Native Electrospray-Based Metabolomics Enables the Detection of Metal-Binding 2 Compounds 3 4 Allegra Aron1,2, Daniel Petras1,2,3, Robin Schmid4, Julia M

Total Page:16

File Type:pdf, Size:1020Kb

Native Electrospray-Based Metabolomics Enables the Detection of Metal-Binding 2 Compounds 3 4 Allegra Aron1,2, Daniel Petras1,2,3, Robin Schmid4, Julia M bioRxiv preprint doi: https://doi.org/10.1101/824888; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Title: Native Electrospray-based Metabolomics Enables the Detection of Metal-binding 2 Compounds 3 4 Allegra Aron1,2, Daniel Petras1,2,3, Robin Schmid4, Julia M. Gauglitz,1,2 Isabell Büttel5, Luis 5 Antelo6, Hui Zhi7, Christina C. Saak10, Kien P. Malarney10, Eckhard Thines5,6, Rachel J. 6 Dutton9,10, Manuela Raffatellu7,8,9, and Pieter C. Dorrestein1,3,9,11 7 8 Affiliations: 9 1Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San 10 Diego, La Jolla, CA 92093, USA 11 2Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La 12 Jolla, CA 92093, USA 13 3Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 14 92093, USA 15 4Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 30, 16 Münster, D-48149, Germany 17 5Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg- 18 University Mainz, Johann-Joachim-Becherweg 15, Mainz, D-55128, Germany 19 6Institute of Biotechnology and Drug Research (IBWF gGmbH), Erwin-Schrödinger-Str. 56, 20 Kaiserslautern, D-67663, Germany 21 7Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of 22 California San Diego, La Jolla, CA 92093, USA 23 8Chiba University-University of California San Diego Center for Mucosal Immunology, 24 Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, United States of America 25 9Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, 26 USA 27 10Division of Biological Sciences, University of California, San Diego, 95000 Gilman Dr, La 28 Jolla, CA 92093, USA 29 30 Author contributions: 31 ATA, DP, RS, and PCD developed the concept. 32 ATA, JMG, DP ran mass spectrometry experiments. 33 RS wrote code and provided feedback. 34 JMG, IB, LA, ET, HZ, CCS, KPM, RJD and MR cultured organisms and prepared samples. 35 ATA, DP and PCD wrote and edited the manuscript. 36 All authors edited and approved the manuscript 37 38 Abstract 39 Metals are essential for the molecular machineries of life, and microbes have evolved a 40 variety of small molecules to acquire, compete for, and utilize metals. Systematic methods 41 for the discovery of metal-small molecule complexes from biological samples are limited. 42 Here we describe a two-step native electrospray ionization mass spectrometry method, in 43 which double-barrel post-column metal-infusion and pH adjustment is combined with ion 44 identity molecular networking, a rule-based informatics workflow. This method can be used 45 to identify metal-binding compounds in complex samples based on defined mass (m/z) 46 offsets of ion features with the same chromatographic profiles. As this native metal 47 metabolomics approach can be easily implemented on any liquid chromatography-based bioRxiv preprint doi: https://doi.org/10.1101/824888; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 48 mass spectrometry system, this method has the potential to become a key strategy for 49 elucidating and understanding the role of metal-binding molecules in biology. 50 51 Main 52 Life, as we know it, cannot exist without metals. Metals are essential cofactors in 53 important biochemical reactions such as DNA replication and repair (iron and manganese), 54 respiration (iron and copper), photosynthesis (iron and manganese), and biosynthesis of 55 countless primary and secondary metabolites (iron, zinc, vanadium, molybdenum, 56 magnesium, calcium, etc.). One common strategy for metal acquisition in microorganisms is 57 through the production and secretion of small molecule ionophores that bind and form non- 58 covalent metal complexes. These complexes bind to specific ionophore receptors for their 59 uptake and release of metal into the cytoplasm. Siderophores are high affinity chelators of 60 ferric iron (Fe3+) and include ferrioxamines (i.e. desferrioxamines B and