Pacific Ring of Fire
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
North America Other Continents
Arctic Ocean Europe North Asia America Atlantic Ocean Pacific Ocean Africa Pacific Ocean South Indian America Ocean Oceania Southern Ocean Antarctica LAND & WATER • The surface of the Earth is covered by approximately 71% water and 29% land. • It contains 7 continents and 5 oceans. Land Water EARTH’S HEMISPHERES • The planet Earth can be divided into four different sections or hemispheres. The Equator is an imaginary horizontal line (latitude) that divides the earth into the Northern and Southern hemispheres, while the Prime Meridian is the imaginary vertical line (longitude) that divides the earth into the Eastern and Western hemispheres. • North America, Earth’s 3rd largest continent, includes 23 countries. It contains Bermuda, Canada, Mexico, the United States of America, all Caribbean and Central America countries, as well as Greenland, which is the world’s largest island. North West East LOCATION South • The continent of North America is located in both the Northern and Western hemispheres. It is surrounded by the Arctic Ocean in the north, by the Atlantic Ocean in the east, and by the Pacific Ocean in the west. • It measures 24,256,000 sq. km and takes up a little more than 16% of the land on Earth. North America 16% Other Continents 84% • North America has an approximate population of almost 529 million people, which is about 8% of the World’s total population. 92% 8% North America Other Continents • The Atlantic Ocean is the second largest of Earth’s Oceans. It covers about 15% of the Earth’s total surface area and approximately 21% of its water surface area. -
Plate Tectonics, Volcanoes, and Earthquakes / Edited by John P
ISBN 978-1-61530-106-5 Published in 2011 by Britannica Educational Publishing (a trademark of Encyclopædia Britannica, Inc.) in association with Rosen Educational Services, LLC 29 East 21st Street, New York, NY 10010. Copyright © 2011 Encyclopædia Britannica, Inc. Britannica, Encyclopædia Britannica, and the Thistle logo are registered trademarks of Encyclopædia Britannica, Inc. All rights reserved. Rosen Educational Services materials copyright © 2011 Rosen Educational Services, LLC. All rights reserved. Distributed exclusively by Rosen Educational Services. For a listing of additional Britannica Educational Publishing titles, call toll free (800) 237-9932. First Edition Britannica Educational Publishing Michael I. Levy: Executive Editor J. E. Luebering: Senior Manager Marilyn L. Barton: Senior Coordinator, Production Control Steven Bosco: Director, Editorial Technologies Lisa S. Braucher: Senior Producer and Data Editor Yvette Charboneau: Senior Copy Editor Kathy Nakamura: Manager, Media Acquisition John P. Rafferty: Associate Editor, Earth Sciences Rosen Educational Services Alexandra Hanson-Harding: Editor Nelson Sá: Art Director Cindy Reiman: Photography Manager Nicole Russo: Designer Matthew Cauli: Cover Design Introduction by Therese Shea Library of Congress Cataloging-in-Publication Data Plate tectonics, volcanoes, and earthquakes / edited by John P. Rafferty. p. cm.—(Dynamic Earth) “In association with Britannica Educational Publishing, Rosen Educational Services.” Includes index. ISBN 978-1-61530-187-4 ( eBook) 1. Plate tectonics. -
Effects of Europe's Commercial Expansion Into the Indian Ocean On
Effects of Europe’s Commercial Expansion into the Indian Ocean on Asian and African Coastal Economies, 1600-1650 Johannes Lang 8GRG Neulandschule Grinzing Alfred Wegener-Gasse 10-12 1190 Wien 29.1.2016 Betreut von Mag. Ruth Schabauer Abstract This work examines the impact of Europeans’ commercial expansion into the Indian Ocean on the local Asian and African economies between 1600 and 1650. By studying this historically important period of time, we can also gain a deeper understanding of modern globalization and of Europe’s continuing political and economic influence today. The different consequences for the various regions bordering the Indian Ocean are compared, contrasted, and evaluated. For my research I use primarily books and articles but also rely on the analysis of economic data. Epic poems from Mughal writers as well as modern studies are included so that the reader may gain thorough