Shooting Ranges and Sound

Total Page:16

File Type:pdf, Size:1020Kb

Shooting Ranges and Sound Shooting Ranges and Sound Table of Contents Table of Contents LIST OF TABLES .............................................................................................................IV LIST OF FIGURES ............................................................................................................V ABOUT THIS DOCUMENT ..............................................................................................VI EXECUTIVE SUMMARY ................................................................................................VII 1 INTRODUCTION ....................................................................................................... 8 1.1 PHYSICS OF SOUND ........................................................................................ 8 1.1.1 Sound Waves .............................................................................................. 8 1.1.2 Frequency .................................................................................................... 8 1.1.3 Sound Pressure ........................................................................................... 9 1.1.4 Sound Pressure Levels, Decibels ................................................................ 9 1.1.5 Directivity ..................................................................................................... 9 1.2 MECHANISMS OF NOISE GENERATION AND SHOOTING NOISE GENERATION ............................................................................................................... 9 1.2.1 Shock Wave ................................................................................................ 9 1.2.2 Vibrating Surfaces ..................................................................................... 10 1.3 SOUND CHARACTERISTICS OF FIREARMS ................................................ 10 1.4 SOUND PROPAGATION ................................................................................. 12 1.4.1 Distance ..................................................................................................... 12 1.4.2 Ground Effect ............................................................................................ 12 1.4.3 Air Absorption ............................................................................................ 12 1.4.4 Weather, Wind and Temperature Inversion ............................................... 13 1.5 HUMAN SENSITIVITY ...................................................................................... 13 1.6 SOUND MEASUREMENT ................................................................................ 13 1.6.1 Constant Sounds ....................................................................................... 13 1.6.2 Time-Varying Sounds ................................................................................ 16 1.6.3 Impulsive Sounds ...................................................................................... 17 1.6.4 Measuring Sound Levels From Firearms .................................................. 18 2 SOUND LEVEL ASSESSMENT .............................................................................. 19 2.1 PHILOSOPHY OF CRITERION SOUND LEVEL DEVELOPMENT ................. 19 2.1.1 Fixed Criterion Sound Levels .................................................................... 19 2.1.2 Background Sound Levels as Criteria ....................................................... 20 2.1.3 Hybrid Sound Level Criteria ....................................................................... 20 2.2 POINT OF RECEPTION SELECTION ............................................................. 22 Shooting Ranges and Sound ii Table of Contents 3 SOUND LEVEL MEASUREMENTS ........................................................................ 23 3.1 SOUND LEVEL METER REQUIREMENTS ..................................................... 23 3.1.1 Sound Level Meter Types .......................................................................... 23 3.1.2 Sound Level Meter Calibration .................................................................. 23 3.1.3 Accessories Required for Sound Level Meters ......................................... 23 3.2 SOUND LEVEL MEASUREMENT PROCEDURES ......................................... 24 3.2.1 Calibration ................................................................................................. 24 3.2.2 Weather Conditions ................................................................................... 