E)2-5, catecholates 61 (i.e. enterobactin)2-4, and carboxylates (i.e. rhizoferrin and aerobactin)2-5, while chalkophores 62 such as methanobactins and SF2768 (a diisonitrile natural product) play the analogous role 63 in binding cuprous copper (Cu+)6,7, and a number of zincophores have also been recently 64 elucidated8-11. In addition to small molecule ionophores that play a role in microbial metal 65 transport and homeostasis, metals can also serve as cofactors essential for the function of 66 other small molecules. Examples include iron in heme and magnesium in chlorophyll, 67 calcium and magnesium in metal-dependent antibiotics12-14, and cobalt in the vitamin 68 cobalamin (vitamin B12). 69 Although metal-binding small molecules have a variety of biological functions and 70 many potential biomedical applications, it is currently challenging to find metal-binding 71 compounds present in complex mixtures such as microbial culture extracts15, dissolved 72 organic matter16, or fecal extracts17, and it is additionally challenging to assess metal-binding 73 preferences. Predictions of small molecule structures using genome mining strategies have 74 improved tremendously in recent years18,19; however, it is still not possible to predict the 75 selectivity and affinity of metal coordination sites, and it is even difficult to predict whether a 76 small molecule contains a metal-binding site20,21. This is because small molecule metal- 77 binding sites are diverse and not conserved; as such, metal binding must be experimentally 78 established. Various analytical methods including inductively coupled plasma mass 79 spectrometry (ICP-MS)22, atomic absorption spectroscopy (AAS)23, x-ray fluorescence 80 spectroscopy (XRF)24, UV-visible (UV-vis) absorption spectroscopy and nuclear magnetic 81 resonance (NMR) spectroscopy in addition to multimodal approaches such as high- 82 performance matrix-assisted laser desorption/ionization Fourier transform ion cyclotron 83 resonance imaging mass spectrometry (MALDI FT-ICR IMS)25 can be used to analyze metal 84 content and/or metal coordination. With each of these methods, it is still difficult to 85 understand which molecules form metal complexes within a biological matrix that contains a 86 pool of candidate metal ions, especially when the identities of metal-binding species are not 87 known ahead of time. To address this shortcoming, we set out to develop a non-targeted 88 liquid chromatography-tandem mass spectrometry (LC-MS/MS) based approach. 89 Screening for metal-binding compounds from complex biological matrices by non- 90 targeted LC-MS/MS requires specific conditions to be met. Typical conditions used during 91 sample extraction, preparation, and chromatography for non-targeted mass spectrometry 92 involve low pH and high percentages of organic solvent, which both disfavor metal 93 complexation. Even when a metal-bound species is observed, it commonly elutes at a 94 different retention time than the apo (unbound) species and typically differs significantly in its 95 MS/MS fragmentation behavior than the apo species. This inherent problem of conserving bioRxiv preprint doi: https://doi.org/10.1101/824888; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 96 metal-ionophore complexes, in addition to differing retention times and differing gas phase 97 fragmentation behavior (MS/MS) between apo- and metal-bound forms make it difficult to 98 connect these forms to identify a given (metal specific) mass (m/z) offset. In order to 99 overcome these limitations, we developed a two-step native electrospray ionization (ESI) 100 MS/MS workflow, in which post-column metal infusion is coupled with pH adjustment via a 101 double barrel syringe pump (Figure 1a) to directly detect candidate small molecules that 102 bind to metals. 103 After the implementation of post-column metal infusion that re-forms metal-ionophore 104 complexes, one of the key challenges in developing this method was how to identify these 105 metal-binding complexes within large datasets and/or complex mixtures that typically contain 106 thousands of features. To overcome this limitation, a rule-based informatic workflow called 107 ion identity molecular networking (IIN) was utilized (Figure 1b). Native ESI metal infusion 108 coupled with IIN has enabled the systematic detection of candidate metal-binding molecules 109 and metal-binding properties in different samples, such as bacterial and fungal culture 110 extracts. 