityofGeorgia. inamanagedriparianforestbuffersystem. TransactionsoftheASAE40(4):1047-1057. Leigh,D.S.1994.Goldmining’simpacton NorthGeorgiafloodplains:Mercurycontamina- Lowrance,R.,and12others.1997.Water tionandfloodplainsedimentation.Pp215-224 qualityfunctionsofriparianforestbuffersin in:Marston,R.A.andV.R.Hasfurther(eds.), ChesapeakeBaywatersheds.Environmental EffectsofHuman-InducedChangesonHydrologic Management21(5):687-712. Systems.AmericanWaterResourcesTechnical PublicationSeriesTPS94-3. Lowrance,R.,L.S.Altier,R.G.Williams,S. P.Imadar,D.D.Bosch,J.M.Sheridan,D.L. Linville,I.H.1997.Animalwastemanage- Thomas,R.K.Hubbard.1998.TheRiparian mentissues:Afederalperspective.In:Proceedings EcosystemManagementModel:Simulatorfor oftheSoutheasternSustainableAnimalWaste ecologicalprocessesinriparianzones.Proceedings Workshop.Athens,GA:UniversityofGeorgia. oftheFirstFederalInteragencyHydrologic ModelingConference. Lowrance,R.R.1992.Groundwaternitrate anddenitrificationinaCoastalPlainriparian Machtans,C.S.,M-AVillardandS.J. forest.JournalofEnvironmentalQuality21:401- Hannon.1996.Useofriparianbufferstripsas 405. movementcorridorsbyforestbirds.10(5):1366-1379 Lowrance,R.R.1997.Wetlandprocessesand manuremanagement.In:Proceedingsofthe Magette,W.L.,R.B.Brinsfield,R.E.Palmer SoutheasternSustainableAnimalWasteWorkshop. andJ.D.Wood.1989.Nutrientandsediment Athens,GA:UniversityofGeorgia. removalbyvegetatedfilterstrips.Transactionsof theASAE32(2):663-667. Lowrance,R.R.1998.Riparianforest ecosystemsasfiltersfornonpoint-sourcepollu- Malanson,G.P.1993.RiparianLandscapes. tion.Pp.113-141in:M.L.PaceandP.M. Cambridge,UK:CambridgeUniversityPress. Groffman(eds.),Successes,Limitationsand FrontiersinEcosystemScience.SpringerVerlag. Mander,Ü.,V.Kuusemets,K.Lohmus,T. Mauring.1997.Efficiencyanddimensioningof Lowrance,R.,R.Todd,J.Fail,Jr.,O. riparianbufferzonesinagriculturalcatchments. Hendrickson,Jr.,R.Leonard,andL.Asmussen. EcologicalEngineering8:299-324. 1984.Riparianforestsasnutrientfiltersin agriculturalwatersheds.BioScience34(6):374- May,C.W.,R.R.Horner,J.R.Karr,B.W. 377. May,andE.B.Welch.1997.Effectsofurbaniza- tiononsmallstreamsinthePugetSoundLowland Lowrance,R.,R.LeonardandJ.Sheridan. Ecoregion.WatershedProtectionTechniques 1985.Managingriparianecosystemstocontrol 2(4):483-494.