24 3.2.3 Recording .................................................................................................. 24 3.3 SOUND LEVEL MEASUREMENT PERSONNEL ............................................ 25 4 RANGE CONSTRUCTION PLANNING ADVICE .................................................... 26 4.1 DESIGN CONSIDERATIONS FOR OUTDOOR AND INDOOR RANGES ...... 26 4.1.1 Design Considerations – Outdoor Ranges ................................................ 26 4.1.2 Design Considerations – Indoor Ranges ................................................... 29 4.2 PLANNING FOR SHOOTING RANGES .......................................................... 30 4.2.1 Outdoor Ranges ........................................................................................ 30 4.2.2 Indoor Ranges ........................................................................................... 32 5 ABATEMENT TECHNIQUES .................................................................................. 33 5.1 NOISE ABATEMENT TECHNIQUES FOR OUTDOOR SHOOTING RANGES 33 5.1.1 Natural Hill ................................................................................................. 33 5.1.2 Barriers at Sides ........................................................................................ 34 5.1.3 Barrier Behind Shooter .............................................................................. 35 5.2 NOISE ABATEMENT TECHNIQUES FOR INDOOR SHOOTING RANGES ... 36 5.2.1 Walls .......................................................................................................... 36 5.3 PRACTICAL MEASURES OF NOISE CONTROL ............................................ 36 5.3.1 Outdoor Shooting Ranges ......................................................................... 36 5.3.2 Indoor Shooting Ranges ............................................................................ 37 6 GLOSSARY ............................................................................................................. 38 7 REFERENCES ........................................................................................................ 41 Shooting Ranges and Sound iii 0BLIST OF TABLES LIST OF TABLES Table 1: Sound Pressure Levels of Firearms Being Measured at 10 m from the Muzzle (Downrange) ................................................................................................................... 11 Table 2: Typical Sound Pressure Level Encountered in Daily Life ................................. 15 Table 3: Sound Levels, dBAl, 100m from Indoor Range (Sound Pressure of the Handgun Being Measured is 160 dBAl at 600 mm) ........................................................................ 36 Shooting Ranges and Sound iv 1BList of Figures LIST OF FIGURES Figure 1: Directivity of a Typical Rifle at 10 m ................................................................. 11 Figure 2: Directivity of a Typical Shotgun at 10 m ........................................................... 12 Figure 3: Frequency Characteristics of A-Weighting and C-Weighting ........................... 14 Figure 4: Attenuation Over Distance – No Ground Effect ............................................... 26 Figure 5: Attenuation over Distance with Ground Effect ................................................. 27 Figure 6: Attenuation Over Distance With and Without Berm ......................................... 28 Figure 7: Noise Reduction Across the Wall ..................................................................... 29 Figure 8: Attenuation Over Distance With and Without Hill ............................................. 33 Figure 9: Attenuation Over Distance With and Without Side Barriers ............................. 34 Figure 10: Attenuation Over Distance With and Without Barrier Behind Shooter ........... 35 Shooting Ranges and Sound v About this Document ABOUT THIS DOCUMENT “Shooting Ranges and Sound” was written in March 1999 by the following Subject Matter Experts: ¾ John C. Swallow, M.A.Sc., P.Eng. ¾ John Hemingway, M.Phil., P.Eng. ¾ Pearlie Yung, M.Sc. “Shooting Ranges and Sound” was edited by: Technical Documentation and Graphics Section Information Management Branch IM/IT Business Solutions CIO Sector RCMP Headquarters 3000 Merivale Road. M-8 Ottawa, Ontario, Canada K1A 0R2 Fax: (613) 825-9617 © (2007) HER MAJESTY THE QUEEN IN RIGHT OF CANADA as represented by the Royal Canadian Mounted Police (RCMP) PDF Version Navigation To view a specific page, enter the page number in the Navigation toolbar located at the bottom of the page and press the Enter key. Text in blue font indicates a hyperlink; click the link to view related information. To return to the original page, click Previous View on the Navigation toolbar. Shooting Ranges and Sound vi Executive Summary EXECUTIVE SUMMARY “Shooting Ranges and Sound” is a document intended for those people not trained in acoustics, who would like to gain an understanding of the propagation and control of sound and firearm noise. Such persons might be involved in the planning, construction