111 112 Figure 1. Overview of the native spray small molecule binding experiment. (a) The two-step 113 native ESI-MS/MS workflow utilizes a post-column infusion of ammonium hydroxide solution followed 114 by infusion of metal salt solution. (b) Data can be analyzed using a computational ion identity 115 molecular networking (IIN) workflow in MZmine and GNPS. bioRxiv preprint doi: https://doi.org/10.1101/824888;
Recommended publications
  • (12) United States Patent (10) Patent No.: US 8,062.922 B2 Britt Et Al
    US008062922B2 (12) United States Patent (10) Patent No.: US 8,062.922 B2 Britt et al. (45) Date of Patent: Nov. 22, 2011 (54) BUFFER LAYER DEPOSITION FOR (56) References Cited THIN-FILMI SOLAR CELLS U.S. PATENT DOCUMENTS (75) Inventors: Jeffrey S. Britt, Tucson, AZ (US); Scot 3,148,084 A 9, 1964 Hill et al. Albright, Tucson, AZ (US); Urs 4,143,235 A 3, 1979 Duisman Schoop, Tucson, AZ (US) 4,204,933 A 5/1980 Barlow et al. s s 4,366,337 A 12/1982 Alessandrini et al. 4,642,140 A 2f1987 Noufi et al. (73) Assignee: Global Solar Energy, Inc., Tucson, AZ 4,778.478 A 10/1988 Barnett (US) 5,112,410 A 5, 1992 Chen 5,578,502 A 1 1/1996 Albright et al. (*) Notice: Subject to any disclaimer, the term of this 6,268,014 B1 7/2001 Eberspacher et al. patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 203 days. OTHER PUBLICATIONS (21) Appl. No.: 12/397,846 The International Bureau of WIPO, International Search Report regarding PCT Application No. PCTUS09/01429 dated Jun. 17, (22) Filed: Mar. 4, 2009 2009, 2 pgs. (65) Prior PublicationO O Data (Continued) US 2009/0258457 A1 Oct. 15, 2009 AssistantPrimary Examiner-HaExaminer — Valerie Tran NTNguyen Brown Related U.S. Application Data (74) Attorney, Agent, or Firm — Kolisch Hartwell, P.C. (60) Provisional application No. 61/068,459, filed on Mar. (57) ABSTRACT 5, 2008. Improved methods and apparatus for forming thin-film buffer layers of chalcogenide on a Substrate web.
    [Show full text]
  • Corynebactin and Enterobactin: Related Siderophores of Opposite Chirality Martin E
    Published on Web 02/20/2002 Corynebactin and Enterobactin: Related Siderophores of Opposite Chirality Martin E. Bluhm, Sanggoo S. Kim, Emily A. Dertz, and Kenneth N. Raymond* Department of Chemistry, UniVersity of California, Berkeley, California 94720-1460 Received July 18, 2001 The major role of siderophores in microbial iron transport and bacterial pathogenicity is now well established.1 These low mo- lecular weight chelators are expressed to overcome the insolubility of Fe3+ at pH 7 (∼10-18 M).2 The ferric complexes enter the bacterial cell via specific receptor proteins on the cell membrane. Once incorporated, iron is released via reduction, hydrolysis, or ligand-exchange mechanisms.3 Enterobactin (1) is produced by both Gram-negative4a,b and Gram-positive4c bacteria, and has an ex- 49 5 traordinarily high stability (Kf ) 10 ) with metal coordination at neutral pH accomplished through the six catecholate oxygens.6 The Figure 1. Siderophores enterobactin (1) and corynebactin (2). The synthetic chirality of the iron center in enterobactin is ∆,6 and this chirality, analogue 7 is a hybrid, composed of the serine trilactone connected to the while not essential for receptor recognition and outer membrane side chain of corynebactin. The triserine trilactone trihydrochloride (5) was used for the preparation of 7. transport,7 is essential for iron utilization; the mirror image enantio- enterobactin complex does not promote microbial growth.8 Recently Scheme 1. Synthesis of serine corynebactin (7) a closely related siderophore, corynebactin (2), was found to be produced by the Gram-positive Corynebacterium glutamicum.9 Both siderophores are based on a trilactone backbone, consisting of L-serine units in enterobactin and L-threonine units in corynebactin.
