Infektionsimmunologie 2013 (Virologie-Teil)

Total Page:16

File Type:pdf, Size:1020Kb

Infektionsimmunologie 2013 (Virologie-Teil) Infektionsimmunologie 2013 (Virologie-Teil) Mit Blauzungenvirus (BTV) und Schmallenbergvirus (SBV) haben in den letzten Jahren die Vektor-übertragenen Viren bei uns überproportional an Bedeutung gewonnen. Als wahrscheinlich nächster Kandidat steht das West-Nil-Virus (WNV) vor den Pforten. Wir wollen uns mit diesem Thema vertieft befassen. Aufgaben/Ziele • Jede Gruppe soll die Unterlagen konsultieren um je eine der Aufgaben (1 bis 12) kompetent lösen und darstellen zu können. • Jede Gruppe soll ein Poster erstellen, welches dazu dient, den erfragten Sachverhalt den anderen Gruppen zu erklären. Zu jedem Poster ist zudem ein Handout zu erstellen, das den Kolleg/innen eine sorgfältige Vorbereitung auf die Testatprüfung erlaubt. • Jeder Teilnehmer soll am Ende der Veranstaltung alle Aufgaben kompetent lösen können. Aufgabenkatalog 1. West-Nil-Virus, innen und aussen Beschreiben sie das West-Nil-Virus: Morphologie, Genom, Replikation, wichtigste Proteine und ihre Funktion. Erklären sie anhand dieser Grundlagen die Diagnostik für WNV. Erläutern sie Begriffe, die im Zusammenhang wichtig sind. (Kramer et al., 2008; Pesko and Ebel, 2012) 2. Typen des West-Nil-Virus Wie unterscheiden sich die verschiedenen Typen und Linien des West-Nil-Virus und welche Bedeutung kommt den Unterschieden zu? (Bakonyi et al., 2006; Kramer et al., 2008; Pesko and Ebel, 2012) 3. Unterschiede und Gemeinsamkeiten Welche Unterschiede und Gemeinsamkeiten haben die West-Nil-Viren mit anderen Viren, z.B. FSMEV, BTV und SBV? Welche Relevanz hat dies für die Übertragung, Pathogenese, Impfung? (Colpitts et al., 2012; Kramer et al., 2008; Porträts WNV_FSME_BTV_SBV) 4. West-Nil-Virus im Vergleich betroffener Tierarten Welche Typen und Subtypen kommen vor? Welche klinischen Symptome werden beobachtet? Womit begründen sich die unterschiedlichen Symptome bei den einzelnen Tierarten? Vermehrt sich das Virus in unterschiedlichen Organen? Wie wirken sich immunologische Faktoren auf Reservoirbildung und Übertragung aus? (Hubalek and Halouzka, 1999; Jeffrey Root, 2013; Kramer et al., 2008; Kwan et al., 2012) 5. West-Nil-Virus und sein(e) Vektor(en) Welche Vektoren gibt es? Biologie und Einteilung der Vektoren? Wie vermehrt und verbreitet sich der Vektor? Wie entsteht aus dem Vektor ein Reservoir? Wie kann man den Vektor bekämpfen (theoretische und praktische Ansätze)? (Andreadis, 2012; Colpitts et al., 2012; Kramer et al., 2008) 6. Vermehrung des West-Nil-Virus im Vektor In welchen Organen vermehrt sich das Virus? Wie wird es ausgeschieden und übertragen? Welche Virusmengen sind nötig für die Vermehrung im Vektor? Wieviel Virus gibt ein Vektor bei der Übertragung ab? (Colpitts et al., 2012; Hubalek and Halouzka, 1999; Kramer et al., 2008; Kwan et al., 2012) 7. Globale Epidemiologie des West-Nil-Virus Wie hat sich die Epidemiologie von WNV in den letzten Jahrzehnten entwickelt? Fallzahlen, Prävalenz, Inzidenz, Letalität der verschiedenen Krankheitsformen? Durch welche Faktoren wird die Epidemiologie beeinflusst? Unter welchen Voraussetzungen könnte sich das West- Nil-Virus in der Schweiz festsetzen? (Hubalek and Halouzka, 1999; Kramer et al., 2008) 8. Pathogenese des West-Nil-Virus auf Ebene Organismus Wie breitet sich das Virus im Organismus aus und wie wird es wieder ausgeschieden? Welche Verlaufsformen kommen vor? Welche Faktoren sind wichtig für die Ausprägung der einzelnen Verlaufsform? Welche Faktoren sind relevant für die Übertragung? (Colpitts et al., 2012; Kramer et al., 2008; Pesko and Ebel, 2012; Pradier et al., 2012) 9. Pathogenese des West-Nil-Virus auf zellulärer und molekularer Ebene Pathogenese: beteiligte Virusproteine, Zellen und Moleküle? Welche Rolle spielt die Immunität? (Cho and Diamond, 2012; Colpitts et al., 2012; Diamond and Gale, 2012; Kramer et al., 2008; Leis and Stokic, 2012; Pesko and Ebel, 2012; Pradier et al., 2012) 10. Impfstoffe gegen West-Nil-Virus Was für Impfstoffe stehen weltweit zur Verfügung; was für welche in der Schweiz? Was sind die Merkmale dieser Impfstoffe? Was können sie? Was können sie nicht? (De Filette et al., 2012; Kramer et al., 2008) 11. Antikörper und zelluläre Immunität gegen das West-Nil-Virus Wie entstehen sie; was bewirken sie; welche Virusproteine sind involviert? Relevanz bezüglich Schutz? Welche Antikörperklassen und –funktionen werden beobachtet; wären erwünscht? (Cho and Diamond, 2012; De Filette et al., 2012; Diamond et al., 2003; Kramer et al., 2008; Kwan et al., 2012) 12. Intrinsische und innate Abwehr gegen West-Nil-Virus Rolle und Potential im Haustier/Mensch bzw. Vektor. Positive Aspekte; negative Aspekte; Rolle in der Immunität und in der Pathogenese? (Diamond and Gale, 2012; Diamond et al., 2003; Kramer et al., 2008) Zeitplan Wann Was Wo Mi 2. Oktober 8- 10 Uhr Einführung GHS - Gruppeneinteilung - Unterlagen - Aufgabenbesprechung - Downloaden und Sichtung der Unterlagen Fr 4. Oktober 8-10 Uhr - Studium der Unterlagen AHS - Fragen an den Tutor Mo 7. Oktober 13-15 Uhr Poster erstellen AHS Di 8. Oktober 10-12 Uhr Poster diskutieren Mikroskopiehörsaal Diagnostikzentrum Poster • Das Poster soll die wichtigsten Sachverhalte zur Lösung der Aufgabe enthalten. • Die Darstellung soll so erfolgen, dass alle Informationen auch aus einer Entfernung von 4 bis 5 Metern aufgenommen werden können (Grösse und Dicke der Schrift bzw. der Zeichnungen). • Handschriftliche Darstellungen und eigene Zeichnungen sind Computer-Darstellungen bei Weitem vorzuziehen. Ausnahmen sind möglich, bedürfen aber einer hinreichenden Begründung. • Für die Poster-Produktion werden Packpapier und Buntstifte zur Verfügung gestellt. • Häufig ist es nützlich, das Poster mit einem Handout zu begleiten. • Jedes Gruppenmitglied muss in der Lage sein, sein Poster zu erklären. Bibliografie Andreadis, T.G., 2012, The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. J Am Mosq Control Assoc 28, 137-151. Bakonyi, T., Ivanics, E., Erdelyi, K., Ursu, K., Ferenczi, E., Weissenbock, H., Nowotny, N., 2006, Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis 12, 618-623. Cho, H., Diamond, M.S., 2012, Immune responses to West Nile virus infection in the central nervous system. Viruses 4, 3812-3830. Colpitts, T.M., Conway, M.J., Montgomery, R.R., Fikrig, E., 2012, West Nile Virus: biology, transmission, and human infection. Clin Microbiol Rev 25, 635-648. De Filette, M., Ulbert, S., Diamond, M., Sanders, N.N., 2012, Recent progress in West Nile virus diagnosis and vaccination. Vet Res 43, 16. Diamond, M.S., Gale, M., Jr., 2012, Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol 33, 522-530. Diamond, M.S., Shrestha, B., Mehlhop, E., Sitati, E., Engle, M., 2003, Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16, 259-278. Hubalek, Z., Halouzka, J., 1999, West Nile fever--a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5, 643-650. Jeffrey Root, J., 2013, West Nile virus associations in wild mammals: a synthesis. Arch Virol 158, 735-752. Kramer, L.D., Styer, L.M., Ebel, G.D., 2008, A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53, 61-81. Kwan, J.L., Kluh, S., Reisen, W.K., 2012, Antecedent avian immunity limits tangential transmission of West Nile virus to humans. PLoS One 7, e34127. Leis, A.A., Stokic, D.S., 2012, Neuromuscular manifestations of west nile virus infection. Front Neurol 3, 37. Pesko, K.N., Ebel, G.D., 2012, West Nile virus population genetics and