insights into the topic. As I try to tell history from an Afro-Asian perspective, I let both 17th century and contemporary voices native to the Indian Ocean have their say. I conclude in my study that the consequences of trade with the Europeans differed greatly between the heterogeneous regions. The nature of these consequences depended on the socioeconomic structure as well as on the environmental particularities of the regions in question. Some economies profited from the new situation; others suffered from the altered trade system. Interestingly, many effects of 17th century globalization, such as increased competition with countries far away and a heightened reliance on foreign trade, are visible also in today’s process of globalization. -
India in the Indian Ocean Donald L
Naval War College Review Volume 59 Article 6 Number 2 Spring 2006 India in the Indian Ocean Donald L. Berlin Follow this and additional works at: https://digital-commons.usnwc.edu/nwc-review Recommended Citation Berlin, Donald L. (2006) "India in the Indian Ocean," Naval War College Review: Vol. 59 : No. 2 , Article 6. Available at: https://digital-commons.usnwc.edu/nwc-review/vol59/iss2/6 This Article is brought to you for free and open access by the Journals at U.S. Naval War College Digital Commons. It has been accepted for inclusion in Naval War College Review by an authorized editor of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. Color profile: Generic CMYK printer profile Composite Default screen Berlin: India in the Indian Ocean INDIA IN THE INDIAN OCEAN Donald L. Berlin ne of the key milestones in world history has been the rise to prominence Oof new and influential states in world affairs. The recent trajectories of China and India suggest strongly that these states will play a more powerful role in the world in the coming decades.1 One recent analysis, for example, judges that “the likely emergence of China and India ...asnewglobal players—similar to the advent of a united Germany in the 19th century and a powerful United States in the early 20th century—will transform the geopolitical landscape, with impacts potentially as dramatic as those in the two previous centuries.”2 India’s rise, of course, has been heralded before—perhaps prematurely. How- ever, its ascent now seems assured in light of changes in India’s economic and political mind-set, especially the advent of better economic policies and a diplo- macy emphasizing realism. -
ICRI Indian Ocean Factsheet
Indian Ocean Factsheet Communicating the Economic and Social Importance of Coral Reefs for Indian Ocean countries This fact sheet will provide you with information extracted from economic studies Indian Ocean Factsheet BASICS Coral reefs are among the most productive ecosystems on the planet. They cover less than 1% of the ocean floor but support 25% of ocean life. Coral reefs provide beautiful seascapes which allow for a range of recreational activities and improve the attractiveness of the country for international tourism markets. Coral reefs absorb a huge amount of swell energy from waves, protecting lives, coastal properties and beaches from flooding events and hurricanes. Many fisheries exist only due to the presence of coral reefs, whether as nurseries or adult habitats. This sector provides food and incomes for fishers and associated industries. More than 65% of reefs in the region are at risk from local threats, with one-third rated at high or very high risk. Primary threats are man made - unsustainable fishing, land based sources of marine pollution (including sedimentation) and more recently Global Climate Change. Local solutions exist !! Developing networks of Marine Protected Areas, implementing sustainable fishing practices (especially protecting herbivores) and improving water quality are local actions that could increase the resilience of coral reefs to global threats. Reefs at Risk in the Indian Ocean Indian Ocean Factsheet REGIONAL DATA Estimates show the 28,000 km2 of reefs in the Indian Ocean provide tangible benefits of at least US$2b annually to the economies of the countries. Tourism benefits represent 70% of this value with Fisheries representing the remainer. -
Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: the Indonesian Example
