Electrode−Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights † ‡ ‡ § † ‡ † ‡ ⊥ † ‡ Magali Gauthier, , Thomas J

Total Page:16

File Type:pdf, Size:1020Kb

Electrode−Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights † ‡ ‡ § † ‡ † ‡ ⊥ † ‡ Magali Gauthier, , Thomas J Perspective pubs.acs.org/JPCL Electrode−Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights † ‡ ‡ § † ‡ † ‡ ⊥ † ‡ Magali Gauthier, , Thomas J. Carney, , Alexis Grimaud, , Livia Giordano, , , Nir Pour, , † ‡ ‡ ∥ ∇ ¶ ¶ Hao-Hsun Chang, , David P. Fenning, , Simon F. Lux, Odysseas Paschos, Christoph Bauer, ¶ ¶ ¶ † ‡ § ∥ Filippo Maglia, Saskia Lupart, Peter Lamp, and Yang Shao-Horn*, , , , † ‡ § Research Laboratory of Electronics, Electrochemical Energy Laboratory, Department of Materials Science & Engineering, and ∥ Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States ⊥ Dipartimento di Scienza dei Materiali, Universitàdi Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milan, Italy ∇ BMW Group Technology Office USA, 2606 Bayshore Parkway, Mountain View, California 94043, United States ¶ BMW Group, Petuelring 130, 80788 München, Germany *S Supporting Information ABSTRACT: Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less under- standing exists for EEI layers for positive electrodes. High-capacity Li-rich · − layered oxides yLi2−xMnO3 (1 y)Li1−xMO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties. − he use of lithium-ion (Li-ion) batteries to power hybrid, to form the well-known solid electrolyte interphase (SEI).26 32 T plug-in hybrid, and electrical vehicles in recent years Li+-conducting and electronically insulating SEI26,31 can calls for greater battery cycle life and safety characteristics than prevent continuous electrolyte reduction and lithium consump- − their applications in electronic devices. Li-ion batteries operate tion during cycling.33 36 However, the formation of nonuniform by shuttling Li+ and electrons between negative and positive SEI can result in nonuniform lithium deposition and formation − − electrode host structures,1 5 which are separated by a separator of lithium dendrites,37 39 which can lead to battery internal filled with an aprotic electrolyte. Negative electrodes operate short and failure.37 The electrolyte oxidation on the positive + at potentials close to 0 VLi (Li /Li) storing lithium near the electrodes and the composition and properties of the EEI neutral valence state,4,6 whereas positive electrodes normally layer, if any, are less understood than the SEI on negative 5,7−10 40−43 store lithium ions at potentials greater than 3 VLi. Aprotic electrodes. Recent advances in high-capacity positive electrolytes can be thermodynamically unstable against materials, which can generate highly reactive oxygen spe- − 44−49 reduction at negative electrodes11 15 and against oxidation at cies, highlight the need to study EEI layers on their − the positive electrodes.16 22 The formation of a stable surfaces. Such understanding is key to mitigate the electrolyte electrode−electrolyte interface (EEI) layer, conductive to Li+ reactivity with positive electrodes, which can affect battery life but electronically insulating, is critical to ensure high Coulombic and safety as exothermic reactions of positive electrodes with and voltage efficiency,23 cycle life,23,24 and safety24,25 over the flammable electrolytes lead to substantial heat generation, 50−53 course of battery lifetime for vehicle applications.25 Under- triggering thermal runaway. standing electrochemical and chemical reactions between the Progress in understanding the EEI layers on Li-ion negative electrode and the electrolyte, which influence the composition, and positive electrodes has been achieved using techniques such microstructure, and properties of EEI layers formed, is crucial in developing stable and efficient Li-ion batteries. Received: August 7, 2015 Carbonate-based electrolytes commonly used in Li-ion Accepted: October 29, 2015 batteries are reduced on negative electrodes such as graphite © XXXX American Chemical Society 4653 DOI: 10.1021/acs.jpclett.5b01727 J. Phys. Chem. Lett. 2015, 6, 4653−4672 The Journal of Physical Chemistry Letters Perspective − as X-ray photoelectron spectroscopy (XPS),40,54 63 Fourier formation and composition and how its properties contribute transform infrared spectroscopy (FTIR),11,29,41,54,64,65 X-ray to battery performance. − diffraction (XRD),54,66 atomic force microscopy (AFM),67 69 Thermodynamic Considerations of Electrolyte Instability. The − and scanning tunneling microscopy (STM)70 72 However, difference between the Fermi level of the electrode and the − − − although significant work26 28,32,40,41,46,56 58,62,63,65,69,73 83 has highest occupied molecular orbital (HOMO) or the lowest studied the EEI layer, much remains to be understood at the unoccupied