    [Show full text]
  • Modular Logic in Enzymatic Biogenesis of Yersiniabactin by Ye&N& Pestis
    Research Paper 573 Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Ye&n& pestis Amy M Gehring l* , Edward DeMoll*, Jacqueline D Fetherston*, lchiro Moril+, George F Mayhew3, Frederick R Blattner3, Christopher T Walsh’ and Robert D Perry* Background: Virulence in the pathogenic bacterium Yersinia pestis, causative Addresses: 1 Department of Biological Chemistry agent of bubonic plague, has been correlated with the biosynthesis and and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA transport of an iron-chelating siderophore, yersiniabactin, which is induced 02115, USA. *Department of Microbiology and under iron-starvation conditions. Initial DNA sequencing suggested that this Immunology, MS41 5 Medical Center, University of system is highly conserved among the pathogenic Yersinia. Yersiniabactin Kentucky, Lexington, KY 40536-0084, USA. contains a phenolic group and three five-membered thiazole heterocycles that 3Department of Genetics, University of Wisconsin, 445 Henry Hall, Madison, WI 53706, USA. serve as iron ligands. Present addresses: ‘Department of Microbiology Results: The entire Y. pestis yersiniabactin region has been sequenced. and Cellular Biology, Harvard University, Sequence analysis of yersiniabactin biosynthetic regions (irp2-ybtf and ybtS) Cambridge, MA 02115, USA. +Nippon Glaxo Ltd. Tsukuba Research Laboratories, Chemistry reveals a strategy for siderophore production using a mixed polyketide synthase/ Department, Ibaraki, Japan. nonribosomal peptide synthetase complex formed between HMWPl and HMWPS (encoded by irpl and irp2). The complex contains 16 domains, five of Correspondence: Christopher T Walsh them variants of phosphopantetheine-modified peptidyl carrier protein or acyl E-mail: [email protected] carrier protein domains. HMWPl and HMWPP also contain methyltransferase Key words: heterocyclization, nonribosomal and heterocyclization domains.
    [Show full text]
  • (ESI) Electrospray Ionization
    Electrospray Ionization (ESI) • sample solution • voltage drop • solvent evaporates is injected between source, away as droplets directly into analyzer generates migrate across gap instrument ionized droplets “sheath gas” Electrospray Ionization (ESI) Injected solution usually includes ionizing agent H+ (from acid), Na+, K+ Large droplets from injected stream Resulting ions can be spontaneously eject singly or multiply smaller droplets (due to charged electrostatic repulsion) Electrospray Ionization (ESI) Multiply charged ions frequently observed. ESI M [M•H]+ + [M•2H]2+ + [M•3H]3+ + ... or [M•Na]+ + [M•2Na]2+ + [M•3Na]3+ + ... multiply lysozyme: charged big > 10 kDa protein (protonated) ions From this series of peaks, how do we determine mass of protein? Charge Ladders in Electrospray Ionization We know two things: 1. Any peak corresponds to [M•nH]n+; ion mass m =M+= M + n, charge z = n. 2. Peak to that peak’s left has one more proton attached, one more charge; ion mass m = M + n + 1, charge z = n + 1. Charge Ladders in Electrospray Ionization Set of simultaneous equations: (observed m/z #1) • z = M + z(H+) (observed m/z #2) • (z + 1) = M + z(H+) + 1 2 1 Charge Ladders in Electrospray Ionization Now performed by computer algorithm Set of simultaneous equations: that searches for ladders, outputs likely mass candidates. 1486 • z = M + z 1372.5 • (z + 1) = M + z + 1 Solution: z = 12 M = 17827.2 [M•13H]13+ 2 [M•12H]1 12+ actual MW lysozyme: 17825.2 If sample contains a mixture of counterions, can get messy. ESI-MS 22-mer single-stranded DNA (difficult to desalt) Atmospheric Pressure Chemical Ionization (APCI) •+ •+ Analogous to CI, but uses discharge to generate N2 /O2 , which then iiionizes evapora tdltllThthiited solvent molecules.