evolution. Infect Genet Evol 12, 181-190. Pradier, S., Lecollinet, S., Leblond, A., 2012, West Nile virus epidemiology and factors triggering change in its distribution in Europe. Rev Sci Tech 31, 829- 844. West Nile Virus Taxonomie Familie: Flaviviridae Genus & Bsp. für Krankheiten: Flavivirus West Nile Fieber Dengue Fieber FSME Gelbfieber Pestivirus Klassische Schweinepest Bovine Virus Diarrhoe Border Disease Hepatitis C Virus Hepatitis1 Morphologie & Genom Das West Nile Virus (WNV) ist ein behülltes Virus mit einem Durchmesser von 40-60nm und einem ikosaedrischen Nukleokapsid. Es enthält eine positiv-einzelsträngige RNA mit ca. 11‘000 Nukleotiden. Das Genom ist 9.5 bis 12kb lang. Es gibt 3 Strukturproteine und 7 Nichtstrukturproteine. Das Genom ist vom Kapsidprotein C umgeben, um das noch eine Hülle mit den eingelagerten M- und E-Proteinen ist. Das E-Protein liegt dabei als Dimer vor, das M-Protein als Monomer.2 3 Replikation Nachdem das Virus via Glykoprotein E an den zellulären Rezeptor gebunden hat, wird es mittels Endozytose in die Zelle aufgenommen. Es kommt zur Fusion der Virushülle mit der Membran des Vesikels und die genomische RNA wird ins Zytoplasma entlassen. Die (+)ssRNA wird in ein Polyprotein translatiert und in die zehn Proteine gespalten. Die Replikation findet in der Nähe der ER-Membran statt. Zuerst wird die komplementäre (-)ssRNA synthetisiert, welche als Vorlage für die Synthese neuer (+)ssRNA dient. Das Assembly findet an den ER- Membranen statt und das Virus gelangt intrazysternal via Golgi-Apparat an die Zellmembran, wo die neuen Viruspartikel durch Knospung freigesetzt werden.4 5 Wichtige Proteine Bei der Replikation des West-Nile-Virus-Genoms entsteht ein Polyprotein, welches bereits während und nach der Translation von viralen so wie von wirtseigenen Proteasen gespalten wird. Dabei entstehen: • 3 Strukturproteine, welche nötig sind für den Virus-Eintritt in die Wirtszelle (Entry & Fusion), sowie auch für
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Importance of Mosquitoes
    IMPORTANCE OF MOSQUITOES Portions of this chapter were obtained from the University of Florida and the American Mosquito Control Association Public Health Pest Control website at http://vector.ifas.ufl.edu. Introduction to Pests and Public Health: Arthropods are the most successful group of animals on Earth. They thrive in every habitat and in all regions of the world. A small number of species from this phylum have a great impact on humans, affecting us not only by damaging agriculture and horticultural crops but also through the diseases they can transmit to humans and our domestic animals. Insects can transmit disease (vectors), cause wounds, inject venom, or create nuisance, and have serious social and economic consequences. Arthropods can be indirect (mechanical carriers) or direct (biological carriers) transmitters of disease. As indirect agents they serve as simple mechanical carriers of various bacteria and fungi which may cause disease. As direct or biological agents they serve as vectors for disease­causing agents that require the insect as part of the life cycle. In considering transmission of disease­ causing organisms, it is important to understand the relationships among the vector (the disease­ transmitting organism, i.e. an insect), the disease pathogen (for example, a virus) and the host (humans or animals). The pathogen may or may not undergo different life stages while in the vector. Pathogens that undergo changes in life stages within the vector before being transmitted to a host require the vector—without the vector, the disease life cycle would be broken and the pathogen would die. In either case, the vector is the means for the pathogen to pass from one host to another.