molecular orbital (LUMO) levels of the electrolyte fundamental level. Despite considerable research in the past few governs the thermodynamic stability of the electrolyte on decades, the SEI is still a puzzle to be solved due to a lack of the electrode and the driving force to form the EEI layer.2,92 questioning of the past results and an excessive confidence in the A negative electrode with a Fermi level higher in energy than 77 miraculous properties of the SEI. There is still limited under- the LUMO of the electrolyte will have a driving force to reduce standing on what EEI layers consist of, by what mechanisms they the electrolyte (Figure 1b).2 On the positive side, there will be a are formed, and how they influence EEI properties and battery driving force for electrolyte oxidation if the Fermi level of the performance. electrode is lower in energy than the HOMO of the electrolyte (Figure 1b).2 Below, we review and align electron energy levels There is still limited understand- associated with lithium insertion in electrodes with estimated ing on what EEI layers consist of, LUMO and HOMO of electrolytes to discuss the thermody- by what mechanisms they are namic driving force for EEI layer formation associated with fl electrolyte instability on the electrode surface. formed, and how they in uence Lithium Storage Electrode Potentials. The electrochemical EEI properties and battery potential of an electrode for lithium storage (the energy level performance. for electron transfer to and from the material, or redox electron energy) corresponds to the average electron energy level at the ff In this Perspective, we first review and discuss thermo- top of the itinerant or valence band. The di erence between the electrochemical potentials of the negative and positive electrodes dynamic considerations of electrolyte reduction and oxidation fi on negative and positive electrodes. Second, we discuss the de nes the thermodynamic cell voltage. Lithium and graphite, historical evolution of the concept of the SEI composition and the most common negative electrodes storing lithium at 0 and ∼ 4,93 0.1 VLi, respectively, have Fermi levels that lie in an itinerant structure on lithium and graphite, which depends on the salt 2 and solvent used in the electrolyte and on the surface termina- band above the estimated LUMO levels of electrolytes, as tion of the electrode. Third, we compare SEI compositions shown in Figure 1a. Similarly, high-capacity alloy electrodes, such 94 95 ∼ − found on lithium and graphite with those reported for alloyed as Sn and Si storing lithium in the range of 0 1VLi,also negative electrodes such as Sn and Si. Fourth, we summarize have Fermi levels above the estimated LUMO levels of aprotic the EEI layer models reported for oxides of positive electrodes, electrolytes. Therefore, there is a thermodynamic driving force where the nucleophilicity of oxide surfaces is correlated with for electrochemical reduction of electrolytes at the surface of EEI layer composition and impedance. In addition, there is a these negative electrodes. Employing surface films at the EEI critical need to understand the electrolyte oxidation with high- (also called SEI), which are stable, electronically insulating, and capacity oxide electrodes that release highly reactive oxygen lithium-ion conducting, can passivate the electrode surface and species, where much learning can derive from knowledge on prevent direct contact of the aprotic electrolyte to the electrode − 84−91 electrolyte instability developed in the Li O2 chemistry. surface. Lastly, we will discuss opportunities and techniques that can Lithium transition metal compounds such as oxides, sulfides, be used to gain mechanistic insights underlying EEI layer and phosphates have electrochemical potentials (Figure 1a,b) Figure 1. (a) Potentials and expected capacities based on full extraction of selected lithium storage materials for Li-ion batteries (details on the − potentials reported from previous work and calculations of capacities can be found in the Supporting Information).4,5,10,93
Recommended publications
  • Electrolyte Panel