    [Show full text]
  • Newly Discovered Elements in the Periodic Table
    Newly Discovered Elements In The Periodic Table Murdock envenom obstinately while minuscular Steve knolls fumblingly or fulfill inappropriately. Paco is poweredwell-becoming Meredeth and truckdisregards next-door some as moneyworts asbestine Erin so fulgently!profaned riskily and josh pertinaciously. Nicest and What claim the 4 new elements in periodic table? Introducing the Four Newest Elements on the Periodic Table. Dawn shaughnessy of producing a table. The periodic tables in. Kosuke Morita L who led the mountain at Riken institute that discovered. How they overcome a period, newly discovered at this led to recognize patterns in our periodic tables at gsi. The pacers snagged the discovery and even more than the sign in the newly elements periodic table! Master shield Missing Elements American Scientist. Introducing the Four Newest Elements on the Periodic Table. The discovery of the 11 chemical elements known and exist master of 2020 is presented in. Whatever the table in. Row 7 of the periodic table name Can we invite more. This table are newly discovered in atomic weights of mythology. The Newest Elements on the Periodic Table or's Talk Science. The scientists who discovered the elements proposed the accepted names. Then decay chains match any new nucleus is discovering team is incorrect as you should inspire you pioneering contributions of fundamental interest in. Four new elements discovered last year and known only past their. 2019 The International Year divide the Periodic Table of Elements. Be discovered four newly available. It recently announced the names of four newly discovered elements 113 115 117 and 11 see The 5.
    [Show full text]
  • Contents • Introduction to Proteomics and Mass Spectrometry
    Contents • Introduction to Proteomics and Mass spectrometry - What we need to know in our quest to explain life - Fundamental things you need to know about mass spectrometry • Interfaces and ion sources - Electrospray ionization (ESI) - conventional and nanospray - Heated nebulizer atmospheric pressure chemical ionization - Matrix assisted laser desorption • Types of MS analyzers - Magnetic sector - Quadrupole - Time-of-flight - Hybrid - Ion trap In the next step in our quest to explain what is life The human genome project has largely been completed and many other genomes are surrendering to the gene sequencers. However, all this knowledge does not give us the information that is needed to explain how living cells work. To do that, we need to study proteins. In 2002, mass spectrometry has developed to the point where it has the capacity to obtain the "exact" molecular weight of many macromolecules. At the present time, this includes proteins up to 150,000 Da. Proteins of higher molecular weights (up to 500,000 Da) can also be studied by mass spectrometry, but with less accuracy. The paradigm for sequencing of peptides and identification of proteins has changed – because of the availability of the human genome database, peptides can be identified merely by their masses or by partial sequence information, often in minutes, not hours. This new capacity is shifting the emphasis of biomedical research back to the functional aspects of cell biochemistry, the expression of particular sets of genes and their gene products, the proteins of the cell. These are the new goals of the biological scientist: o to know which proteins are expressed in each cell, preferably one cell at a time o to know how these proteins are modified, information that cannot necessarily be deduced from the nucleotide sequence of individual genes.