geosciences Review Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example Mukhamad N. Malawani 1,2, Franck Lavigne 1,3,* , Christopher Gomez 2,4 , Bachtiar W. Mutaqin 2 and Danang S. Hadmoko 2 1 Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, UMR 8591, 92195 Meudon, France; [email protected] 2 Disaster and Risk Management Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] (C.G.); [email protected] (B.W.M.); [email protected] (D.S.H.) 3 Institut Universitaire de France, 75005 Paris, France 4 Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Kobe City 658-0022, Japan * Correspondence: [email protected] Abstract: This paper discusses the relations between the impacts of volcanic eruptions at multiple- scales and the related-issues of disaster-risk reduction (DRR). The review is structured around local and global impacts of volcanic eruptions, which have not been widely discussed in the literature, in terms of DRR issues. We classify the impacts at local scale on four different geographical features: impacts on the drainage system, on the structural morphology, on the water bodies, and the impact Citation: Malawani, M.N.; on societies and the environment. It has been demonstrated that information on local impacts can Lavigne, F.; Gomez, C.; be integrated into four phases of the DRR, i.e., monitoring, mapping, emergency, and recovery. In Mutaqin, B.W.; Hadmoko, D.S. contrast, information on the global impacts (e.g., global disruption on climate and air traffic) only fits Review of Local and Global Impacts the first DRR phase. -
Geography) 2018
IASbaba’s 60 Days Plan – Day 46 (Geography) 2018 Q.1) Consider the following statements. 1. A mid-oceanic ridge is composed of two chains of mountains separated by a large depression. 2. Mid-oceanic ridges are formed at convergent boundary of two plates. Which of the above statements is/are correct? a) 1 only b) 2 only c) Both 1 and 2 d) None Q.1) Solution (a) A mid-oceanic ridge is composed of two chains of mountains separated by a large depression. The mountain ranges can have peaks as high as 2,500 m and some even reach above the ocean’s surface. Running for a total length of 75,000 km, these ridges form the largest mountain systems on earth. These ridges are either broad, like a plateau, gently sloping or in the form of steep- sided narrow mountains. These oceanic ridge systems are of tectonic origin formed at divergent plate boundaries and provide evidence in support of the theory of Plate Tectonics. Do you know? A land bridge, in biogeography, is an isthmus or wider land connection between otherwise separate areas, over which animals and plants are able to cross and colonise new lands. A land bridge can be created by marine regression, in which sea levels fall, exposing shallow, previously submerged sections of continental shelf; or when new land is created by plate tectonics; or occasionally when the sea floor rises due to post-glacial rebound after an ice age. THINK! Straits Q.2) ‘Insular shelf’ means a) A continental shelf allocated to landlocked countries. -
Endangered Andean Cat Distribution Beyond the Andes in Patagonia
original contribution ANDRES NOVARO1,2, SUSAN WALKER2*, ROCIO PALACIOS1,3, SEBASTIAN DI MARTINO4, MARTIN MONTEVERDE5, SEBASTIAN CANADELL6, LORENA RIVAS1,2 AND DANIEL COSSIOS7 Endangered Andean cat distribution beyond the Andes in Patagonia The endangered Andean cat Leopardus jacobita was considered an endemic of the Andes at altitudes above 3,000 m, until it was discovered in the Andean foothills of central Argentina in 2004. We carried out surveys for Andean cats and sympatric small cats in the central Andean foothills and the adjacent Patagonian steppe, and found Andean cats outside the Andes at elevations as low as 650 m. We determined that Andean cats are widespread but rare in the northern Patagonian steppe, with a patchy distribution. Our findings suggest that the species’ distribution may follow that of its principal prey, the rock-dwelling mountain vizcacha. The Andean cat was previously believed to be distribution if it does indeed follow that of the endemic to the Andes above 3,000 m (Yensen mountain vizcacha. First, to avoid bias for par- & Seymour 2000), until an opportunistic pho- ticular habitats beyond the Andes we placed Fig. 1. Location of new records and un- tograph in 2004 produced the startling finding a 2 x 2 km grid over the area with ArcGIS. confirmed reports of Andean cats in Men- of two Andean cats at only 1,800 m, in the We selected 105 grid cells, using stratified doza and Neuquén provinces (black dots), Andean foothills of central Argentina (Sorli et random sampling to ensure broad geographic relative to previous known distribution in al. -