56 References Meador,M.R.andA.O.Layher.1998. Nieswand,G.H.,R.M.Hordon,T.B. Instreamsandandgravelmining:Environmental Shelton,B.B.ChavooshianandS.Blarr.1990. issuesandregulatoryprocessintheUnitedStates. Bufferstripstoprotectwatersupplyreservoirs:A Fisheries23(11):6-13. modelandrecommendations.WaterResources Bulletin26(6):959-966. Michener,W.K.,E.R.Blood,J.B.Box,C.A. Couch,S.W.Golladay,D.J.Hippe,R.J.Mitchell Noss,R.F.1983.Aregionallandscape andB.J.Palik.1998.Tropicalstormfloodingofa approachtomaintaindiversity.Bioscience coastalplainlandscape.Bioscience48(9):696- 33(11):700-706. 705. Noss,R.F.1987.Corridorsinrealland- Miller,A.E.AndA.Sutherland.1999. scapes:AreplytoSimberloffandCox.Conserva- ReducingtheImpactsofStormwaterRunoff tionBiology1(2):159-164. ThroughAlternativeDevelopmentPractices. Athens,GA:UniversityofGeorgia. Odum,E.P.1978.Ecologicalimportanceof theriparianzone.Pp2-4in:Johnsonand Morris,T.J.andL.D.Corkum.1996. McCormick(tech.coords.),StrategiesforProtec- Assemblagestructureoffreshwatermussels tionandManagementofFloodplainWetlandsand (Bivalvia:Unionidae)inriverswithgrassyand OtherRiparianEcosystems.U.S.Dept.ofAgricul- forestedriparianzones.JournaloftheNorth tureForestServiceGen.Tech.ReportWO-12. AmericanBenthologicalSociety15(4):576-586. Omernik,J.M.,A.R.AbernathyandL.M. Murphy,M.L.,J.Heifetz,S.W.Johnson,K. Male.1981.Streamnutrientlevelsandproximity V.KoskiandJ.F.Thedinga.1986.Effectsof ofagricultureandforestlandtostreams:Some clear-cutloggingwithandwithoutbufferstripson relationships.JournalofSoilandWaterConserva- juvenilesalmonidsinAlaskanstreams.Canadian tion36(4):227-231. JournalofFisheriesandAquaticScience43:1521- 1533. Osborne,L.L.andD.A.Kovacic.1993. Riparianvegetatedbufferstripsinwater-quality Muscutt,A.D.,G.L.Harris,S.W.Baileyand restorationandstreammanagement.Freshwater D.B.Davies.1993.Bufferzonestoimprove Biology29:243-258. waterquality:Areviewoftheirpotentialusein UKagriculture.Agriculture,Ecosystemsand Peterjohn,W.T.andD.L.Correll.1984. Environment45:59-77. Nutrientdynamicsinanagriculturalwatershed: Observationsontheroleofariparianforest. Naiman,R.J.,H.Décamps,J.PastorandC. Ecology65(5):1466-1475. A.Johnston.1988.Thepotentialimportanceof boundariestofluvialecosystems.Journalofthe Phillips,J.D.1989.Nonpointsourcepollu- NorthAmericanBenthologicalSociety7(4):289- tioncontroleffectivenessofriparianforestsalong 306. aCoastalPlainriver.JournalofHydrology110: 221-237. Naiman,R.J.,H.DécampsandM.Pollock. 1993.Theroleofripariancorridorsinmaintain- Phillips,J.D.1989.Anevaluationofthe ingregionalbiodiversity.EcologicalApplications factorsdeterminingtheeffectivenessofwater 3(2):209-212. qualitybufferzones.JournalofHydrology107: 133-145. Naiman,R.J.andK.H.Rogers.1997.Large animalsandsystem-levelcharacteristicsinriver Poff,N.L.,J.D.Allan,M.B.Bain,J.R.Karr, corridors:Implicationsforrivermanagement. K.L.Prestegaard,B.D.Richter,R.E.Sparksand Bioscience47(8):521-529. J.C.Stromberg.1997.Thenaturalflowregime: Aparadigmforriverconservationandrestora- Neary,D.G.,P.B.BushandJ.L.Michael. tion.Bioscience47(11):769-784. 1993.Fate,dissipationandenvironmentaleffects ofpesticidesinsouthernforests:Areviewofa Pringle,C.P.1997.Exploringhowdistur- decadeofresearchprogress.Environmental banceistransmittedupstream:Goingagainstthe ToxicologyandChemistry12:411-428.

