Waterbird and Aquatic Invertebrate Survey Report.PDF

Total Page:16

File Type:pdf, Size:1020Kb

Waterbird and Aquatic Invertebrate Survey Report.PDF Waterbird and aquatic invertebrate survey for the Beyondie Sulphate of Potash Project Prepared for Kalium Lakes Potash Pty Ltd January 2018 Final Report Waterbird and aquatic invertebrate survey for the Beyondie Sulphate of Potash Project Prepared for Kalium Lakes Potash Pty Ltd Waterbird and aquatic invertebrate survey for the Beyondie Sulphate of Potash Project Prepared for Kalium Lakes Potash Pty Ltd Final Report Authors: Anna Leung, Volker Framenau, Ryan Ellis Reviewer: Karen Crews Date: 31 January 2018 Submitted to: Brett Hazelden Chain of authorship and review Name Task Version Date V.W. Framenau Draft for client comments 1.0 31 March 2017 R. Ellis Final submitted to client 2.0 31 January 2018 ©Phoenix Environmental Sciences Pty Ltd 2018 The use of this report is solely for the Client for the purpose in which it was prepared. Phoenix Environmental Sciences accepts no responsibility for use beyond this purpose. All rights are reserved and no part of this report may be reproduced or copied in any form without the written permission of Phoenix Environmental Sciences or the Client. Phoenix Environmental Sciences Pty Ltd 1/511 Wanneroo Rd BALCATTA WA 6021 P: 08 6323 5410 E: [email protected] Project code: 1063-TM-KAL-ECO Waterbird and aquatic invertebrate survey of the Beyondie Sulphate of Potash Project Prepared for Kalium Lakes Potash Pty Ltd Contents EXECUTIVE SUMMARY ........................................................................................................................... IV 1 INTRODUCTION ............................................................................................................................... 6 1.1 Background ............................................................................................................................. 6 1.2 Survey objectives and scope of works .................................................................................... 8 2 LEGISLATIVE CONTEXT .................................................................................................................... 9 2.1 Commonwealth ....................................................................................................................... 9 2.2 State ...................................................................................................................................... 10 3 EXISTING ENVIRONMENT .............................................................................................................. 11 3.1 Interim Biogeographic Regionalisation of Australia ............................................................. 11 3.2 Land systems ......................................................................................................................... 13 3.3 Hydrology and geomorphology ............................................................................................ 15 3.4 Climate and weather ............................................................................................................. 15 3.5 Land use ................................................................................................................................ 17 3.5.1 Threatening processes .................................................................................................. 17 3.5.2 Reserves ........................................................................................................................ 17 3.6 Biological context .................................................................................................................. 17 3.6.1 Waterbirds .................................................................................................................... 18 3.6.2 Aquatic macro-invertebrates and zooplankton ............................................................ 19 4 METHODS ...................................................................................................................................... 20 4.1 Desktop review ..................................................................................................................... 20 4.2 Field survey ........................................................................................................................... 21 4.2.1 Timing and survey effort ............................................................................................... 21 4.2.2 Sites selection and habitat characterisation ................................................................. 21 4.2.3 Water quality ................................................................................................................ 23 4.2.4 Waterbirds .................................................................................................................... 23 4.2.5 Aquatic invertebrates.................................................................................................... 23 4.3 Taxonomy and nomenclature ............................................................................................... 24 4.3.1 Morphological species identification ............................................................................ 24 4.3.2 Molecular species identification ................................................................................... 24 4.3.3 Nomenclature ............................................................................................................... 24 4.4 Statistical analyses ................................................................................................................ 25 4.4.1 Water quality ................................................................................................................ 25 4.4.2 Species richness ............................................................................................................ 25 4.4.3 Water quality and invertebrate communities .............................................................. 26 4.5 Survey personnel .................................................................................................................. 26 5 RESULTS ........................................................................................................................................ 27 5.1 Desktop review ..................................................................................................................... 27 5.1.1 Waterbirds .................................................................................................................... 27 Phoenix Environmental Sciences Pty Ltd i Waterbird and aquatic invertebrate survey of the Beyondie Sulphate of Potash Project Prepared for Kalium Lakes Potash Pty Ltd 5.1.2 Aquatic invertebrates.................................................................................................... 27 5.2 Field survey ........................................................................................................................... 