    Lab Dept: Chemistry Test Name: ELECTROLYTE PANEL General Information Lab Order Codes: LYTE Synonyms: Electrolytes; Lytes CPT Codes: 80051 – Electrolyte panel Test Includes: Carbon Dioxide, Chloride, Potassium, Sodium concentrations reported in mEq/L, and AGAP (Anion Gap). Logistics Test Indications: The maintenance of osmotic pressure and water distribution in the various body fluid compartments is primarily a function of the four major electrolytes, Na+, K+, Cl-, and HCO3-. In addition to water homeostasis, these electrolytes play an important part in the maintenance of pH, regulation of proper heart and muscle functions, involvement in electron transfer reactions, and participation in catalysis as cofactors for enzymes. Lab Testing Sections: Chemistry Phone Numbers: MIN Lab: 612-813-6280 STP Lab: 651-220-6550 Test Availability: Daily, 24 hours Turnaround Time: 30 minutes Special Instructions: N/A Specimen Specimen Type: Blood Container: Green top (Li Heparin) tube, preferred Alternate tube: Red, marble or gold top tube Draw Volume: 0.6 mL blood Processed Volume: 0.2 mL serum/plasma Collection: Routine blood collection. Mix tubes containing anticoagulant by gentle inversion. Note: Venipuncture samples are preferred, but capillary specimens will be accepted. Special Processing: Lab Staff: Sample must be run within one hour of collection for CO2 stability. Centrifuge specimen, remove serum/plasma aliquot into a plastic sample cup. Avoid prolonged contact with separated cells. Store at refrigerated temperatures. Patient Preparation: None Sample Rejection: Mislabeled or unlabeled specimens Interpretive Reference Range: See individual analyte procedures Critical Values: See individual analyte procedures Limitations: See individual analyte procedures Methodology: See individual analyte procedures References: See individual analyte procedures Updates: 2/8/2016: Update alt tube types .
    [Show full text]
  • Elements of Electrochemistry
    Page 1 of 8 Chem 201 Winter 2006 ELEM ENTS OF ELEC TROCHEMIS TRY I. Introduction A. A number of analytical techniques are based upon oxidation-reduction reactions. B. Examples of these techniques would include: 1. Determinations of Keq and oxidation-reduction midpoint potentials. 2. Determination of analytes by oxidation-reductions titrations. 3. Ion-specific electrodes (e.g., pH electrodes, etc.) 4. Gas-sensing probes. 5. Electrogravimetric analysis: oxidizing or reducing analytes to a known product and weighing the amount produced 6. Coulometric analysis: measuring the quantity of electrons required to reduce/oxidize an analyte II. Terminology A. Reduction: the gaining of electrons B. Oxidation: the loss of electrons C. Reducing agent (reductant): species that donates electrons to reduce another reagent. (The reducing agent get oxidized.) D. Oxidizing agent (oxidant): species that accepts electrons to oxidize another species. (The oxidizing agent gets reduced.) E. Oxidation-reduction reaction (redox reaction): a reaction in which electrons are transferred from one reactant to another. 1. For example, the reduction of cerium(IV) by iron(II): Ce4+ + Fe2+ ! Ce3+ + Fe3+ a. The reduction half-reaction is given by: Ce4+ + e- ! Ce3+ b. The oxidation half-reaction is given by: Fe2+ ! e- + Fe3+ 2. The half-reactions are the overall reaction broken down into oxidation and reduction steps. 3. Half-reactions cannot occur independently, but are used conceptually to simplify understanding and balancing the equations. III. Rules for Balancing Oxidation-Reduction Reactions A. Write out half-reaction "skeletons." Page 2 of 8 Chem 201 Winter 2006 + - B. Balance the half-reactions by adding H , OH or H2O as needed, maintaining electrical neutrality.
    [Show full text]
  • A Review of Cathode and Anode Materials for Lithium-Ion Batteries
    A Review of Cathode and Anode Materials for Lithium-Ion Batteries Yemeserach Mekonnen Aditya Sundararajan Arif I. Sarwat IEEE Student Member IEEE Student Member IEEE Member Department of Electrical & Department of Electrical & Department of Electrical & Computer Engineering Computer Engineering Computer Engineering Florida International University Florida International University Florida International University Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Lithium ion batteries are one of the most technologies such as plug-in HEVs. For greater application use, commercially sought after energy storages today. Their batteries are usually expensive and heavy. Li-ion and Li- based application widely spans from Electric Vehicle (EV) to portable batteries show promising advantages in creating smaller, devices. Their lightness and high energy density makes them lighter and cheaper battery storage for such high-end commercially viable. More research is being conducted to better applications [18]. As a result, these batteries are widely used in select the materials for the anode and cathode parts of Lithium (Li) ion cell. This paper presents a comprehensive review of the common consumer electronics and account for higher sale existing and potential developments in the materials used for the worldwide [2]. Lithium, as the most electropositive element making of the best cathodes, anodes and electrolytes for the Li- and the lightest metal, is a unique element for the design of ion batteries such that maximum efficiency can be tapped. higher density energy storage systems. The discovery of Observed challenges in selecting the right set of materials is also different inorganic compounds that react with alkali metals in a described in detail.