References 57 flow.JournaloftheNorthAmericanBenthologi- Sharitz,R.R.,R.L.SchneiderandL.C.Lee. calSociety16(2):425-438. 1990.Compositionandregenerationofadis- turbedriverfloodplainforestinSouthCarolina. Rabeni,C.F.andM.A.Smale.1995.Effects Pp195-218inGosselink,LeeandMuir(eds.), ofsiltationonstreamfishesandthepotential EcologicalProcessesandCumulativeImpacts: mitigatingroleofthebufferingriparianzone. IllustratedbyBottomlandHardwoodWetland Microbiologia303:211-219. Ecosystems.Chelsea,MI:LewisPublishers. Rhodes,J.,C.M.Skau,D.GreenleeandD. Shields,F.D.,Jr.,A.J.BowieandC.M. L.Brown.1985.Quantificationofnitrateuptake Cooper.1995.Controlofstreambankerosiondue byriparianforestsandwetlandsinanundisturbed tobeddegradationwithvegetationandstructure. headwaterswatershed.In:RiparianEcosystems WaterResourcesBulletin31(3):475-490. andtheirManagement:ReconcilingConflicting Uses(FirstNorthAmericanRiparianConference). Simberloff,D.andJ.Cox.1987.Conse- Ft.Collins,CO:RockyMountainForestand quencesandcostsofconservationcorridors. RangeExperimentStation(Gen.Tech.Report ConservationBiology1(1):63-71. RM-120). Simberloff,D.,J.A.Farr,J.Cox,andD.W. Roseboom,D.andK.Russell.1985.Riparian Mehlman.1992.Movementcorridors:Conserva- vegetationreducesstreambankandrowcrop tionbargainsorpoorinvestments?Conservation flooddamages.In:RiparianEcosystemsandtheir Biology6(4):493-504. Management:ReconcilingConflictingUses(First NorthAmericanRiparianConference).Ft.Collins, Smith,R.J.andJ.M.Schaefer.1992.Avian CO:RockyMountainForestandRangeExperi- characteristicsofanurbanriparianstripcorridor. mentStation(Gen.Tech.ReportRM-120). WilsonBulletin104(4):732-738. Schaefer,J.M.andM.T.Brown.1992. Snodgrass,J.W.AndG.K.Meffe.1998. DesigningandProtectingRiparianCorridorsfor Influenceofbeaversonstreamfishassemblages: Wildlife.Rivers3(1):14-26. Effectsofpondageandwatershedposition. Ecology79:928-942. Schlosser,I.J.andJ.R.Karr.1981.Water qualityinagriculturalwatersheds:Impactof Sorrano,P.A.,S.L.Hubler,S.R.Carpenter riparianvegetationduringbaseflow.Water andR.C.Lathrop.1996.Phosphorusloadsto ResourcesBulletin17(2):233-240. surfacewaters:Asimplemodeltoaccountfor spatialpatternoflanduse.EcologicalApplications Schnaebel,R.R.,J.A.Shaffer,W.L.Stout 6(3):865-878. andL.F.Cornish.1997.Denitrificationdistribu- tionsinfourValleyandRidgeriparianecosys- Spackman,S.C.andJ.W.Hughes.1995. tems.EnvironmentalManagement21(2):283-290. Assessmentofminimumcorridorwidthfor biologicalconservation:Speciesrichnessand Schneider,R.L.,N.E.MartinandR.R. distributionalongmid-orderstreamsinVermont, Sharitz.1989.Impactofdamoperationson USA.BiologicalConservation71:325-332. hydrologyandassociatedfloodplainforestsof Southeasternrivers.Pp1113-1122in:Sharitzand Swift,L.W.Jr.1986.Filterstripwidthfor Gibbons(eds),FreshwaterWetlandsandWildlife. forestroadsintheSouthernAppalachians. OakRidge,TN:USDOEOfficeofScientificand SouthernJournalofAppliedForestry10:27-34. TechnicalInformation(CONF-8603101). Thurmond,D.P.,K.V.MillerandT.G. Schueler,T.1995a.Thearchitectureofurban Harris.1995.Effectofstreamsidemanagement streambuffers.WatershedProtectionTechniques zonewidthonavifaunacommunities.Southern 1(4). JournalofAppliedForestry19(4):166-169. Schueler,T.1995b.Urbanpesticides:From Trimble,G.R.andR.S.Sartz.1957.Howfar thelawntothestream.WatershedProtection fromastreamshouldaloggingroadbelocated? Techniques2(1):247-253. JournalofForestry55:339-341.

