Coordinate Systems Are Used to Describe Positions of Particles Or Points at Which Quantities Are to Be Defined Or Measured

Total Page:16

File Type:pdf, Size:1020Kb

Coordinate Systems Are Used to Describe Positions of Particles Or Points at Which Quantities Are to Be Defined Or Measured COORDINATE SYSTEMS Concepts of primary interest: The line element Coordinate directions Area and volume elements Sample calculations: Coordinate direction derivatives Velocity and acceleration in polar coordinates Application examples: Velocity and acceleration in spherical coordinates **** add solid angle Tools of the Trade Changing a vector Area Elements: dA = dr12× dr *** TO Add ***** Appendix I – The Gradient and Line Integrals Coordinate systems are used to describe positions of particles or points at which quantities are to be defined or measured. They are often used as references for specifying directions. The coordinate system or reference frame is used extensively in describing the physical problem or situation, but it is not a part of the problem. No physical result can depend on the choice of coordinates. The coordinate system is a passive aid to the observer, and it may be chosen or adjusted to suit the purposes of the observer. Problem statements may use a coordinate system as a convenience, but no physical problem comes with axes glued to it. We add them to facilitate the description of the problem. Once the coordinates have been chosen for a problem and the description has been started, further changes are usually not advised as a complicated transformation scheme is often required to translate information stated relative to one set of coordinates into a form suitable for use in another set of coordinates. A system of coordinates for three dimensions assigns an ordered triplet of numbers [(x, y, z) or (q1,q2,q3)] to each point in space. Three such coordinate systems are commonly used by undergraduate physics majors: Cartesian, cylindrical and spherical. A common characteristic of these systems is that Contact: [email protected] they are locally orthonormal coordinate systems. This phrase means that each coordinate system specifies three mutually perpendicular (orthogonal and unity normalized) directions at every point in space. An infinitesimal displacement along one coordinate direction is independent of small displacements along the other coordinate directions because their directions are mutually perpendicular. For example, in Cartesian coordinates, a displacement in the x direction does not change the y or z coordinate. Each system is to be discussed in a parallel fashion to emphasize their common features and their distinguishing characteristics. Rene Descartes (1596-1650): French scientific philosopher who developed a theory known as the mechanical philosophy. This philosophy was highly influential until superseded by Newton’s methodology. Descartes was the first to make a graph, allowing a geometric interpretation of a mathematical function and giving his name to Cartesian coordinates. Eric W. Weisstein @ scienceworld.wolfram.com/biography/Descartes.html Cartesian Coordinates To understand a coordinate system, you must know its relation to the Cartesian coordinate system, the representation of the position vector, the shapes of the constant coordinate surfaces, the three independent coordinate directions, and the line element represented as d or dr . For this reason, the Cartesian system is studied first. The relations between the coordinates of a Cartesian system and those of a second Cartesian system with the same origin and axes directions are: x' = x, y' = y, and z' = z. (A more interesting set of transformations is used to relate one set of Cartesian coordinates to another Cartesian set with a different origin or orientation. That problem is studied in a second semester course in mechanics.) Constant Coordinate Surfaces: The constant coordinate surfaces are planes parallel to the plane defined by the other two axes. For example, x = a is a plane parallel to the y-z plane that is perpendicular to the x axis at the point (a, 0, 0). The point (a, b, c) is located at the intersection of the planes x = a, y = b, and z =c. You should sketch some constant coordinate planes illustrating the intersections of pairs and triplets of such planes. Coordinate Orbits: We define a coordinate orbit as the locus of points mapped as one coordinate 2/11/2008 Physics Handout Series.Tank: Basic Coordinate Systems 2 runs through its full range in the positive sense while the other coordinates are held fixed. An x-orbit is an infinite line parallel to the x-axis that passes through the x = 0 plane at (0, y, z). Position Vector: The position vector for a point P is the displacement from the origin to that point. ˆˆˆ The Cartesian position vector corresponding to the point P = (xP, yP, zP) is rxiyjzPP=+ P + Pk. Coordinate Directions: One can find the coordinate directions by examining the change in position due to a small positive variation in one coordinate while the other coordinates are kept fixed. Imagine the Cartesian coordinate axes and a point (x, y, z) hanging in otherwise empty space. Increase each coordinate in turn by a small positive increment to visualize each of the independent coordinate ˆˆˆ directions { xˆˆ,,yzˆ }(also known as:{ijk,, }; { eeeˆˆˆx ,,yz} or { eeeˆˆˆ123,,}). The xˆ direction is the direction a point is displaced if its x coordinate is given a small positive increment while its y and z coordinates are held fixed. ⎡⎤x dxiˆˆ yj zkˆˆ xi ˆˆ yj zk ⎪⎪⎧⎫rx(,,)(,,)+− dxyz rxyz ⎣⎦()+++−++ xˆ ==Limit ⎨⎬ =iˆ dx→0+ ⎩⎭⎪⎪rx(,,)(,,)+− dxyz rxyz dx FORGET the equation! It is the picture that you need. Imagine the axes and point hanging out in space. In your mind, move the point from (x, y, z) to (x + Δx, y, z). In what direction did the point move? Line Element: The next vital quantity is the line element which is found as the displacement from the point (x, y, z) to the point (x + dx, y + dy, z + dz) at which each of the coordinates has been given an infinitesimal increment. d == dr rx(, + dxydyz + ,)(,,) + dz − rxyz = dxiˆˆ + dyj + dzkˆ Area and volume elements are built up from the mutually orthogonal components of the line element. For an area element with its normal in the x direction, x is fixed, and dAx = dy dz. The area element is just the product of the two perpendicular components of the line element. All three components of the differential of area are summarized as: ˆˆˆˆ ˆ ˆ dA=++ dAxy i dA j dA z k = dy dzi + dz dx j + dx dy k (There are other notations for dA such as dS, and dr2 .) Note that the direction of an area element is defined to be one of its normal directions. For a closed surface, the convention is to choose the outward directed normal. For the area element dA , the convention is that one takes the cross product of the each pair of the dir4ected components of the line 2/11/2008 Physics Handout Series.Tank: Basic Coordinate Systems 3 element in right hand rule order. dA ==()dxiˆˆ×+×+× dy j() dy ˆj dz kˆˆ( dz k dxiˆ) dy dziˆˆ+ dz dx j+ dx dy kˆ Finally, we get the volume element by computing the product of the three orthogonal components of the line element. A volume element can be swept out by taking a small area element and moving it a small distance in the direction of its normal, or it can be computed as the triple vector product of the line elements component vectors. ˆˆ ˆ ˆ ˆˆ dV=⋅ dxi dAxy i = dy j ⋅ dA j =⋅ dz k dA z k = dx dy dz dV=⋅ dxiˆˆ() dy j × dz kˆ ⇒ dV = dx dy dz z ˆ kˆ dz k dy ˆj dA = dy dz x dz kˆ ˆj iˆ ˆ dy ˆj dy ˆj dxi ˆ y dxi dV = dx dy dz x dAz = dx dy Everything is constructed from the components of the line element. Note the coordinate cube (volume element) has a small coordinate corner at (x,y,z) and a large coordinate corner at (x + dx, y + dy, z + dz). The components of the line element {,dxiˆˆ dy j,} dz kˆ are drawn from the small coordinate corner and highlighted. Then, the remaining 9 edges are added. Volumes and areas are easy because the components of the line element are mutually perpendicular. ˆ Exercise: Consider an area element dAy j . Compute the volume that is swept out by the area as it is given each of the following displacements: dxiˆˆ,ady j nddz kˆ . Prepare sketches. Direction Cosines: A general direction is expressed as: 2/11/2008 Physics Handout Series.Tank: Basic Coordinate Systems 4 eieijejkekˆˆ=⋅(ˆˆˆ ) + ( ⋅ ˆ ) ˆ + (ˆˆ ⋅ ˆ ) = (cosα ) iˆ + (cosβγ ) ˆj + (cos ) kˆ where cosα, cosβ and cosγ are the direction cosines of with respect to the three coordinate directions. That is cosα = ieˆ ⋅ ˆ the cosine of the angle α between the direction of eˆ and that