Daily Egg Production in Pantala Flavescens in Relation to Food Intake
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Specimens from the Past to Understand the Living World Through Digitization
Using specimens from the past to understand the living world through digitization Drs. Jessica L. Ware, William Kuhn, Dirk Gassmann and John Abbott Rutgers University, Newark Dragonflies: Order Odonata Suborders Anisoptera (unequal wings): Dragonflies ~3000 species Anisozygoptera ~3 species Zygoptera: Damselflies ~3000 species Perchers, Fliers, Migrators, & Homebodies Dragonfly flight Wing venation affects wing camber, lift, and ultimately flight patterns Dragonfly flight Stiffness varies along length of the wing with vein density and thickness Dragonfly flight Certain wing traits are correlated with specific flight styles Dragonfly collections: invaluable treasures Collection name # spp. #specimens Florida State Collection 2728 150K Ware Lab Collection 373 4K Smithsonian Collection 253 200K M.L. May Collection 300 10K Dragonfly collections: invaluable treasures Harness information in collections Targeted Odonata Wing Digitization (TOWD) project TOWD project scanning protocol TOWD project scanning protocol TOWD project TOWD project TOWD project 10 10 TOWD project More information at: https://willkuhn.github.io/towd/ Aspect ratios: How elongate is the wing compared to its overall area? • High Aspect ratio Low Aspect ratio Long narrow wings, Wing Short broad wings, optimized for: Wing optimized long-distance flight for: Maneuverability, turning High Aspect Low Aspect Ratio Ratio More data on aspect ratios, better interpretations? 2007: Hand measured forewings of 85 specimens, 7 months work More data on apsect ratios, better interpretations? 2007: Hand measured forewings of 85 specimens, 7 months 2019: Odomatic measurements for 206 work specimens, 2-3 minutes of work! Are there differences in aspect ratios? Perchers have significantly lower aspect ratios than fliers. The p-value is .001819. The result is significant at p < .05. -
Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists
Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists Migratory Dragonfly Partnership Blank on purpose Monitoring Dragonfly Migration in North America Protocols for Citizen Scientists Migratory Dragonfly Partnership Canada • United States • Mexico www.migratorydragonflypartnership.org © 2014 by The Migratory Dragonfly Partnership The Migratory Dragonfly Partnership uses research, citizen science, education, and outreach to under- stand North American dragonfly migration and promote conservation. MDP steering committee members represent a range of organizations, including: Ontario Ministry of Natural Resources; Peggy Notebaert Nature Museum; Pronatura Veracruz; Rutgers University; Slater Museum of Natural History, University of Puget Sound; Smithsonian Conservation Biology Institute; St. Edward's University; U. S. Forest Service International Programs; U. S. Geological Survey; Vermont Center for Ecostudies; and the Xerces Society for Invertebrate Conservation. Migratory Dragonfly Partnership Project Coordinator, Celeste Mazzacano [email protected] 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.migratorydragonflypartnership.org Acknowledgements Funding for the Migratory Dragonfly Partnership's work is provided by the U.S. Forest Service Inter- national Programs. We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Front and Back Cover Photographs Common Green Darner (Anax junius) male. Photograph © John C. Abbott/Abbott Nature Photography. CONTENTS Summary Page 1 1. Introduction Page 3 1.1 Objectives and Goals Page 3 Box 1: Citizen Science Projects, page 4. 2. Citizen Science Projects Page 5 2.1 Migration Monitoring Page 5 2.1.1 Fall Migration Observations Page 5 - Objectives, page 5. Box 2: MDP Monitoring Projects, page 6. -
Endemic Species of Christmas Island, Indian Ocean D.J