    [Show full text]
  • Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells
    Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells A new approach to elucidate the operation and control of Polymer Electrolyte Membrane (PEM) fuel cells is being developed. A global reactor engineering approach is applied to PEM fuel cells to identify the essential physics that govern the dynamics in PEM fuel cells. Reaction engineering principles are employed to develop a one-dimensional differential PEM fuel cell suitable for elucidating the dynamic performance of PEM cells under well-defined conditions. Polymer Electrolyte Fuel Cells Polymer electrolyte membrane (PEM) fuel cells employ a polymer membrane with acid side groups to conduct protons from the anode to cathode. Water management in the fuel cell is critical for PEM fuel cell operation. Sufficient water must be absorbed into the membrane to ionize the acid groups; excess water can flood the cathode of the fuel cell diminishing fuel cell performance limiting the power output. A schematic of a polymer electrolyte membrane hydrogen-oxygen fuel cell is shown in Figure 1. load e- Figure 1. Hydrogen-oxygen PEM fuel cell. Hydrogen molecules hydrogen in oxygen in dissociatively adsorb at the anode and are oxidized to protons. Electrons travel through an external load resistance. Protons diffuse H+ through the PEM under an e t electrochemical gradient to the y l ro t c cathode. Oxygen molecules adsorb e l at the cathode, are reduced and react hydrogen r E oxygen e m y + water out with the protons to produce water. + water out l Po The product water is absorbed into the PEM, or evaporates into the gas anode cathode streams at the anode and cathode.
    [Show full text]
  • Galvanic Cell Notation • Half-Cell Notation • Types of Electrodes • Cell
    Galvanic Cell Notation ¾Inactive (inert) electrodes – not involved in the electrode half-reaction (inert solid conductors; • Half-cell notation serve as a contact between the – Different phases are separated by vertical lines solution and the external el. circuit) 3+ 2+ – Species in the same phase are separated by Example: Pt electrode in Fe /Fe soln. commas Fe3+ + e- → Fe2+ (as reduction) • Types of electrodes Notation: Fe3+, Fe2+Pt(s) ¾Active electrodes – involved in the electrode ¾Electrodes involving metals and their half-reaction (most metal electrodes) slightly soluble salts Example: Zn2+/Zn metal electrode Example: Ag/AgCl electrode Zn(s) → Zn2+ + 2e- (as oxidation) AgCl(s) + e- → Ag(s) + Cl- (as reduction) Notation: Zn(s)Zn2+ Notation: Cl-AgCl(s)Ag(s) ¾Electrodes involving gases – a gas is bubbled Example: A combination of the Zn(s)Zn2+ and over an inert electrode Fe3+, Fe2+Pt(s) half-cells leads to: Example: H2 gas over Pt electrode + - H2(g) → 2H + 2e (as oxidation) + Notation: Pt(s)H2(g)H • Cell notation – The anode half-cell is written on the left of the cathode half-cell Zn(s) → Zn2+ + 2e- (anode, oxidation) + – The electrodes appear on the far left (anode) and Fe3+ + e- → Fe2+ (×2) (cathode, reduction) far right (cathode) of the notation Zn(s) + 2Fe3+ → Zn2+ + 2Fe2+ – Salt bridges are represented by double vertical lines ⇒ Zn(s)Zn2+ || Fe3+, Fe2+Pt(s) 1 + Example: A combination of the Pt(s)H2(g)H Example: Write the cell reaction and the cell and Cl-AgCl(s)Ag(s) half-cells leads to: notation for a cell consisting of a graphite cathode - 2+ Note: The immersed in an acidic solution of MnO4 and Mn 4+ reactants in the and a graphite anode immersed in a solution of Sn 2+ overall reaction are and Sn .