of iˆ , the x direction. Cylindrical Coordinates Orientation relative to the Cartesian standard system: The origins and z axes of the cylindrical system and of the Cartesian reference are coincident. The cylindrical radial coordinate is the perpendicular distance from the point to the z axis. The angle φ is the angle between the x axis and the projection of the position vector in the x-y plane. Coordinate ranges: 0 ≤ r < ∞, 0 ≤ φ < 2π, and -∞ < z < ∞. Warning: r represents the cylindrical radial distance from the axis. It is chosen to coincide with the standard notation used for 2D polar coordinates. This notation is dangerous as r ≠=rrz22+ , and it can be confused with the spherical radial coordinate r = r , the distance from the origin. Stay Alert! Relation of Cylindrical Coordinates to Cartesian coordinates: 22 −1 y r = x + y φ = tan ( x) z = z x = r cosφ y = r sinφ z = z Constant coordinate surfaces: r = constant: an infinite circular cylinder concentric with the z axis. φ = constant: a half infinite plane starting on and including the z axis and the ray φ = constant in the z = 0 plane.
Recommended publications
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • Position Management System Online Subject Area
    USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Insight Quick Reference | Position Management System Online Subject Area What is Position Management System Online (PMSO)? • This Subject Area provides snapshots in time of organization position listings including active (filled and vacant), inactive, and deleted positions. • Position data includes a Master Record, containing basic position data such as grade, pay plan, or occupational series code. • The Master Record is linked to one or more Individual Positions containing organizational structure code, duty station code, and accounting station code data. History • The most recent daily snapshot is available during a given pay period until BEAR runs. • Bi-Weekly snapshots date back to Pay Period 1 of 2014. Data Refresh* Position Management System Online Common Reports Daily • Provides daily results of individual position information, HR Area Report Name Load which changes on a daily basis. Bi-Weekly Organization • Position Daily for current pay and Position Organization with period/ Bi-Weekly • Provides the latest record regardless of previous changes Management PII (PMSO) for historical pay that occur to the data during a given pay period. periods *View the Insight Data Refresh Report to determine the most recent date of refresh Reminder: In all PMSO reports, users should make sure to include: • An Organization filter • PMSO Key elements from the Master Record folder • SSNO element from the Incumbent Employee folder • A time filter from the Snapshot Time folder 1 USDA, NATIONAL FINANCE CENTER INSIGHT ENTERPRISE REPORTING Business Intelligence Delivered Daily Calendar Filters Bi-Weekly Calendar Filters There are three time options when running a bi-weekly There are two ways to pull the most recent daily data in a PMSO report: PMSO report: 1.
    [Show full text]
  • Chapters, in This Chapter We Present Methods Thatare Not Yet Employed by Industrial Robots, Except in an Extremely Simplifiedway
    C H A P T E R 11 Force control of manipulators 11.1 INTRODUCTION 11.2 APPLICATION OF INDUSTRIAL ROBOTS TO ASSEMBLY TASKS 11.3 A FRAMEWORK FOR CONTROL IN PARTIALLY CONSTRAINED TASKS 11.4 THE HYBRID POSITION/FORCE CONTROL PROBLEM 11.5 FORCE CONTROL OFA MASS—SPRING SYSTEM 11.6 THE HYBRID POSITION/FORCE CONTROL SCHEME 11.7 CURRENT INDUSTRIAL-ROBOT CONTROL SCHEMES 11.1 INTRODUCTION Positioncontrol is appropriate when a manipulator is followinga trajectory through space, but when any contact is made between the end-effector and the manipulator's environment, mere position control might not suffice. Considera manipulator washing a window with a sponge. The compliance of thesponge might make it possible to regulate the force applied to the window by controlling the position of the end-effector relative to the glass. If the sponge isvery compliant or the position of the glass is known very accurately, this technique could work quite well. If, however, the stiffness of the end-effector, tool, or environment is high, it becomes increasingly difficult to perform operations in which the manipulator presses against a surface. Instead of washing with a sponge, imagine that the manipulator is scraping paint off a glass surface, usinga rigid scraping tool. If there is any uncertainty in the position of the glass surfaceor any error in the position of the manipulator, this task would become impossible. Either the glass would be broken, or the manipulator would wave the scraping toolover the glass with no contact taking place. In both the washing and scraping tasks, it would bemore reasonable not to specify the position of the plane of the glass, but rather to specifya force that is to be maintained normal to the surface.