    [Show full text]
  • Table of Contents
    Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner
    [Show full text]
  • Scientific Note
    Journal of the American Mosquito Control Association, 2l(4):474-476,2OO5 Copyright @ 2005 by the American Mosquito Control Association, Inc. SCIENTIFIC NOTE DETECTION OF WEST NILE VIRUS RNA FROM THE LOUSE FLY ICO STA AMERICANA (DIPTERA: HIPPOBOSCIDAE) ARY FARAJOLLAHI,'.' WAYNE J. CRANS,I DIANE NICKERSON,3 PATRICIA BRYANT4 BRUCE WOLE4 AMY GLASER,5 INn THEODORE G. ANDREADIS6 ABSTRACT West Nile virus (WNV) was detected by Taqman reverse transcription-polymerase chain reaction in 4 of 85 (4.7Vo) blood-engorged (n : 2) and unengorged (n : 2) Icosta americana (Leach) hippoboscid flies that were collected from wild raptors submitted to a wildlife rehabilitation center in Mercer County, NJ, in 2003. This report represents an additional detection of WNV in a nonculicine arthropod in North America and the first documented detection of the virus in unengorged hippoboscid flies, further suggesting a possible role that this species may play in the transmission of WNV in North America. KEY WORDS West Nile vrrns, Icosta americana, Hippoboscidae, raptors West Nile virus (WNV) is a flavivirus that rs blood feeders that are commonly associated with principally maintained in an enzootic cycle between birds of prey. Both sexes readily take blood (Be- Culex mosquitoes and avian amplifying hosts. To quaert 1952, 1953; Maa and Peterson 1987) and date, the virus has been detected in or isolated from females are viviparous, exhibiting a high frequency 59 species of mosquitoes in the United States and of blood feeding due to nutritional demands of de- Canada (CDC 2004) and the importance of mos- veloping larvae (Bequaert 1952). Host speciflcity quitoes as enzootic and epidemic vectors of WNV varies greatly among bird-feeding species (Lloyd in North America is well established (Andreadis et 2OO2),bult most species remain and feed on the host al.
    [Show full text]
  • North American Wetlands and Mosquito Control
    Int. J. Environ. Res. Public Health 2012, 9, 4537-4605; doi:10.3390/ijerph9124537 OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Article North American Wetlands and Mosquito Control Jorge R. Rey 1,*, William E. Walton 2, Roger J. Wolfe 3, C. Roxanne Connelly 1, Sheila M. O’Connell 1, Joe Berg 4, Gabrielle E. Sakolsky-Hoopes 5 and Aimlee D. Laderman 6 1 Florida Medical Entomology Laboratory and Department of Entomology and Nematology, University of Florida-IFAS, Vero Beach, FL 342962, USA; E-Mails: [email protected] (R.C.); [email protected] (S.M.O.C.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; E-Mail: [email protected] 3 Connecticut Department of Energy and Environmental Protection, Franklin, CT 06254, USA; E-Mail: [email protected] 4 Biohabitats, Inc., 2081 Clipper Park Road, Baltimore, MD 21211, USA; E-Mail: [email protected] 5 Cape Cod Mosquito Control Project, Yarmouth Port, MA 02675, USA; E-Mail: [email protected] 6 Marine Biological Laboratory, Woods Hole, MA 02543, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-772-778-7200 (ext. 136). Received: 11 September 2012; in revised form: 21 November 2012 / Accepted: 22 November 2012 / Published: 10 December 2012 Abstract: Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems.