    [Show full text]
  • Advances in Materials Design for All-Solid-State Batteries: from Bulk to Thin Films
    applied sciences Review Advances in Materials Design for All-Solid-state Batteries: From Bulk to Thin Films Gene Yang 1, Corey Abraham 2, Yuxi Ma 1, Myoungseok Lee 1, Evan Helfrick 1, Dahyun Oh 2,* and Dongkyu Lee 1,* 1 Department of Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA; [email protected] (G.Y.); [email protected] (Y.M.); [email protected] (M.L.); [email protected] (E.H.) 2 Chemical and Materials Engineering Department, Charles W. Davidson College of Engineering, San José State University, San José, CA 95192-0080, USA; [email protected] * Correspondence: [email protected] (D.O.); [email protected] (D.L.) Received: 15 June 2020; Accepted: 7 July 2020; Published: 9 July 2020 Featured Application: All solid-state lithium batteries, all solid-state thin-film lithium batteries. Abstract: All-solid-state batteries (SSBs) are one of the most fascinating next-generation energy storage systems that can provide improved energy density and safety for a wide range of applications from portable electronics to electric vehicles. The development of SSBs was accelerated by the discovery of new materials and the design of nanostructures. In particular, advances in the growth of thin-film battery materials facilitated the development of all solid-state thin-film batteries (SSTFBs)—expanding their applications to microelectronics such as flexible devices and implantable medical devices. However, critical challenges still remain, such as low ionic conductivity of solid electrolytes, interfacial instability and difficulty in controlling thin-film growth. In this review, we discuss the evolution of electrode and electrolyte materials for lithium-based batteries and their adoption in SSBs and SSTFBs.
    [Show full text]
  • Solid Electrolyte Batteries
    SOLID ELECTROLYTE BATTERIES John B. Goodenough and Yuhao Lu Texas Materials Institute The University of Texas at Austin Project ID: ES060 DOE Vehicle Technologies Annual Merit Review Meeting May 9-13, 2011 This presentation does not contain any proprietary or confidential information. 1 The University of Texas at Austin Overview Timeline Barriers • Project Start Date-Oct. 2009 • Lithium-ion solid electrolyte. • Project End Date- Sept. 2010 • Choice of redox couples. • Percent complete: 100% complete • Flow-through- cathode cell design Budget Partners • Funding received in FY09-FY10 – $315K • Karim Zaghib of Hydro Quebec • Funding received in FY10-FY11 – $315K 2 The University of Texas at Austin Milestones Develop and test a suitable test cell. (Jan. 10) Completed Optimize components of the cell. (Apr. 10) Completed Develop a lithium/Fe(NO3)3 cell. (July. 10) Completed Design of a new cell (Sept. 10) Completed Test flow-through cell (Jan. 11) Completed 3 The University of Texas at Austin Typical Lithium Ion Battery (LIB) Cell e- e- - Separator + Li+ Anode Li+ Cathode (Reducing Agent) (Oxidizing Agent) Li+ SEI layer Electrolyte Capacity limited by Li solid solution in cathode and loss in SEI layer Voltage limited by Eg of carbonate electrolyte. 4 The University of Texas at Austin Why Oxides? E E Co: 4s0 Co: 4s0 Co(II): t4e2 µLi 4.0 eV Co(IV): t5e0 EFC EFC (pinned) Co(III): t6e0 Co(III): t6e0 O: 2p6 O: 2p6 N(E) N(E) Li CoO (0<x<0.55) LiCoO2 1-x 2 2- + Holes form peroxide (O2) for x> 0.55 or H inserted from electrolyte.