Recommended publications
  • 10S Johnson-Nyquist Noise Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: January 02, 2011)
    Chapter 10S Johnson-Nyquist noise Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: January 02, 2011) Johnson noise Johnson-Nyquist theorem Boltzmann constant Parseval relation Correlation function Spectral density Wiener-Khinchin (or Khintchine) Flicker noise Shot noise Poisson distribution Brownian motion Fluctuation-dissipation theorem Langevin function ___________________________________________________________________________ John Bertrand "Bert" Johnson (October 2, 1887–November 27, 1970) was a Swedish-born American electrical engineer and physicist. He first explained in detail a fundamental source of random interference with information traveling on wires. In 1928, while at Bell Telephone Laboratories he published the journal paper "Thermal Agitation of Electricity in Conductors". In telecommunication or other systems, thermal noise (or Johnson noise) is the noise generated by thermal agitation of electrons in a conductor. Johnson's papers showed a statistical fluctuation of electric charge occur in all electrical conductors, producing random variation of potential between the conductor ends (such as in vacuum tube amplifiers and thermocouples). Thermal noise power, per hertz, is equal throughout the frequency spectrum. Johnson deduced that thermal noise is intrinsic to all resistors and is not a sign of poor design or manufacture, although resistors may also have excess noise. http://en.wikipedia.org/wiki/John_B._Johnson 1 ____________________________________________________________________________ Harry Nyquist (February 7, 1889 – April 4, 1976) was an important contributor to information theory. http://en.wikipedia.org/wiki/Harry_Nyquist ___________________________________________________________________________ 10S.1 Histrory In 1926, experimental physicist John Johnson working in the physics division at Bell Labs was researching noise in electronic circuits. He discovered random fluctuations in the voltages across electrical resistors, whose power was proportional to temperature.
    [Show full text]
  • 6. Units and Levels
    NOISE CONTROL Units and Levels 6.1 6. UNITS AND LEVELS 6.1 LEVELS AND DECIBELS Human response to sound is roughly proportional to the logarithm of sound intensity. A logarithmic level (measured in decibels or dB), in Acoustics, Electrical Engineering, wherever, is always: Figure 6.1 Bell’s 1876 é power ù patent drawing of the 10log ê ú telephone 10 ëreference power û (dB) An increase in 1 dB is the minimum increment necessary for a noticeably louder sound. The decibel is 1/10 of a Bel, and was named by Bell Labs engineers in honor of Alexander Graham Bell, who in addition to inventing the telephone in 1876, was a speech therapist and elocution teacher. = W = −12 Sound power level: LW 101og10 Wref 10 watts Wref Sound intensity level: = I = −12 2 LI 10log10 I ref 10 watts / m I ref Sound pressure level (SPL): P 2 P = rms = rms = µ = 2 L p 10log10 2 20log10 Pref 20 Pa .00002 N / m Pref Pref Some important numbers and unit conversions: 1 Pa = SI unit for pressure = 1 N/m2 = 10µBar 1 psi = antiquated unit for the metricly challenged = 6894Pa kg ρc = characteristic impedance of air = 415 = 415 mks rayls (@20°C) s ⋅ m2 c= speed of sound in air = 343 m/sec (@20°C, 1 atm) J. S. Lamancusa Penn State 12/4/2000 NOISE CONTROL Units and Levels 6.2 How do dB’s relate to reality? Table 6.1 Sound pressure levels of various sources Sound Pressure Description of sound source Subjective Level (dB re 20 µPa) description 140 moon launch at 100m, artillery fire at gunner’s intolerable, position hazardous 120 ship’s engine room, rock concert in front and close to speakers 100 textile mill, press room with presses running, very noise punch press and wood planers at operator’s position 80 next to busy highway, shouting noisy 60 department store, restaurant, speech levels 40 quiet residential neighborhood, ambient level quiet 20 recording studio, ambient level very quiet 0 threshold of hearing for normal young people 6.2 COMBINING DECIBEL LEVELS Incoherent Sources Sound at a receiver is often the combination from two or more discrete sources.