    [Show full text]
  • Vector-Host Interactions Governing Epidemiology of West Nile Virus in Southern California
    Am. J. Trop. Med. Hyg., 83(6), 2010, pp. 1269–1282 doi:10.4269/ajtmh.2010.10-0392 Copyright © 2010 by The American Society of Tropical Medicine and Hygiene Vector-Host Interactions Governing Epidemiology of West Nile Virus in Southern California Goudarz Molaei ,* Robert F. Cummings , Tianyun Su , Philip M. Armstrong , Greg A. Williams , Min-Lee Cheng , James P. Webb , † and Theodore G. Andreadis Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut; Orange County Vector Control District, Garden Grove, California; West Valley Mosquito and Vector Control District, Ontario, California; Northwest Mosquito and Vector Control District, Corona, California Abstract. Southern California remains an important focus of West Nile virus (WNV) activity, with persistently elevated incidence after invasion by the virus in 2003 and subsequent amplification to epidemic levels in 2004. Eco-epidemiological studies of vectors-hosts-pathogen interactions are of paramount importance for better understanding of the transmission dynamics of WNV and other emerging mosquito-borne arboviruses. We investigated vector-host interactions and host- feeding patterns of 531 blood-engorged mosquitoes in four competent mosquito vectors by using a polymerase chain reaction (PCR) method targeting mitochondrial DNA to identify vertebrate hosts of blood-fed mosquitoes. Diagnostic testing by cell culture, real-time reverse transcriptase-PCR, and immunoassays were used to examine WNV infection in blood-fed mosquitoes, mosquito pools, dead birds, and mammals. Prevalence of WNV antibodies among wild birds was estimated by using a blocking enzyme-linked immunosorbent assay. Analyses of engorged Culex quinquefasciatus revealed that this mosquito species acquired 88.4% of the blood meals from avian and 11.6% from mammalian hosts, including humans.
    [Show full text]
  • Single Mosquito Metatranscriptomics Identifies Vectors, Emerging Pathogens and Reservoirs in One Assay
    TOOLS AND RESOURCES Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay Joshua Batson1†, Gytis Dudas2†, Eric Haas-Stapleton3†, Amy L Kistler1†*, Lucy M Li1†, Phoenix Logan1†, Kalani Ratnasiri4†, Hanna Retallack5† 1Chan Zuckerberg Biohub, San Francisco, United States; 2Gothenburg Global Biodiversity Centre, Gothenburg, Sweden; 3Alameda County Mosquito Abatement District, Hayward, United States; 4Program in Immunology, Stanford University School of Medicine, Stanford, United States; 5Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, United States Abstract Mosquitoes are major infectious disease-carrying vectors. Assessment of current and future risks associated with the mosquito population requires knowledge of the full repertoire of pathogens they carry, including novel viruses, as well as their blood meal sources. Unbiased metatranscriptomic sequencing of individual mosquitoes offers a straightforward, rapid, and quantitative means to acquire this information. Here, we profile 148 diverse wild-caught mosquitoes collected in California and detect sequences from eukaryotes, prokaryotes, 24 known and 46 novel viral species. Importantly, sequencing individuals greatly enhanced the value of the biological information obtained. It allowed us to (a) speciate host mosquito, (b) compute the prevalence of each microbe and recognize a high frequency of viral co-infections, (c) associate animal pathogens with specific blood meal sources, and (d) apply simple co-occurrence methods to recover previously undetected components of highly prevalent segmented viruses. In the context *For correspondence: of emerging diseases, where knowledge about vectors, pathogens, and reservoirs is lacking, the [email protected] approaches described here can provide actionable information for public health surveillance and †These authors contributed intervention decisions.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Sébastian LEQUIME