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 055–114 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.055-114 Endemic species of Christmas Island, Indian Ocean D.J. James1, P.T. Green2, W.F. Humphreys3,4 and J.C.Z. Woinarski5 1 73 Pozieres Ave, Milperra, New South Wales 2214, Australia. 2 Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria 3083, Australia. 3 Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. 4 School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia. 5 NESP Threatened Species Recovery Hub, Charles Darwin University, Casuarina, Northern Territory 0909, Australia, Corresponding author: [email protected] ABSTRACT – Many oceanic islands have high levels of endemism, but also high rates of extinction, such that island species constitute a markedly disproportionate share of the world’s extinctions. One important foundation for the conservation of biodiversity on islands is an inventory of endemic species. In the absence of a comprehensive inventory, conservation effort often defaults to a focus on the better-known and more conspicuous species (typically mammals and birds). Although this component of island biota often needs such conservation attention, such focus may mean that less conspicuous endemic species (especially invertebrates) are neglected and suffer high rates of loss. In this paper, we review the available literature and online resources to compile a list of endemic species that is as comprehensive as possible for the 137 km2 oceanic Christmas Island, an Australian territory in the north-eastern Indian Ocean. -
An Overview of Molecular Odonate Studies, and Our Evolutionary Understanding of Dragonfly and Damselfly (Insecta: Odonata) Behavior
International Journal of Odonatology Vol. 14, No. 2, June 2011, 137–147 Dragons fly, biologists classify: an overview of molecular odonate studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata) behavior Elizabeth F. Ballare* and Jessica L. Ware Department of Biological Sciences, Rutgers, The State University of New Jersey, 195 University Ave., Boyden Hall, Newark, NJ, 07102, USA (Received 18 November 2010; final version received 3 April 2011) Among insects, perhaps the most appreciated are those that are esthetically pleasing: few capture the interest of the public as much as vibrantly colored dragonflies and damselflies (Insecta: Odonata). These remarkable insects are also extensively studied. Here, we review the history of odonate systematics, with an emphasis on discrepancies among studies. Over the past century, relationships among Odonata have been reinterpreted many times, using a variety of data from wing vein morphology to DNA. Despite years of study, there has been little consensus about odonate taxonomy. In this review, we compare odonate molecular phylogenetic studies with respect to gene and model selection, optimality criterion, and dataset completeness. These differences are discussed in relation to the evolution of dragonfly behavior. Keywords: Odonata; mitochondrion; nuclear; phylogeny; systematic; dragonfly; damselfly Introduction Why study Odonata? The order Odonata comprises three suborders: Anisozygoptera, Anisoptera, and Zygoptera. There are approximately 6000 species of Odonata described worldwide (Ardila-Garcia & Gregory, 2009). Of the three suborders Anisoptera and Zygoptera are by far the most commonly observed and collected, because there are only two known species of Anisozygoptera under the genus Epiophlebia. All odonate nymphs are aquatic, with a few rare exceptions such as the semi-aquatic Pseudocordulia (Watson, 1983), and adults are usually found near freshwater ponds, marshes, rivers (von Ellenrieder, 2010), streams, and lakes (although some species occur in areas of mild salinity; Corbet, 1999). -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
A Global Population Genetic Study of Pantala Flavescens
http://www.diva-portal.org This is the published version of a paper published in PLoS ONE. Citation for the original published paper (version of record): Troast, D., Suhling, F., Jinguji, H., Sahlén, G., Ware, J. (2016) A Global Population Genetic Study of Pantala flavescens. PLoS ONE, 11(3): e0148949 http://dx.doi.org/10.1371/journal.pone.0148949 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-30795 RESEARCH ARTICLE A Global Population Genetic Study of Pantala flavescens Daniel Troast1*, Frank Suhling2, Hiroshi Jinguji3, Göran Sahlén4, Jessica Ware1 1 Department of Biology, Rutgers University, Newark, New Jersey, United States of America, 2 Institut für Geoökologie, Technische Universität Braunschweig, Braunschweig, Germany, 3 School of Food, Agricultural and Environmental Sciences, Miyagi University, Miyagi, Japan, 4 Ecology and Environmental Science, Halmstad University, Halmstad, Sweden * [email protected] Abstract Among terrestrial arthropods, the dragonfly species Pantala flavescens is remarkable due to their nearly global distribution and extensive migratory ranges; the largest of any known insect. Capable of migrating across oceans, the potential for high rates of gene flow among OPEN ACCESS geographically distant populations is significant. It has been hypothesized that P. flavescens Citation: Troast D, Suhling F, Jinguji H, Sahlén G, may be a global panmictic population but no sufficient genetic evidence has been collected Ware J (2016) A Global Population Genetic Study of thus far. Through a population genetic analysis of P. flavescens samples from North Amer- Pantala flavescens. -