    [Show full text]
  • Arxiv:2003.13216V1 [Cs.CV] 30 Mar 2020
    Learning to Learn Single Domain Generalization Fengchun Qiao Long Zhao Xi Peng University of Delaware Rutgers University University of Delaware [email protected] [email protected] [email protected] Abstract : Source domain(s) <latexit sha1_base64="glUSn7xz2m1yKGYjqzzX12DA3tk=">AAAB8nicjVDLSsNAFL3xWeur6tLNYBFclaQKdllw47KifUAaymQ6aYdOJmHmRiihn+HGhSJu/Rp3/o2TtgsVBQ8MHM65l3vmhKkUBl33w1lZXVvf2Cxtlbd3dvf2KweHHZNkmvE2S2SieyE1XArF2yhQ8l6qOY1Dybvh5Krwu/dcG5GoO5ymPIjpSIlIMIpW8vsxxTGjMr+dDSpVr+bOQf4mVViiNai894cJy2KukElqjO+5KQY51SiY5LNyPzM8pWxCR9y3VNGYmyCfR56RU6sMSZRo+xSSufp1I6exMdM4tJNFRPPTK8TfPD/DqBHkQqUZcsUWh6JMEkxI8X8yFJozlFNLKNPCZiVsTDVlaFsq/6+ETr3mndfqNxfVZmNZRwmO4QTOwINLaMI1tKANDBJ4gCd4dtB5dF6c18XoirPcOYJvcN4+AY5ZkWY=</latexit> <latexit sha1_base64="9X8JvFzvWSXuFK0x/Pe60//G3E4=">AAACD3icbVDLSsNAFJ3UV62vqks3g0Wpm5LW4mtVcOOyUvuANpTJZNIOnUzCzI1YQv/Ajb/ixoUibt26829M2iBqPTBwOOfeO/ceOxBcg2l+GpmFxaXllexqbm19Y3Mrv73T0n6oKGtSX/iqYxPNBJesCRwE6wSKEc8WrG2PLhO/fcuU5r68gXHALI8MJHc5JRBL/fxhzyMwpEREjQnuAbuD6AI3ptOx43uEy6I+muT6+YJZMqfA86SckgJKUe/nP3qOT0OPSaCCaN0tmwFYEVHAqWCTXC/ULCB0RAasG1NJPKataHrPBB/EioNdX8VPAp6qPzsi4mk99uy4Mtle//US8T+vG4J7ZkVcBiEwSWcfuaHA4OMkHOxwxSiIcUwIVTzeFdMhUYRCHOEshPMEJ98nz5NWpVQ+LlWvq4VaJY0ji/bQPiqiMjpFNXSF6qiJKLpHj+gZvRgPxpPxarzNSjNG2rOLfsF4/wJA4Zw6</latexit> S S : Target domain(s) <latexit sha1_base64="ssITTP/Vrn2uchq9aDxvcfruPQc=">AAACD3icbVDLSgNBEJz1bXxFPXoZDEq8hI2Kr5PgxWOEJAaSEHonnWTI7Owy0yuGJX/gxV/x4kERr169+TfuJkF8FTQUVd10d3mhkpZc98OZmp6ZnZtfWMwsLa+srmXXN6o2iIzAighUYGoeWFRSY4UkKayFBsH3FF57/YvUv75BY2WgyzQIselDV8uOFECJ1MruNnygngAVl4e8QXhL8Rkvg+ki8Xbgg9R5uzfMtLI5t+COwP+S4oTk2ASlVva90Q5E5KMmocDaetENqRmDISkUDjONyGIIog9drCdUg4+2GY/+GfKdRGnzTmCS0sRH6veJGHxrB76XdKbX299eKv7n1SPqnDRjqcOIUIvxok6kOAU8DYe3pUFBapAQEEYmt3LRAwOCkgjHIZymOPp6+S+p7heKB4XDq8Pc+f4kjgW2xbZZnhXZMTtnl6zEKkywO/bAntizc+88Oi/O67h1ypnMbLIfcN4+ATKRnDE=</latexit>
    [Show full text]
  • Sony F3 Operating Manual
    4-276-626-11(1) Solid-State Memory Camcorder PMW-F3K PMW-F3L Operating Instructions Before operating the unit, please read this manual thoroughly and retain it for future reference. © 2011 Sony Corporation WARNING apparatus has been exposed to rain or moisture, does not operate normally, or has To reduce the risk of fire or electric shock, been dropped. do not expose this apparatus to rain or moisture. IMPORTANT To avoid electrical shock, do not open the The nameplate is located on the bottom. cabinet. Refer servicing to qualified personnel only. WARNING Excessive sound pressure from earphones Important Safety Instructions and headphones can cause hearing loss. In order to use this product safely, avoid • Read these instructions. prolonged listening at excessive sound • Keep these instructions. pressure levels. • Heed all warnings. • Follow all instructions. For the customers in the U.S.A. • Do not use this apparatus near water. This equipment has been tested and found to • Clean only with dry cloth. comply with the limits for a Class A digital • Do not block any ventilation openings. device, pursuant to Part 15 of the FCC Rules. Install in accordance with the These limits are designed to provide manufacturer's instructions. reasonable protection against harmful • Do not install near any heat sources such interference when the equipment is operated as radiators, heat registers, stoves, or other in a commercial environment. This apparatus (including amplifiers) that equipment generates, uses, and can radiate produce heat. radio frequency energy and, if not installed • Do not defeat the safety purpose of the and used in accordance with the instruction polarized or grounding-type plug.