27 5.2.1 Hydrology ...................................................................................................................... 27 5.2.2 Water quality ................................................................................................................ 30 5.2.3 Waterbirds .................................................................................................................... 31 5.2.4 Aquatic invertebrates.................................................................................................... 33 5.2.5 Arachnida (spiders and allies) ....................................................................................... 44 5.2.6 Crustacea (crabs and allies) .......................................................................................... 44 5.2.7 Insecta (insects)............................................................................................................. 46 5.2.8 Gastropoda (snails) ....................................................................................................... 46 5.2.9 Oligochaeta (aquatic worms) ........................................................................................ 47 5.2.10 Species richness ............................................................................................................ 47 5.3 Survey limitations ................................................................................................................. 50 6 DISCUSSION ................................................................................................................................... 51 6.1 Water quality ........................................................................................................................ 51 6.2 Waterbirds ............................................................................................................................ 52 6.3 Aquatic invertebrates ........................................................................................................... 52 6.4 Conclusion ............................................................................................................................. 53 7 REFERENCES .................................................................................................................................. 54 List of Figures Figure 1-1 Location of the Beyondie Sulphate of Potash Project and study area for the waterbird and aquatic invertebrate survey ..................................................................................... 7 Figure 3-1 Location of the Beyondie Sulphate of Potash Project
Recommended publications
  • Phylogenetic Analysis of Anostracans (Branchiopoda: Anostraca) Inferred from Nuclear 18S Ribosomal DNA (18S Rdna) Sequences
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 535–544 www.academicpress.com Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences Peter H.H. Weekers,a,* Gopal Murugan,a,1 Jacques R. Vanfleteren,a Denton Belk,b and Henri J. Dumonta a Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium b Biology Department, Our Lady of the Lake University of San Antonio, San Antonio, TX 78207, USA Received 20 February 2001; received in revised form 18 June 2002 Abstract The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Ta- nymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata (‘‘Family’’ Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae (‘‘Family’’ Linderiellidae), which has 11 pairs of trunk limbs.
    [Show full text]
  • Updated Status of Anostraca in Pakistan
    Int. J. Biol. Res., 2(1): 1-7, 2014. UPDATED STATUS OF ANOSTRACA IN PAKISTAN Quddusi B. Kazmi1* and Razia Sultana2 1Marine Reference Collection and Resource Center; University of Karachi, Karachi-75270, Pakistan 2Food & Marine Resources Research Center, PCSIR Laboratories Complex Karachi; Karachi-75270, Pakistan *Corresponding author e-mail: [email protected] ABSTRACT Previously, nine species of the order Anostraca have been reported from Pakistan viz, Branchinella hardingi (Qadri and Baqai, 1956), B. spinosa (H. Milne Edwards, 1840) (now Phallocryptus spinosa), Streptocephalus simplex, 1906, S. dichotomus Baird, 1860, S. maliricus Qadri and Baqai, 1956, S. lahorensis Ghauri and Mahoon, 1980, Branchipus schaefferi Fischer, 1834, Chirocephalus priscus Daday, 1910 and Artemia sp. In the present report these Pakistani species are reviewed. Streptocephalus dichotomus collected from Pasni (Mekran), housed in the Smithsonian National Museum of Natural History, USA (cat no. 213712) is inserted herein and another specimen of Streptocephalus sp., from a new locality, collected from Kalat not yet reported, is illustrated and described in this report, thus extending genus range further Northward. The need for further surveys directed towards getting the knowledge necessary in order to correctly understand and manage temporary pools- the elective habitat of large branchiopods is stressed. KEYWORDS: Anostraca, Brianchiopoda, Pakistan, Present status INTRODUCTION Anostraca is one of the four orders of Crustacea in the Class Branchiopoda. It is the most
    [Show full text]
  • Development of Encyclopedia Boyong Sleman Insekta River As Alternative Learning Resources
    PROC. INTERNAT. CONF. SCI. ENGIN. ISSN 2597-5250 Volume 3, April 2020 | Pages: 629-634 E-ISSN 2598-232X Development of Encyclopedia Boyong Sleman Insekta River as Alternative Learning Resources Rini Dita Fitriani*, Sulistiyawati Biological Education Faculty of Science and Technology, UIN Sunan Kalijaga Jl. Marsda Adisucipto Yogyakarta, Indonesia Email*: [email protected] Abstract. This study aims to determine the types of insects Coleoptera, Hemiptera, Odonata, Orthoptera and Lepidoptera in the Boyong River, Sleman Regency, Yogyakarta, to develop the Encyclopedia of the Boyong River Insect and to determine the quality of the encyclopedia developed. The method used in the research inventory of the types of insects Coleoptera, Hemiptera, Odonata, Orthoptera and Lepidoptera insects in the Boyong River survey method with the results of the study found 46 species of insects consisting of 2 Coleoptera Orders, 2 Hemiptera Orders, 18 orders of Lepidoptera in Boyong River survey method with the results of the research found 46 species of insects consisting of 2 Coleoptera Orders, 2 Hemiptera Orders, 18 orders of Lepidoptera in Boyong River survey method. odonata, 4 Orthopterous Orders and 20 Lepidopterous Orders from 15 families. The encyclopedia that was developed was created using the Adobe Indesig application which was developed in printed form. Testing the quality of the encyclopedia uses a checklist questionnaire and the results of the percentage of ideals from material experts are 91.1% with very good categories, 91.7% of media experts with very good categories, peer reviewers 92.27% with very good categories, biology teachers 88, 53% with a very good category and students 89.8% with a very good category.