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results .............................................................................................................. -
Identification Guide to the Australian Odonata Australian the to Guide Identification
Identification Guide to theAustralian Odonata www.environment.nsw.gov.au Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW National Library of Australia Cataloguing-in-Publication data Theischinger, G. (Gunther), 1940– Identification Guide to the Australian Odonata 1. Odonata – Australia. 2. Odonata – Australia – Identification. I. Endersby I. (Ian), 1941- . II. Department of Environment and Climate Change NSW © 2009 Department of Environment, Climate Change and Water NSW Front cover: Petalura gigantea, male (photo R. Tuft) Prepared by: Gunther Theischinger, Waters and Catchments Science, Department of Environment, Climate Change and Water NSW and Ian Endersby, 56 Looker Road, Montmorency, Victoria 3094 Published by: Department of Environment, Climate Change and Water NSW 59–61 Goulburn Street Sydney PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131555 (information & publication requests) Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au The Department of Environment, Climate Change and Water NSW is pleased to allow this material to be reproduced in whole or in part, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. ISBN 978 1 74232 475 3 DECCW 2009/730 December 2009 Printed using environmentally sustainable paper. Contents About this guide iv 1 Introduction 1 2 Systematics -
The Dragonfly Family Libellulidae (Insecta: Odonata: Anisoptera) of Shiraz and Its Vicinity (Fars Province, Iran)
Iran Agricultural Research, Vol. 27, No. 1-2, 2008 and Vol. 28 No. 1, 2009 Printed in the Islamic Republic of Iran, Shiraz University The Dragonfly Family Libellulidae (Insecta: Odonata: Anisoptera) of Shiraz and its Vicinity (Fars Province, Iran) M. KIANY1* AND K. MINAEI1** 1Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, I. R. Iran ABSTRACT- Thirteen species in five genera of the Libellulidae family were collected in a survey of dragonflies (Odonata) of Shiraz and its vicinity, involving 19 locations, The presented records of the libellulid dragonflies taken from the Fars province comprise a first time collection of two genera, Sympetrum and Pantala, and seven species, Orthetrum anceps Schnider, Orthetrum taeniolatum Schneider, Orthetrum chrysostigma Burmeister, Sympetrum fonscolombii Selys, Sympetrum meridionale Selys, Crocothemis servilia Drury, Trithemis kirbyi Selys, and Pantala flavescens Fabricius. A map of the localities of Fars province was provided as a table of the species’ distributions and an identification key was presented for the genera and species the Libellulidae family of Shiraz and its vicinity. Keywords: Dragonfly, Fars province, Iran, Libellulidae, Odonata INTRODUCTION Odonata are an aquatic order of insects with about 5500 described species worldwide (3). All known species are predators as adults and larvae. As such, the perform a valuable role as biological control agents for many harmful insects, especially those with aquatic larvae. They are unappreciated allies of mankind, assuredly saving lives through their control of mosquitoes and other disease vectors. Through their habits of eating a wide variety of flying herbivorous insects, they reduce the losses of many wetland crops (6). -
The Classification and Diversity of Dragonflies and Damselflies (Odonata)*