    [Show full text]
  • Chapter 13: Electrochemical Cells
    March 19, 2015 Chapter 13: Electrochemical Cells electrochemical cell: any device that converts chemical energy into electrical energy, or vice versa March 19, 2015 March 19, 2015 Voltaic Cell -any device that uses a redox reaction to transform chemical potential energy into electrical energy (moving electrons) -the oxidizing agent and reducing agent are separated -each is contained in a half cell There are two half cells in a voltaic cell Cathode Anode -contains the SOA -contains the SRA -reduction reaction -oxidation takes place takes place - (-) electrode -+ electrode -anions migrate -cations migrate towards the anode towards cathode March 19, 2015 Electrons move through an external circuit from the anode to cathode Electricity is produced by the cell until one of the reactants is used up Example: A simple voltaic cell March 19, 2015 When designing half cells it is important to note the following: -each half cell needs an electrolyte and a solid conductor -the electrode and electrolyte cannot react spontaneously with each other (sometimes carbon and platinum are used as inert electrodes) March 19, 2015 There are two kinds of porous boundaries 1. Salt Bridge 2. Porous Cup · an unglazed ceramic cup · tube filled with an inert · separates solutions but electrolyte such as NaNO allows ions to pass 3 through or Na2SO4 · the ends are plugged so the solutions are separated, but ions can pass through Porous boundaries allow for ions to move between two half cells so that charge can be equalized between two half cells 2+ 2– electrolyte: Cu (aq), SO4 (aq) 2+ 2– electrolyte: Zn (aq), SO4 (aq) electrode: zinc electrode: copper March 19, 2015 Example: Metal/Ion Voltaic Cell V Co(s) Zn(s) Co2+ SO 2- 4 2+ SO 2- Zn 4 Example: A voltaic cell with an inert electrode March 19, 2015 Example Label the cathode, anode, electron movement, ion movement, and write the half reactions taking place at each half cell.
    [Show full text]
  • Ch.14-16 Electrochemistry Redox Reaction
    Redox Reaction - the basics ox + red <=> red + ox Ch.14-16 1 2 1 2 Oxidizing Reducing Electrochemistry Agent Agent Redox reactions: involve transfer of electrons from one species to another. Oxidizing agent (oxidant): takes electrons Reducing agent (reductant): gives electrons Redox Reaction - the basics Balance Redox Reactions (Half Reactions) Reduced Oxidized 1. Write down the (two half) reactions. ox1 + red2 <=> red1 + ox2 2. Balance the (half) reactions (Mass and Charge): a. Start with elements other than H and O. Oxidizing Reducing Agent Agent b. Balance O by adding water. c. balance H by adding H+. Redox reactions: involve transfer of electrons from one d. Balancing charge by adding electrons. species to another. (3. Multiply each half reaction to make the number of Oxidizing agent (oxidant): takes electrons electrons equal. Reducing agent (reductant): gives electrons 4. Add the reactions and simplify.) Fe3+ + V2+ → Fe2+ + V3 + Example: Balance the two half reactions and redox Important Redox Titrants and the Reactions reaction equation of the titration of an acidic solution of Na2C2O4 (sodium oxalate, colorless) with KMnO4 (deep purple). Oxidizing Reagents (Oxidants) - 2- 2+ MnO4 (qa ) + C2O4 (qa ) → Mn (qa ) + CO2(g) (1)Potassium Permanganate +qa -qa 2-qa 16H ( ) + 2MnO4 ( ) + 5C2O4 ( ) → − + − 2+ 2+ MnO 4 +8H +5 e → Mn + 4 H2 O 2Mn (qa ) + 8H2O(l) + 10CO2( g) MnO − +4H+ + 3 e − → MnO( s )+ 2 H O Example: Balance 4 2 2 Sn2+ + Fe3+ <=> Sn4+ + Fe2+ − − 2− MnO4 + e→ MnO4 2+ - 3+ 2+ Fe + MnO4 <=> Fe + Mn 1 Important Redox Titrants
    [Show full text]
  • All-Solid-State Lithium Batteries with Wide Operating Temperature Range
    ENVIRONMENT, ENERGY & RESOURCES All-Solid-State Lithium Batteries with Wide Operating Temperature Range Mitsuyasu OGAWA*, Kentaro YOSHIDA and Keizo HARADA All-solid-state batteries do not use a flammable organic liquid electrolyte which has a risk of boiling, freezing or burning, and are therefore expected to operate in a wide temperature range. This paper reports on the development of a solid- state thin film lithium battery using a high conductive sulfide solid electrolyte and its charge-discharge characteristics at high and low temperatures. The high ionic conductivity of the sulfide solid electrolyte can reduce internal resistance, which greatly affects the charge-discharge characteristics of a battery. Test results show that, at room temperature, the capacity of this battery at a high discharge rate (24C) reaches 89% of the capacity at a low discharge rate (0.5 C). Cycle characteristics also confirmed that there was no degradation up to 100 cycles at both 170˚C and -40˚C. Keywords: solid-state battery, lithium battery, solid electrolyte, operating temperature range 1. Introduction the battery’s energy density. Because of these issues, all-solid-state lithium batteries Lithium ion secondary batteries have a high voltage have been proposed as a fundamental solution (Fig. 2)(2)-(4). and a high energy density, as shown in Fig. 1, and are All-solid-state batteries never use any liquid cell compo- widely used in mobile devices such as cell phones, note- nents. Instead of using organic electrolyte, a lithium ion book PCs and PDAs. However, since lithium ion secondary conductive ceramic, known as a solid electrolyte, is used.