    [Show full text]
  • Function of the Enterobactin Operon of A. Actinomycetemcomitans in the Presence of Catecholmines and Iron
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2017 Function of the enterobactin operon of A. actinomycetemcomitans in the presence of catecholmines and iron. Taylor Johnson University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Biology Commons, Genetics and Genomics Commons, Immunology and Infectious Disease Commons, and the Microbiology Commons Recommended Citation Johnson, Taylor, "Function of the enterobactin operon of A. actinomycetemcomitans in the presence of catecholmines and iron." (2017). Electronic Theses and Dissertations. Paper 2706. https://doi.org/10.18297/etd/2706 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. FUNCTION OF THE ENTEROBACTIN OPERON OF A. ACTINOMYCETEMCOMITANS IN THE PRESENCE OF CATECHOLAMINES AND IRON By Taylor Johnson B.A., University of Louisville, 2014 A Thesis Submitted to the Faculty of the University of Louisville School of Dentistry in Partial Fulfillment of the Requirements for the Degree of Master of Science in Oral Biology Department of Oral Immunology and Infectious
    [Show full text]
  • Environmental and Health Effects of Early Copper Metallurgy and Mining in the Bronze Age Sarah Martin
    Environmental and health effects of early copper metallurgy and mining in the Bronze Age Sarah Martin Abstract Copper was a vital metal to the development of the Bronze Age in Europe and the Middle East. Many mine locations and mining techniques were developed to source the copper and other elements needed for the production of arsenic or tin bronze. Mining came with many associated health risks, from the immediate risk of collapse to eventual death from heavy metal poisoning. Severe environmental pollution from mining and smelting occurred, affecting the local mining community with effects that can still be felt today. This essay aims to establish that copper mining and manufacture had dramatic effects on the environment and health of people living in Europe and the Middle East during the Bronze Age. It goes on to speculate that heavy metal poisoning may have contributed to the increase in fractures seen between the Neolithic and Bronze Age. Keywords copper, Bronze Age, mining, health, environment Introduction The Bronze Age in the Middle East and Europe occurred approximately 3200–600 BCE. During this period, the importance of copper and its alloys grew to dominate society. The earliest uses of copper occurred in the Neolithic Period before its use in tools or weapons. Copper and its ores were used for colouring in ointments and cosmetics such as the vibrantly coloured 45 The Human Voyage — Volume 1, 2017 oxide malachite. The trading and manufacturing of bronze weapons quickly became essential for the survival of Bronze Age societies in times of warfare. Bronze weapons were superior—in terms of sharpness, durability, weight and malleability—to other materials available at the time.
    [Show full text]
  • Chemical and Biological Aspects of Nutritional Immunity
    This is a repository copy of Chemical and Biological Aspects of Nutritional Immunity - Perspectives for New Anti-infectives Targeting Iron Uptake Systems : Perspectives for New Anti-infectives Targeting Iron Uptake Systems. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/119363/ Version: Accepted Version Article: Bilitewski, Ursula, Blodgett, Joshua A.V., Duhme-Klair, Anne Kathrin orcid.org/0000-0001- 6214-2459 et al. (4 more authors) (2017) Chemical and Biological Aspects of Nutritional Immunity - Perspectives for New Anti-infectives Targeting Iron Uptake Systems : Perspectives for New Anti-infectives Targeting Iron Uptake Systems. Angewandte Chemie International Edition. pp. 2-25. ISSN 1433-7851 https://doi.org/10.1002/anie.201701586 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ AngewandteA Journal of the Gesellschaft Deutscher Chemiker International Edition Chemie www.angewandte.org Accepted Article Title: Chemical and Biological Aspects of Nutritional Immunity - Perspectives for New Anti-infectives Targeting Iron Uptake Systems Authors: Sabine Laschat, Ursula Bilitewski, Joshua Blodgett, Anne- Kathrin Duhme-Klair, Sabrina Dallavalle, Anne Routledge, and Rainer Schobert This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR).
    [Show full text]
  • Nuevos Avances En La RMN Anisotrópica Y Detección De Productos Naturales Marinos Bioactivos
    DEPARTAMENTO DE QUÍMICA FUNDAMENTAL Programa regulado por el RD 1393/2007: Química Ambiental y Fundamental New Advances on Anisotropic NMR and Detection of Bioactive Marine Natural Products Nuevos Avances en la RMN Anisotrópica y Detección de Productos Naturales Marinos Bioactivos Memoria presentada por Juan Carlos C. Fuente Monteverde Directores: Dr. Jaime Rodríguez González Dr. Carlos Jiménez González A Coruña 2018 i ii Acta de Tesis El tribunal, nombrado por el Excmo. Sr. Rector de la Universidade da Coruña para calificar la tesis doctoral titulada “Nuevos Avances en la RMN Anisotrópica y Detección de Productos Naturales Marinos Bioactivos/New Advances on Anisotropic NMR and Detection of Bioactive Marine Natural Products” dirigida por los Drs. Jaime Rodríguez González y Carlos Jiménez González, presentada por Don Juan Carlos de la Cruz Fuentes Monteverde y constituido en el día de la fecha por los miembros que subscriben la presente Acta, una vez efectuada la defensa por el doctorando y contestadas las objeciones y/o sugerencias que se le han formulado, ha otorgado por …………………………la calificación de: En A Coruña, a……………… de ……………………………… de 2019 PRESIDENTE SECRETARIO VOCAL Prof. Dr. Michael Reggelin Pr. Dr. Marcos D. García Romero Pr. Dr. Victor Sanchez Pedregal Organic Chemistry Pr. Titular Química Orgánica Pr. Titular de Química Orgánica Technische Universität Darmstadt Firmado Firmado Firmado iii iv Don Juan Carlos de la Cruz Fuentes Monteverde: Presenta la memoria adjunta, titulada “Nuevos Avances en la RMN Anisotrópica y Detección de Productos Naturales Marinos Bioactivos/New Advances on Anisotropic NMR and Detection of Bioactive Marine Natural Products” para optar al grado de Doctor en Química que ha sido realizado bajo la dirección de los Doctores Jaime Rodríguez González y Carlos Jiménez González en los laboratorios del Centro de Investigaciones Científicas Avanzadas (CICA) de la Universidade da Coruña.