    UNIVERSITÉ PIERRE ET MARIE CURIE ECOLE DOCTORALE 515 « Complexité du Vivant » Groupe à 5 ans – Interactions Virus-Insectes Interactions flavivirus – moustiques : diversité et transmission ! par Sébastian LEQUIME THÈSE DE DOCTORAT en EVOLUTION VIRALE Présentée et soutenue publiquement le : 21 Juin 2016 Devant un jury composé de : M. Samuel ALIZON, Chargé de Recherche Rapporteur M. Jacob KOELLA, Professeur Rapporteur M. Dominique HIGUET, Professeur Examinateur Mme Anna-Bella FAILLOUX, Directeur de Recherche Examinatrice M. Serafín GUTIERREZ, Chargé de Recherche Examinateur M. Louis LAMBRECHTS, Chargé de Recherche Directeur de thèse « Je sais qu’au point où en est arrivée aujourd’hui la microbiologie, tout nouveau grand pas en avant sera une affaire des plus pénibles et que l’on aura beaucoup de mécomptes et de déceptions. » – Alexandre YERSIN, 28 août 1891. Résumé Les infections humaines dues aux virus du genre Flavivirus constituent depuis longtemps un problème de santé publique majeur à travers le monde, en particulier dans les zones à climat tropical. Ces virus à ARN sont des arbovirus qui infectent alternativement un hôte vertébré et un arthropode « vecteur », dont majoritairement des moustiques de la sous-famille des Culicinae. D’autres flavivirus, en revanche, sont incapables d’infecter les cellules de vertébrés et sont qualifiés de flavivirus spécifiques d’insectes (FSI). L’interaction entre les vecteurs et les flavivirus est centrale dans leur biologie, par l’influence qu’elle a sur leur diversité génétique, leur évolution et leur transmission. Cependant, après plus d’un siècle de recherches scientifiques, certains points de ces aspects fondamentaux restent méconnus, malgré une abondance accrue de données. Les approches basées sur les « mégadonnées » (big data) ont été au cœur du travail de cette thèse, qu’elles aient été générées par des technologies modernes ou par compilation de travaux plus anciens.
    [Show full text]
  • Evaluation of Efficacy and Human Health Risk of Aerial
    Journal of the American Mosquito Control Association, 26(1):57–66, 2010 Copyright E 2010 by The American Mosquito Control Association, Inc. EVALUATION OF EFFICACY AND HUMAN HEALTH RISK OF AERIAL ULTRA-LOW VOLUME APPLICATIONS OF PYRETHRINS AND PIPERONYL BUTOXIDE FOR ADULT MOSQUITO MANAGEMENT IN RESPONSE TO WEST NILE VIRUS ACTIVITY IN SACRAMENTO COUNTY, CALIFORNIA PAULA A. MACEDO,1 JEROME J. SCHLEIER III,2 MARCIA REED,1 KARA KELLEY,1 GARY W. GOODMAN,1 DAVID A. BROWN1 AND ROBERT K. D. PETERSON2 ABSTRACT. The Sacramento and Yolo Mosquito and Vector Control District (SYMVCD, also referred to as ‘‘the District’’) conducts surveillance and management of mosquitoes in Sacramento and Yolo counties in California. Following an increase in numbers and West Nile virus (WNV) infection rates of Culex tarsalis and Culex pipiens, the District decided on July 26, 2007, to conduct aerial applications of EvergreenH EC 60-6 (60% pyrethrins: 6% piperonyl butoxide) over approximately 215 km2 in the north area of Sacramento County on the nights of July 30, July 31, and August 1, 2007. At the same time, the District received notification of the first human WNV case in the area. To evaluate the efficacy of the applications in decreasing mosquito abundance and infection rates, we conducted pre- and post-trapping inside and outside the spray zone and assessed human health risks from exposure to the insecticide applications. Results showed a significant decrease in abundance of both Cx. tarsalis and Cx. pipiens, and in the minimum infection rate of Cx. tarsalis. Human-health risks from exposure to the insecticide were below thresholds set by the US Environmental Protection Agency.