    [Show full text]
  • Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists
    Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists Migratory Dragonfly Partnership Blank on purpose Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists Migratory Dragonfly Partnership Canada • United States • Mexico www.migratorydragonflypartnership.org © 2014 by The Migratory Dragonfly Partnership The Migratory Dragonfly Partnership uses research, citizen science, education, and outreach to under- stand North American dragonfly migration and promote conservation. MDP steering committee members represent a range of organizations, including: Ontario Ministry of Natural Resources; Peggy Notebaert Nature Museum; Pronatura Veracruz; Rutgers University; Slater Museum of Natural History, University of Puget Sound; Smithsonian Conservation Biology Institute; St. Edward's University; U. S. Forest Service International Programs; U. S. Geological Survey; Vermont Center for Ecostudies; and the Xerces Society for Invertebrate Conservation. Migratory Dragonfly Partnership Project Coordinator, Celeste Mazzacano [email protected] 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.migratorydragonflypartnership.org Acknowledgements Funding for the Migratory Dragonfly Partnership's work is provided by the U.S. Forest Service Inter- national Programs. We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Front and Back Cover Photographs Common Green Darner (Anax junius) male. Photograph © John C. Abbott/Abbott Nature Photography. CONTENTS Summary Page 1 1. Introduction Page 3 1.1 Objectives and Goals Page 3 Box 1: Citizen Science Projects, page 4. 2. Citizen Science Projects Page 5 2.1 Migration Monitoring Page 5 2.1.1 Fall Migration Observations Page 5 - Objectives, page 5. Box 2: MDP Monitoring Projects, page 6.
    [Show full text]
  • A Preliminary Check List of Odonates from Calicut University Campus, Calicut, Kerala, South India
    Journal of Entomology and Zoology Studies 2015; 3 (2): 260-263 E-ISSN: 2320-7078 P-ISSN: 2349-6800 A preliminary check list of Odonates from Calicut JEZS 2015; 3 (2): 260-263 university campus, Calicut, Kerala, South India © 2015 JEZS Received: 20-02-2015 Accepted: 04-03-2015 Jisha Krishnan E. K, Sebastian C. D. Jisha Krishnan E. K Abstract Molecular Biology Laboratory, Dragonflies and damselflies, collectively called odonates, are one of the most common insects flying Department of Zoology, over forest, fields, meadows, ponds and rivers. Approximately 6500 extant species in over 600 genera University of Calicut, Kerala, and 28 families are known all over the world. About 474 species in 142 genera and 18 families are 673 635 India. identified from India, out of which 154 species are from Kerala. Here we developed a preliminary Sebastian C. D. checklist of Odonata populations found in Calicut University Campus. The study revealed 27 species Department of Zoology, coming under 4 families and 21 genera. Suborder Anisoptera (dragonflies) were represented by the University of Calicut, Kerala, family Libellulidae, Aeshnidae and Gomphidae while the suborder Zygoptera by the family 673 635 India. Coenagrionidae. The two dominant familes of Odonates – Libellulidae and Coenagrionidae – were found to exist in all habitats under the study. Keywords: Odonata, Calicut University Camps, checklist 1. Introduction Odonata are a striking aquatic and aerial component of environment in terms of both biomass and their influence as predators [1]. These attributes have prompted studies of odonate life histories, behavior, and diet [2]. The fossil record of these species dates back to carboniferous period over 350 million years ago.