58 References Trimble,S.1970.CulturallyAccelerated Weller,D.E.,T.E.JordanandD.L.Correll. SedimentationtheMiddleGeorgiaPiedmont 1998.Heuristicmodelsformaterialdischarge (Master’sThesis).Athens,GA:Universityof fromlandscapeswithriparianbuffers.Ecological Georgia. Applications8(4):1156-1169. Trimble,S.W.1997.Contributionofstream Welsch,D.J.1991.RiparianForestBuffers: channelerosiontosedimentyieldfroman FunctionandDesignforProtectionandEnhance- urbanizingwatershed.Science278:1442-1444. mentofWaterResources.Radnor,PA:USDA ForestService. Triquet,A.M.,G.A.McPeek,andW.C. McComb.1990.Songbirddiversityinclearcuts Williams,R.D.andA.D.Nicks.1993.A withandwithoutariparianbufferstrip.Journal modelingapproachtoevaluatebestmanagement ofSoilandWaterConservationJuly-Aug:500- practices.WaterScienceandTechnology28(3-5): 503. 675-678). UniversityofGeorgiaSchoolofEnvironmen- Williams,R.D.andA.D.Nicks.1988.Using talDesign(UGASED).1997.LandDevelopment CREAMStosimulatefilterstripeffectivenessin ProvisionstoProtectGeorgiaWaterQuality. erosioncontrol.JournalofSoilandWaterConser- Athens,GA:GeorgiaDepartmentofNatural vationJan-Feb:108-112. Resources. Wood,P.J.andP.D.Armitage.1997.Biologi- UnitedStatesEnvironmentalProtection caleffectsoffinesedimentintheloticenviron- Agency(USEPA).1998.CleanWaterActionPlan: ment.EnvironmentalManagement21(2):203- RestoringandProtectingAmerica’sWaters. 217. Washington,DC:USEPA(EPA-840-R-98-001). Xiang,W-N.1996.GIS-basedriparianbuffer U.S.ArmyCorpsofEngineers(USACE). analysis:injectinggeographicinformationinto 1991.BufferStripsforRiparianZoneManage- landscapeplanning.LandscapeandUrbanPlan- ment.Waltham,MA:USACE. ning34:1-10. VanDeventer,J.S.1992.ABibliographyof Xiang,W-N.1993.AGISmethodfor RiparianResearchandManagement:Fish,Wild- riparianwaterqualitybuffergeneration.Interna- life,Vegetation,andHydrologicResponsesto tionalJournalofGeographicalInformation LivestockGrazingandOtherLandUseActivities. Systems7(1):57-70. Moscow,Idaho:IdahoRiparianCooperative, UniversityofIdaho. Xiang,W-NandW.L.Stratton.1996.Theb- functionandvariablestreambuffermapping:a Vannote,R.L.,G.W.Minshall,K.W. noteon‘AGISmethodforriparianwaterquality Cummins,J.R.Sedell,andC.E.Cushing.1980. buffergeneration.’InternationalJournalof Therivercontinuumconcept.CanadianJournal GeographicalInformationSystems10(4):499- ofFisheriesandAquaticScience37:130-137. 510. Vought,L.B.-M.,J.Dahl,C.L.Pedersenand Young,R.A.,T.HuntrodsandW.Anderson. J.O.Lacoursière.1994.Nutrientretentionin 1980.Effectivenessofvegetatedbufferstripsin riparianecotones.Ambio23(6):343-348. controllingpollutionfromfeedlotrunoff.Journal ofEnvironmentalQuality9(3):483-487. Wahl,M.H.,H.M.McKellar,T.M.Will- iams.1997.Patternsofnutrientloadingin forestedandurbanizedcoastalstreams.Journalof ExperimentalMarineBiologyandEcology 213:111-131. Walters,D.M.(unpublished).Fluctuationof channelelevationofanupperPiedmontriverin responsetohumandisturbanceofthewatershed.

References 59