Zootaxa 3703 (1): 036–045 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:9F5D2E03-6ABE-4425-9713-99888C0C8690 The classification and diversity of dragonflies and damselflies (Odonata)* KLAAS-DOUWE B. DIJKSTRA1, GÜNTER BECHLY2, SETH M. BYBEE3, RORY A. DOW1, HENRI J. DUMONT4, GÜNTHER FLECK5, ROSSER W. GARRISON6, MATTI HÄMÄLÄINEN1, VINCENT J. KALKMAN1, HARUKI KARUBE7, MICHAEL L. MAY8, ALBERT G. ORR9, DENNIS R. PAULSON10, ANDREW C. REHN11, GÜNTHER THEISCHINGER12, JOHN W.H. TRUEMAN13, JAN VAN TOL1, NATALIA VON ELLENRIEDER6 & JESSICA WARE14 1Naturalis Biodiversity Centre, PO Box 9517, NL-2300 RA Leiden, The Netherlands. E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 3Department of Biology, Brigham Young University, 401 WIDB, Provo, UT. 84602 USA. E-mail: [email protected] 4Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium. E-mail: [email protected] 5France. E-mail: [email protected] 6Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832- 1448, USA. E-mail: [email protected]; [email protected] 7Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa, 250-0031 Japan. E-mail: [email protected] 8Department of Entomology, Rutgers University, Blake Hall, 93 Lipman Drive, New Brunswick, New Jersey 08901, USA. -
Evolution of Dragonflies
Kathleen Tait Biology 501 EVOLUTION OF DRAGONFLIES All life began from a common ancestor. According to most scientists, animal life is thought to have evolved from a flagellated protist. This protist evolved by a cellular membrane folding inward, which became the first digestive system in the Animalia kingdom (Campbell, Reece &, Mitchell, 1999). As time went on, the animalia kingdom became more diversified and the class Arthropoda arose. Arthropods had and still have several characteristics in common. Some of these characteristics include segmented bodies, jointed appendages, compound and/or median eyes, and an external skeleton. Arthropods may breathe through their gills, trachea, body surface or spiracles. Within the order of Arthropods there exits the largest class in the animal kingdom, Insecta. Insects share such common features as three pairs of legs, usually two pairs of wings, a pair of compound eyes, usually one pair of antennae, and a segmented body (head, thorax, abdomen). But from where in time did all of these insects evolve? Wingless insects first appeared in the Devonian period approximately 380 million years ago following the development of the vascular seedless plants. Insects possibly evolved due to the first appearance of seedless vascular plants. These plants were a huge untapped source of food. According to fossil records, insects appeared quickly after plants in order to possibly fill in a new niche. The evolution of insects occurred in four stages (Columbia University Press, 2003). The dragonfly appears in the second stage and therefore this paper will only cover the first two stages. The first stage is known as the Apterygote stage. -
Phylogeny of the Higher Libelluloidea (Anisoptera: Odonata): an Exploration of the Most Speciose Superfamily of Dragonflies
Molecular Phylogenetics and Evolution 45 (2007) 289–310 www.elsevier.com/locate/ympev Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): An exploration of the most speciose superfamily of dragonflies Jessica Ware a,*, Michael May a, Karl Kjer b a Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, NJ 08901, USA b Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA Received 8 December 2006; revised 8 May 2007; accepted 21 May 2007 Available online 4 July 2007 Abstract Although libelluloid dragonflies are diverse, numerous, and commonly observed and studied, their phylogenetic history is uncertain. Over 150 years of taxonomic study of Libelluloidea Rambur, 1842, beginning with Hagen (1840), [Rambur, M.P., 1842. Neuropteres. Histoire naturelle des Insectes, Paris, pp. 534; Hagen, H., 1840. Synonymia Libellularum Europaearum. Dissertation inaugularis quam consensu et auctoritate gratiosi medicorum ordinis in academia albertina ad summos in medicina et chirurgia honores.] and Selys (1850), [de Selys Longchamps, E., 1850. Revue des Odonates ou Libellules d’Europe [avec la collaboration de H.A. Hagen]. Muquardt, Brux- elles; Leipzig, 1–408.], has failed to produce a consensus about family and subfamily relationships. The present study provides a well- substantiated phylogeny of the Libelluloidea generated from gene fragments of two independent genes, the 16S and 28S ribosomal RNA (rRNA), and using models that take into account non-independence of correlated rRNA sites. Ninety-three ingroup taxa and six outgroup taxa were amplified for the 28S fragment; 78 ingroup taxa and five outgroup taxa were amplified for the 16S fragment.