    [Show full text]
  • Element from S. W. Yugoslavia
    ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA 14 1 1-7 München, 1. März 1991 ISSN 0341-8391 Moina weismanni Ishikawa, 1896, a rare East Palearctic faunistic element from S. W. Yugoslavia (Crustacea, Cladocera) By Swetozar T. Petkovski Petkovski, S. T. (1991): Moina weismanni Ishikawa, 1896, a rare East Palearctic faunistic element from S. W. Yugoslavia (Crustacea, Cladocera). — Spixiana 14/1: 1-7. Moina weismanni Ishikawa, 1896, tili recently was known as a rare Far-Eastern faunistic element. Some time ago this species was introduced in Europe and to date evidenced in some ricefields of North Italy and in several inondation pools of the Pa- nonian lowland. Our discovery of the species in S. W. Yugoslavia shows that it suc- ceded to inhabit the Balkan Peninsula, too. Based on specimens of both sexes collected from Macedonia a short description is given. In addition, some important features are emphasized. These include the form of the ephippium in dorsal aspect and the presence of rows of setae at the dorsal mar- gin of the postabdomen in the female. In the male, the armature of the ventral shell rim and the first pair of legs, which are mutually asymmetrical, are also significant diagno- stic characters. Swetozar T. Petkovski, Prirodonaucen muzej na Makedonija, Bulevar Ilinden 86, Yu-91 000, Skopje 55, Yugoslavia Introduction Moina weismanni Ishikawa is a rare anomopod 'cladoceran', which was described almost a Century ago from the vicinity of Tokio and Sendai, Japan (Ishikawa, 1896). Shortly afterwards, in his cultures reared from dried mud taken from fish ponds and inundated rice fields in the neighbourhood of Pu- ching, South China, Sars (1903) revealed an animal very similar to M.
    [Show full text]
  • Endemic Species of Christmas Island, Indian Ocean D.J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 055–114 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.055-114 Endemic species of Christmas Island, Indian Ocean D.J. James1, P.T. Green2, W.F. Humphreys3,4 and J.C.Z. Woinarski5 1 73 Pozieres Ave, Milperra, New South Wales 2214, Australia. 2 Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria 3083, Australia. 3 Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. 4 School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia. 5 NESP Threatened Species Recovery Hub, Charles Darwin University, Casuarina, Northern Territory 0909, Australia, Corresponding author: [email protected] ABSTRACT – Many oceanic islands have high levels of endemism, but also high rates of extinction, such that island species constitute a markedly disproportionate share of the world’s extinctions. One important foundation for the conservation of biodiversity on islands is an inventory of endemic species. In the absence of a comprehensive inventory, conservation effort often defaults to a focus on the better-known and more conspicuous species (typically mammals and birds). Although this component of island biota often needs such conservation attention, such focus may mean that less conspicuous endemic species (especially invertebrates) are neglected and suffer high rates of loss. In this paper, we review the available literature and online resources to compile a list of endemic species that is as comprehensive as possible for the 137 km2 oceanic Christmas Island, an Australian territory in the north-eastern Indian Ocean.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Check List the Journal Of
    13 3 the journal of 2144 biodiversity data 17 June 2017 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 13(3): 2144, 17 June 2017 https://doi.org/10.15560/13.3.2144 ISSN 1809-127X © 2017 Check List and Authors First record of Moina dumonti Kotov, Elías-Gutiérrez & Granado- Ramírez, 2005 (Branchiopoda: Anomopoda) in Brazil Daniel da Silva Farias,1, 3 Lourdes Maria Abdu Elmoor-Loureiro2 & Christina Wyss Castelo Branco1 1 Núcleo de Estudos Limnológicos, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, IBIO, sala 403, CEP 22290-240, Rio de Janeiro, RJ, Brazil 2 Laboratório de Zoologia, Universidade Católica de Brasília, QS 7 lote 1, Bloco M, sala 331, CEP 71966-700, Taguatinga, DF, Brazil 3 Corresponding author. E-mail: [email protected] Abstract. The cladoceran Moina dumonti Kotov, Elías- of the water surface and has also Lemna minor L. in marginal Gutiérrez & Granado-Ramírez, 2005 (Anomopoda: Moinidae) areas. This waterbody is part of the lagoon system of Jacarep- was found in a hypereutrophic lagoon, Lagoinha, Rio de aguá, which also includes the lagoons of Jacarepaguá, Camor- Janeiro, Brazil. It represents the first record of this species in im, Tijuca and Marapendi (Soares 1999). The lagoon system is Brazil and in the Southern Hemisphere; it also represents the polluted by the inflow of rainwater drainage, untreated sewage, first record of this species in a perennial lagoon. The reasons and wastes from various other sources. The park is known to be for the success of the species in Lagoinha are discussed. a refuge for the wildlife of large aquatic vertebrates, including populations of Capybaras (Hydrochoreus hydrochaeris) and Key words.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Population Dynamics of <Emphasis Type="Italic">Moina Micrura
    Proc, Indian Acad. Sci. (Anim, Sci.), Vol. 98, No.3, May 1989, pp. 211-222. © Printed in India. Population dynamics of Moina micrurs Kurz (Cladocera: Moinidae) inhabiting a eutrophic pond of Madurai (south India)* N MURUGAN Department of Zoology, Madura College, Madurai 625011. India MS received 13 July 1988; revised 10 March 1989 Abstract. Population density, composition, age structure and fecundity of Moina micrura have been studied in a eutrophic pond. The average clutch size of this species ranged from 1-4-4 eggs. The relationship between mean brood size and body length has been established. The volume of parthenogenetic eggs of this cladoceran ranges between 0·2 and 0·9 millions JL J and the adaptive significance of this has been discussed. The mean instantaneous birth rate which preceded maximum density of population resulted in a value of more than one. Keywords. Moina micrura; population density; composition; age structure; fecundity; egg volume. l. Introduction Moina micrura, a member of the family Moinidae primarily inhabits astatic ponds and pools in tropical and subtropical regions. This species is highly adapted to survive frequent dry periods and propagate rapidly in newly formed ponds. The review of literature on zooplankton species of Moina shows that the information about the population dynamics of M. micrura from tropical Indian waters is far from complete. Hence, an attempt has been made to investigate its population density and composition, fecundity and age structure in natural habitats. 2. Study area The present study was carried out in a seasonal shallow pond (figure 1) located in the Madura College campus at Madurai (Long: 78'8' E; Lat: 9'56' N), south India.
    [Show full text]
  • (Coxiella) Exposita (I Redale
    Coxiella (Coxiella) exposita (II redale, 1943) Diagnostic features This small species reaches about 6 mm in length. The adult shell generally has about three convex whorls and is dark reddish brown with concentric striations. The operculum is partially spiral. Coxiella (Coxiella) exposita (adult size up to 6 mm) Coxiella (Coxiella) exposita (adult size up to 6 mm) Distribution of Coxiella (Coxiella) exposita. Classification Coxiella (Coxiella) exposita (redale, 1943) Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Pomatiopsidae Subfamily: Pomatiopsinae Genus Coxiella E. A. Smith, 1894 Subgenus Coxiella Original name: Coxielladda exposita redale,1943. redale,T. (1943). A basic list of the freshwater Mollusca of Australia. Australian Zoologist 10: 188 - 230. Type locality: Cranbrook, inland from Albany, Western Australia. State of taxonomy We follow Macpherson (1957), which is the latest taxonomic treatment of this group. Biology and ecology nhabits salt lakes. Coxiella have a deep furrow on each side of the head, a suprapedal fold around the sides of the foot and movement is by steps. The snout is long and the eyes have a cluster of glands above them. Coxiella are dioecious and development is direct; females are oviparous, depositing eggs singly in capsules coated in sand or mud. Coxiella probably feed on organic detritus and they are amphibious. Distribution Southwest coast and ndian Ocean divisions, Western Australia. Notes For species description see Macpherson (1957). Further reading Beesley, P. L., Ross, G. J. B. & Wells, A., Eds. (1998). Mollusca: The Southern Synthesis. Parts A & B. Melbourne, CSRO Publishing. Davis, G. M. (1979). The origin and evolution of the gastropod family Pomatiopsidae, with emphasis on the Mekong River Triculinae.
    [Show full text]