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Solving the Geodesic Equation
    Solving the Geodesic Equation Jeremy Atkins December 12, 2018 Abstract We find the general form of the geodesic equation and discuss the closed form relation to find Christoffel symbols. We then show how to use metric independence to find Killing vector fields, which allow us to solve the geodesic equation when there are helpful symmetries. We also discuss a more general way to find Killing vector fields, and some of their properties as a Lie algebra. 1 The Variational Method We will exploit the following variational principle to characterize motion in general relativity: The world line of a free test particle between two timelike separated points extremizes the proper time between them. where a test particle is one that is not a significant source of spacetime cur- vature, and a free particles is one that is only under the influence of curved spacetime. Similarly to classical Lagrangian mechanics, we can use this to de- duce the equations of motion for a metric. The proper time along a timeline worldline between point A and point B for the metric gµν is given by Z B Z B µ ν 1=2 τAB = dτ = (−gµν (x)dx dx ) (1) A A using the Einstein summation notation, and µ, ν = 0; 1; 2; 3. We can parame- terize the four coordinates with the parameter σ where σ = 0 at A and σ = 1 at B. This gives us the following equation for the proper time: Z 1 dxµ dxν 1=2 τAB = dσ −gµν (x) (2) 0 dσ dσ We can treat the integrand as a Lagrangian, dxµ dxν 1=2 L = −gµν (x) (3) dσ dσ and it's clear that the world lines extremizing proper time are those that satisfy the Euler-Lagrange equation: @L d @L − = 0 (4) @xµ dσ @(dxµ/dσ) 1 These four equations together give the equation for the worldline extremizing the proper time.
    [Show full text]
  • Position, Velocity, and Acceleration
    Position,Position, Velocity,Velocity, andand AccelerationAcceleration Mr.Mr. MiehlMiehl www.tesd.net/miehlwww.tesd.net/miehl [email protected]@tesd.net Position,Position, VelocityVelocity && AccelerationAcceleration Velocity is the rate of change of position with respect to time. ΔD Velocity = ΔT Acceleration is the rate of change of velocity with respect to time. ΔV Acceleration = ΔT Position,Position, VelocityVelocity && AccelerationAcceleration Warning: Professional driver, do not attempt! When you’re driving your car… Position,Position, VelocityVelocity && AccelerationAcceleration squeeeeek! …and you jam on the brakes… Position,Position, VelocityVelocity && AccelerationAcceleration …and you feel the car slowing down… Position,Position, VelocityVelocity && AccelerationAcceleration …what you are really feeling… Position,Position, VelocityVelocity && AccelerationAcceleration …is actually acceleration. Position,Position, VelocityVelocity && AccelerationAcceleration I felt that acceleration. Position,Position, VelocityVelocity && AccelerationAcceleration How do you find a function that describes a physical event? Steps for Modeling Physical Data 1) Perform an experiment. 2) Collect and graph data. 3) Decide what type of curve fits the data. 4) Use statistics to determine the equation of the curve. Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk. Its location (in feet) at time t (in seconds) is given by P (t ) = t 2 + t. a) Where is the crab after 2 seconds? b) How fast is it moving at that instant (2 seconds)? Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk. Its location (in feet) at time t (in seconds) is given by P (t ) = t 2 + t. a) Where is the crab after 2 seconds? 2 P()22=+ () ( 2) P()26= feet Position,Position, VelocityVelocity && AccelerationAcceleration A crab is crawling along the edge of your desk.