    [Show full text]
  • Next Topic: NOISE
    ECE145A/ECE218A Performance Limitations of Amplifiers 1. Distortion in Nonlinear Systems The upper limit of useful operation is limited by distortion. All analog systems and components of systems (amplifiers and mixers for example) become nonlinear when driven at large signal levels. The nonlinearity distorts the desired signal. This distortion exhibits itself in several ways: 1. Gain compression or expansion (sometimes called AM – AM distortion) 2. Phase distortion (sometimes called AM – PM distortion) 3. Unwanted frequencies (spurious outputs or spurs) in the output spectrum. For a single input, this appears at harmonic frequencies, creating harmonic distortion or HD. With multiple input signals, in-band distortion is created, called intermodulation distortion or IMD. When these spurs interfere with the desired signal, the S/N ratio or SINAD (Signal to noise plus distortion ratio) is degraded. Gain Compression. The nonlinear transfer characteristic of the component shows up in the grossest sense when the gain is no longer constant with input power. That is, if Pout is no longer linearly related to Pin, then the device is clearly nonlinear and distortion can be expected. Pout Pin P1dB, the input power required to compress the gain by 1 dB, is often used as a simple to measure index of gain compression. An amplifier with 1 dB of gain compression will generate severe distortion. Distortion generation in amplifiers can be understood by modeling the amplifier’s transfer characteristic with a simple power series function: 3 VaVaVout=−13 in in Of course, in a real amplifier, there may be terms of all orders present, but this simple cubic nonlinearity is easy to visualize.
    [Show full text]
  • Sound Power Measurement What Is Sound, Sound Pressure and Sound Pressure Level?
    www.dewesoft.com - Copyright © 2000 - 2021 Dewesoft d.o.o., all rights reserved. Sound power measurement What is Sound, Sound Pressure and Sound Pressure Level? Sound is actually a pressure wave - a vibration that propagates as a mechanical wave of pressure and displacement. Sound propagates through compressible media such as air, water, and solids as longitudinal waves and also as transverse waves in solids. The sound waves are generated by a sound source (vibrating diaphragm or a stereo speaker). The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the speed of sound and are forming the sound wave. At a fixed distance from the sound source, the pressure, velocity, and displacement of the medium vary in time. Compression Refraction Direction of travel Wavelength, λ Movement of air molecules Sound pressure Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average, or equilibrium) atmospheric pressure, caused by a sound wave. In air the sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit for sound pressure p is the pascal (symbol: Pa). 1 Sound pressure level Sound pressure level (SPL) or sound level is a logarithmic measure of the effective sound pressure of a sound relative to a reference value. It is measured in decibels (dB) above a standard reference level. The standard reference sound pressure in the air or other gases is 20 µPa, which is usually considered the threshold of human hearing (at 1 kHz).