    [Show full text]
  • The Hippoboscoidea of British Columbia
    The Hippoboscoidea of British Columbia By C.G. Ratzlaff Spencer Entomological Collection, Beaty Biodiversity Museum, UBC, Vancouver, BC November 2017 The dipteran superfamily Hippoboscoidea is composed of three specialized ectoparasitic families, all of which are found in British Columbia. The Hippoboscidae, known as louse flies, are parasites on birds (subfamily Ornithomyinae) and mammals (subfamily Lipopteninae). The Nycteribiidae and Streblidae, known as bat flies, are parasites exclusively on bats. All are obligate parasites and feed on the blood of their hosts. This checklist of species and their associated hosts is compiled from Maa (1969a, 1969b) and Graciolli et al (2007) with additional records from specimens in the Spencer Entomological Collection at the Beaty Biodiversity Museum. Specific hosts mentioned are limited to species found in British Columbia and are primarily from specimen collection records. Ten species of Hippoboscidae, two species of Nycteribiidae, and one species of Streblidae have been found in British Columbia. Family HIPPOBOSCIDAE Subfamily Ornithomyinae Icosta ardeae botaurinorum (Swenk, 1916) Hosts: Ardeidae [Botaurus lentiginosus (American Bittern)] Icosta nigra (Perty, 1833) Hosts: Accipitridae [Buteo jamaicensis (Red-tailed Hawk)], Falconidae [Falco sparverius (American Kestrel)], Pandionidae [Pandion haliaetus (Osprey)]. A total of 19 genera in 5 families of host birds have been recorded throughout its range. Olfersia fumipennis (Sahlberg, 1886) Hosts: Pandionidae [Pandion haliaetus (Osprey)] Ornithoctona
    [Show full text]
  • Downloaded from NCBI on Mar 27, 2019.) 636 Default Parameters Were Used, Except the E-Value Cutoff Was Set to 1E-2
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.942854; this version posted February 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. bioRxiv PREPRINT 1 Single MOSQUITO 2 METATRANSCRIPTOMICS RECOVERS 3 MOSQUITO species, BLOOD MEAL 4 SOURces, AND MICROBIAL CARgo, 5 INCLUDING VIRAL DARK MATTER 1† 3† 2† 1*† 6 Joshua Batson , Gytis Dudas , Eric Haas-Stapleton , Amy L. Kistler , Lucy M. 1† 1† 1,4† 5† 7 Li , Phoenix Logan , Kalani Ratnasiri , Hanna Retallack *For CORRespondence: Chan ZuckERBERG Biohub, 499 ILLINOIS St, San FrANCISCO CA 94158; Alameda County [email protected] (AK) 8 1 2 Mosquito Abatement District, 23187 Connecticut St., Hayward, CA 94545; 3GothenburG † 9 These AUTHORS CONTRIBUTED EQUALLY Global Biodiversity Centre, Carl SkOTTSBERGS GATA 22B, 413 19, Gothenburg, Sweden; TO THIS WORK 10 PrOGRAM IN IMMUNOLOGY, StanforD University School OF Medicine, StanforD CA 94305; 11 4 Department OF Biochemistry AND Biophysics, University OF California San Francisco, San 12 5 FrANCISCO CA 94158 13 14 15 AbstrACT Mosquitoes ARE A DISEASE VECTOR WITH A COMPLEX ECOLOGY INVOLVING INTERACTIONS BETWEEN 16 TRANSMISSIBLE pathogens, ENDOGENOUS MICRobiota, AND HUMAN AND ANIMAL BLOOD MEAL SOURces. 17 Unbiased METATRANSCRIPTOMIC SEQUENCING OF INDIVIDUAL MOSQUITOES OffERS A STRAIGHTFORWARD AND 18 RAPID WAY TO CHARACTERIZE THESE dynamics. Here, WE PROfiLE 148 DIVERSE wild-caught MOSQUITOES 19 COLLECTED IN California, DETECTING SEQUENCES FROM eukaryotes, PRokaryotes, AND OVER 70 KNOWN AND 20 NOVEL VIRAL species.
    [Show full text]