    [Show full text]
  • Enterobactin from Escherichia Coli
    Enterobactin from Escherichia coli Catalog Number E3910 Storage Temperature –20 °C CAS RN 28384-96-5 Complexes of enterobactin with scandium (Sc3+) and Synonym: Enterochelin indium (In3+) were shown to have antibacterial effect against Klebsiella pneumoniae, similar to that obtained with kanamycin sulfate. The Sc3+-enterobactin complex was found to be active at 0.2 mM and appears to form an equilibrium mixture with Fe3+-enterobactin complex.7 The In3+-enterobactin complex does not produce complete bacteriostasis but rather a marked increase in generation time. Purity: ³98% (HPLC) Preparation instructions Soluble at 10 mg/ml in DMSO or acetonitrile:water (9:1). Product Description Precautions and Disclaimer Molecular formula: C30H27N3O15 This product is for R&D use only, not for drug, Molecular weight: 669.55 household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards Iron mobilization and uptake by microbes is mediated and safe handling practices. by low molecular weight complexing agents named siderophores.1 Enterobactin is a catechol [a benzene- Storage/Stability diol, C6H4(OH)2] type siderophore produced in small Store the product sealed at –20 °C. Under these quantities by Escherichia coli and related enteric conditions the product is stable for at least 2 years. bacteria when grown on iron deficient media,2 and is the most powerful ferric ion complexing agent known.1,3 References 1. Ecker, D.J., et al., Recognition and transport of Since it is highly hydrophobic, in order to act as a ferric enterobactin in Escherichia coli. J. Bacteriol., siderophore, enterobactin undergoes modifications by 167, 666-673 (1986).
    [Show full text]
  • An Organic Chemist's Guide to Electrospray Mass Spectrometric
    molecules Review An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation Arnold Steckel 1 and Gitta Schlosser 2,* 1 Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; [email protected] 2 Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary * Correspondence: [email protected] Received: 16 January 2019; Accepted: 8 February 2019; Published: 10 February 2019 Abstract: Tandem mass spectrometry is an important tool for structure elucidation of natural and synthetic organic products. Fragmentation of odd electron ions (OE+) generated by electron ionization (EI) was extensively studied in the last few decades, however there are only a few systematic reviews available concerning the fragmentation of even-electron ions (EE+/EE−) produced by the currently most common ionization techniques, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). This review summarizes the most important features of tandem mass spectra generated by collision-induced dissociation fragmentation and presents didactic examples for the unexperienced users. Keywords: tandem mass spectrometry; MS/MS fragmentation; collision-induced dissociation; CID; ESI; structure elucidation 1. Introduction Electron ionization (EI), a hard ionization technique, is the method of choice for analyses of small (<1000 Da), nonpolar, volatile compounds. As its name implies, the technique involves ionization by electrons with ~70 eV energy. This energy is high enough to yield very reproducible mass spectra with a large number of fragments. However, these spectra frequently lack the radical type molecular ions (M+) due to the high internal energy transferred to the precursors [1].
    [Show full text]