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Thermal-Noise.Pdf
    Thermal Noise Introduction One might naively believe that if all sources of electrical power are removed from a circuit that there will be no voltage across any of the components, a resistor for example. On average this is correct but a close look at the rms voltage would reveal that a "noise" voltage is present. This intrinsic noise is due to thermal fluctuations and can be calculated as may be done in your second year thermal physics course! The main goal of this experiment is to measure and characterize this noise: Johnson noise. In order to measure the intrinsic noise of a component one must first reduce the extrinsic sources of noise, i.e. interference. You have probably noticed that if you touch the input lead to an oscilloscope a large signal appears. Try this now and characterize the signal you see. Note that you are acting as an antenna! Make sure you look at both long time scales, say 10 ms, and shorter time scales, say 1 s. What are the likely sources of the signals you see? You may recall seeing this before in the First Year Laboratory. This interference is characterized by two features. First, the noise voltage is characterized by a spectrum, i.e. the noise voltage Vn ( f ) is a function of frequency. 2 Since noise usually has a time average of zero, the power spectrum Vn ( f ) is specified in each frequency interval df . Second, the measuring instrument is also characterized by a spectral response or bandwidth. In our case the bandwidth of the oscilloscope is from fL =0 (when input is DC coupled) to an upper frequency fH usually noted on the scope (beware of bandwidth limiting switches).
    [Show full text]
  • Lumens and Loudness: Projector Noise in a Nutshell
    Lumens and loudness: Projector noise in a nutshell Jackhammers tearing up the street outside; the In this white paper, we’re going to take a closer look at projector noise: what causes neighbor’s dog barking at squirrels; the hum of it, how to measure it, and how to keep it to a minimum. the refrigerator: noise is a fixture in our daily Why do projectors make noise? lives, and projectors are no exception. Like many high-tech devices, they depend on cooling There’s more than one source of projector noise, of course, but cooling fans are by systems that remove excess heat before it can far the major offender—and there’s no way around them. Especially projector bulbs cause permanent damage, and these systems give off a lot of heat. This warmth must be continuously removed or the projector will overheat, resulting in serious damage to the system. The fans that keep air unavoidably produce noise. flowing through the projector, removing heat before it can build to dangerous levels, make noise. Fans can’t help but make noise: they are designed to move air, and the movement of air is what makes sound. How much sound they make depends on their construction: the angle of the blades, their size, number and spacing, their surface quality, and the fan’s rotational speed. Moreover, for projector manufacturers it’s also key not to place a fan too close to an air vent or any kind of mesh, or they’ll end up with the siren effect: very annoying high-frequency, pure-tone noise caused by the sudden interruption of the air flow by the vent bars or the mesh wires.
    [Show full text]
  • Noise Is Widespread
    NoiseNoise A definition (not mine) Electrical Noise S. Oberholzer and E. Bieri (Basel) T. Kontos and C. Hoffmann (Basel) A. Hansen and B-R Choi (Lund and Basel) ¾ Electrical noise is defined as any undesirable electrical energy (?) T. Akazaki and H. Takayanagi (NTT) E.V. Sukhorukov and D. Loss (Basel) C. Beenakker (Leiden) and M. Büttiker (Geneva) T. Heinzel and K. Ensslin (ETHZ) M. Henny, T. Hoss, C. Strunk (Basel) H. Birk (Philips Research and Basel) Effect of noise on a signal. (a) Without noise (b) With noise ¾ we like it though (even have a whole conference on it) National Center on Nanoscience Swiss National Science Foundation 1 2 Noise may have been added to by ... Introduction: Noise is widespread Noise (audio, sound, HiFi, encodimg, MPEG) Electrical Noise Noise (industrial, pollution) Noise (in electronic circuits) Noise (images, video, encoding) Noise (environment, pollution) it may be in the “source” signal from the start Noise (radio) it may have been introduced by the electronics Noise (economic => theory of pricing with fluctuating it may have been added to by the envirnoment source terms) it may have been generated in your computer Noise (astronomy, big-bang, cosmic background) Noise figure Shot noise Thermal noise for the latter, e.g. sampling noise Quantum noise Neuronal noise Standard quantum limit and more ... 3 4 Introduction: Noise is widespread Introduction (Wikipedia) Noise (audio, sound, HiFi, encodimg, MPEG) Electronic Noise (from Wikipedia) Noise (industrial, pollution) Noise (in electronic circuits) Noise (images, video, encoding) Electronic noise exists in any electronic circuit as a result of random variations in current or voltage caused by the random movement of the Noise (environment, pollution) electrons carrying the current as they are jolted around by thermal energy.energy Noise (radio) The lower the temperature the lower is this thermal noise.