    [Show full text]
  • Chapter 3 Motion in Two and Three Dimensions
    Chapter 3 Motion in Two and Three Dimensions 3.1 The Important Stuff 3.1.1 Position In three dimensions, the location of a particle is specified by its location vector, r: r = xi + yj + zk (3.1) If during a time interval ∆t the position vector of the particle changes from r1 to r2, the displacement ∆r for that time interval is ∆r = r1 − r2 (3.2) = (x2 − x1)i +(y2 − y1)j +(z2 − z1)k (3.3) 3.1.2 Velocity If a particle moves through a displacement ∆r in a time interval ∆t then its average velocity for that interval is ∆r ∆x ∆y ∆z v = = i + j + k (3.4) ∆t ∆t ∆t ∆t As before, a more interesting quantity is the instantaneous velocity v, which is the limit of the average velocity when we shrink the time interval ∆t to zero. It is the time derivative of the position vector r: dr v = (3.5) dt d = (xi + yj + zk) (3.6) dt dx dy dz = i + j + k (3.7) dt dt dt can be written: v = vxi + vyj + vzk (3.8) 51 52 CHAPTER 3. MOTION IN TWO AND THREE DIMENSIONS where dx dy dz v = v = v = (3.9) x dt y dt z dt The instantaneous velocity v of a particle is always tangent to the path of the particle. 3.1.3 Acceleration If a particle’s velocity changes by ∆v in a time period ∆t, the average acceleration a for that period is ∆v ∆v ∆v ∆v a = = x i + y j + z k (3.10) ∆t ∆t ∆t ∆t but a much more interesting quantity is the result of shrinking the period ∆t to zero, which gives us the instantaneous acceleration, a.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Hybrid Position/Force Control of Manipulators1
    Hybrid Position/Force Control of 1 M. H. Raibert Manipulators 2 A new conceptually simple approach to controlling compliant motions of a robot J.J. Craig manipulator is presented. The "hybrid" technique described combines force and torque information with positional data to satisfy simultaneous position and force Jet Propulsion Laboratory, trajectory constraints specified in a convenient task related coordinate system. California Institute of Technology Analysis, simulation, and experiments are used to evaluate the controller's ability to Pasadena, Calif. 91103 execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions. Introduction Precise control of manipulators in the face of uncertainties fluence control. Since small variations in relative position and variations in their environments is a prerequisite to generate large contact forces when parts of moderate stiffness feasible application of robot manipulators to complex interact, knowledge and control of these forces can lead to a handling and assembly problems in industry and space. An tremendous increase in efective positional accuracy. important step toward achieving such control can be taken by A number of methods for obtaining force information providing manipulator hands with sensors that provide in­ exist: motor currents may be measured or programmed, [6, formation about the progress
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • 1.2 the Strain-Displacement Relations
    Section 1.2 1.2 The Strain-Displacement Relations The strain was introduced in Book I: §4. The concepts examined there are now extended to the case of strains which vary continuously throughout a material. 1.2.1 The Strain-Displacement Relations Normal Strain Consider a line element of length x emanating from position (x, y) and lying in the x - direction, denoted by AB in Fig. 1.2.1. After deformation the line element occupies AB , having undergone a translation, extension and rotation. y ux (x x, y) ux (x, y) B * B A A B x x x x Figure 1.2.1: deformation of a line element The particle that was originally at x has undergone a displacement u x (x, y) and the other end of the line element has undergone a displacement u x (x x, y) . By the definition of (small) normal strain, AB* AB u (x x, y) u (x, y) x x (1.2.1) xx AB x In the limit x 0 one has u x (1.2.2) xx x This partial derivative is a displacement gradient, a measure of how rapid the displacement changes through the material, and is the strain at (x, y) . Physically, it represents the (approximate) unit change in length of a line element, as indicated in Fig. 1.2.2. Solid Mechanics Part II 9 Kelly Section 1.2 B A B* A B x u x x x x Figure 1.2.2: unit change in length of a line element Similarly, by considering a line element initially lying in the y direction, the strain in the y direction can be expressed as u y (1.2.3) yy y Shear Strain The particles A and B in Fig.
    [Show full text]