    [Show full text]
  • Fluid and Electrolyte Therapy Lyon Lee DVM Phd DACVA Purposes of Fluid Administration During the Perianesthetic Period
    Fluid and Electrolyte Therapy Lyon Lee DVM PhD DACVA Purposes of fluid administration during the perianesthetic period • Replace insensible fluid losses (evaporation, diffusion) during the anesthetic period • Replace sensible fluid losses (blood loss, sweating) during the anesthetic period • Maintain an adequate and effective blood volume • Maintain cardiac output and tissue perfusion • Maintain patency of an intravenous route of drug administration Review normal body water distribution • 1 gm = 1 ml; 1 kg = 1 liter; 1 kg = 2.2 lbs • Total body water: 60% of body weight • Intracellular water: 40% of body weight • Extracellular water (plasma water + interstitial water): 20% of body weight • Interstitial water: 20 % of body weight • Plasma water: 5 % of body weight • Blood volume: 9 % of body weight (blood volume = plasma water + red blood cell volume) • Inter-compartmental distribution of water is maintained by hydrostatic, oncotic, and osmotic forces • Daily water requirement: 1-3 ml/kg/hr (24-72 ml/kg/day) o 50 ml x body weight (kg) provides rough estimate for daily requirement • Requirements vary with age, environment, disease, etc… 1 Figure 1. Normal body water distribution Body 100% Water Tissue 60 % (100) 40 % Intracellular space Extracellular space 40 % (60) 20 % (40) Interstitial space Intravascular space 15 % (30) 5 % (10) Fluid movement across capillary membranes • Filtration is governed by Starling’s equation as below • Net driving pressure into the capillary = [(Pc – Pi) – (πp – πi)] o Pc = capillary hydrostatic pressure (varies from artery to vein) o Pi = interstitial hydrostatic pressure (0) o πp = plasma oncotic pressure (28 mmHg) o πi = interstitial oncotic pressure (3 mmHg) • If colloid osmotic pressure (COP) in the capillaries decreases lower than the COP in the interstitium, fluid will move out of the vessels and edema will develop.
    [Show full text]
  • Zinc Anode-Compatible In-Situ Solid Electrolyte Interphase Via Cation Solvation Modulation
    ARTICLE https://doi.org/10.1038/s41467-019-13436-3 OPEN Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation Huayu Qiu1,2,4, Xiaofan Du1,4, Jingwen Zhao1*, Yantao Wang1, Jiangwei Ju1, Zheng Chen1, Zhenglin Hu1, Dongpeng Yan 3, Xinhong Zhou2* & Guanglei Cui1* The surface chemistry of solid electrolyte interphase is one of the critical factors that govern the cycling life of rechargeable batteries. However, this chemistry is less explored for zinc 1234567890():,; anodes, owing to their relatively high redox potential and limited choices in electrolyte. Here, we report the observation of a zinc fluoride-rich organic/inorganic hybrid solid electrolyte interphase on zinc anode, based on an acetamide-Zn(TFSI)2 eutectic electrolyte. A combi- nation of experimental and modeling investigations reveals that the presence of anion- complexing zinc species with markedly lowered decomposition energies contributes to the in situ formation of an interphase. The as-protected anode enables reversible (~100% Coulombic efficiency) and dendrite-free zinc plating/stripping even at high areal capacities (>2.5 mAh cm‒2), endowed by the fast ion migration coupled with high mechanical strength of the protective interphase. With this interphasial design the assembled zinc batteries exhibit excellent cycling stability with negligible capacity loss at both low and high rates. 1 Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China. 2 College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. 3 College of Chemistry, Beijing Normal University, Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing 100875, P.
    [Show full text]