    [Show full text]
  • Solid-State Memory Camcorder
    4-425-717-13(3) Solid-State Memory Camcorder PMW-200 PMW-100 Operating Instructions Before operating the unit, please read this manual thoroughly and retain it for future reference. © 2012 Sony Corporation WARNING • Refer all servicing to qualified service personnel. Servicing is required when the To reduce the risk of fire or electric shock, apparatus has been damaged in any way, do not expose this apparatus to rain or such as power-supply cord or plug is moisture. damaged, liquid has been spilled or objects To avoid electrical shock, do not open the have fallen into the apparatus, the apparatus cabinet. Refer servicing to qualified has been exposed to rain or moisture, does personnel only. not operate normally, or has been dropped. WARNING Do not install the appliance in a confined When installing the unit, incorporate a readily space, such as book case or built-in cabinet. accessible disconnect device in the fixed wiring, or connect the power plug to an easily IMPORTANT accessible socket-outlet near the unit. If a fault The nameplate is located on the bottom. should occur during operation of the unit, WARNING operate the disconnect device to switch the Excessive sound pressure from earphones power supply off, or disconnect the power plug. and headphones can cause hearing loss. In order to use this product safely, avoid Important Safety Instructions prolonged listening at excessive sound • Read these instructions. pressure levels. • Keep these instructions. • Heed all warnings. For the customers in the U.S.A. • Follow all instructions. This equipment has been tested and found to • Do not use this apparatus near water.
    [Show full text]
  • The Human Ear  Hearing, Sound Intensity and Loudness Levels
    UIUC Physics 406 Acoustical Physics of Music The Human Ear Hearing, Sound Intensity and Loudness Levels We’ve been discussing the generation of sounds, so now we’ll discuss the perception of sounds. Human Senses: The astounding ~ 4 billion year evolution of living organisms on this planet, from the earliest single-cell life form(s) to the present day, with our current abilities to hear / see / smell / taste / feel / etc. – all are the result of the evolutionary forces of nature associated with “survival of the fittest” – i.e. it is evolutionarily{very} beneficial for us to be able to hear/perceive the natural sounds that do exist in the environment – it helps us to locate/find food/keep from becoming food, etc., just as vision/sight enables us to perceive objects in our 3-D environment, the ability to move /locomote through the environment enhances our ability to find food/keep from becoming food; Our sense of balance, via a stereo-pair (!) of semi-circular canals (= inertial guidance system!) helps us respond to 3-D inertial forces (e.g. gravity) and maintain our balance/avoid injury, etc. Our sense of taste & smell warn us of things that are bad to eat and/or breathe… Human Perception of Sound: * The human ear responds to disturbances/temporal variations in pressure. Amazingly sensitive! It has more than 6 orders of magnitude in dynamic range of pressure sensitivity (12 orders of magnitude in sound intensity, I p2) and 3 orders of magnitude in frequency (20 Hz – 20 KHz)! * Existence of 2 ears (stereo!) greatly enhances 3-D localization of sounds, and also the determination of pitch (i.e.
    [Show full text]