The Year Without a Summer
The Year Without a Summer In 1816, half a foot of snow fell in New England. That would be Mount Tambora, an active completely unremarkable. Except that it was in one day—in June. stratovolcano that is a peninsula of and the highest That same summer, Mary Shelley spent a chilly vacation holed peak on the island of up indoors—and used the time to write Frankenstein. Crops Sumbawa in Indonesia. failed around the world, plunging Thomas Jefferson into serious Credit: Jialiang Gao (peace-on- debt for the rest of his life. Oats became scarce in Germany, earth.org) via Wikimedia Commons making horse travel expensive—and leading to the invention (CC BY-SA 3.0 [http://creative- of the bicycle. Struggling farmers in China began raising opium, commons.org/licenses/by-sa/3.0]) giving rise to a drug trade that has lasted to modern times. And famine in many areas led to widespread disease, including a cholera outbreak that killed millions. What was the cause of all this chaos? A year earlier, a volcano erupted in Indonesia. Larger than Krakatoa, Vesuvius, or Mount St. Helens, Mount Tambora erupted for 2 weeks straight. Around it, nearly 100,000 people died, buried under thick layers of ash like in Pompeii. Greenhouse-gas emissions from the eruption, which could have warmed the atmosphere, were offset by particulates and sulfur dioxide gas. Ash and dust blocked out the sun temporarily, darkening skies around the world. The sulfur dioxide was longer-lasting, becoming aerosols that reflected the sun’s heat for 3 years! This turned 1816 into “The Year Without a Summer,” as it was called, with long-term global effects. -
NSF 03-021, Arctic Research in the United States
This document has been archived. Home is Where the Habitat is An Ecosystem Foundation for Wildlife Distribution and Behavior This article was prepared The lands and near-shore waters of Alaska remaining from recent geomorphic activities such by Page Spencer, stretch from 48° to 68° north latitude and from 130° as glaciers, floods, and volcanic eruptions.* National Park Service, west to 175° east longitude. The immense size of Ecosystems in Alaska are spread out along Anchorage, Alaska; Alaska is frequently portrayed through its super- three major bioclimatic gradients, represented by Gregory Nowacki, USDA Forest Service; Michael imposition on the continental U.S., stretching from the factors of climate (temperature and precipita- Fleming, U.S. Geological Georgia to California and from Minnesota to tion), vegetation (forested to non-forested), and Survey; Terry Brock, Texas. Within Alaska’s broad geographic extent disturbance regime. When the 32 ecoregions are USDA Forest Service there are widely diverse ecosystems, including arrayed along these gradients, eight large group- (retired); and Torre Arctic deserts, rainforests, boreal forests, alpine ings, or ecological divisions, emerge. In this paper Jorgenson, ABR, Inc. tundra, and impenetrable shrub thickets. This land we describe the eight ecological divisions, with is shaped by storms and waves driven across 8000 details from their component ecoregions and rep- miles of the Pacific Ocean, by huge river systems, resentative photos. by wildfire and permafrost, by volcanoes in the Ecosystem structures and environmental Ring of Fire where the Pacific plate dives beneath processes largely dictate the distribution and the North American plate, by frequent earth- behavior of wildlife species. -
Subregional and Regional Approaches for Disaster Resilience
United Nations ESCAP/76/14 Economic and Social Council Distr.: General 3 March 2020 Original: English Economic and Social Commission for Asia and the Pacific Seventy-sixth session Bangkok, 21 May 2020 Item 5 (d) of the provisional agenda* Review of the implementation of the 2030 Agenda for Sustainable Development in Asia and the Pacific: disaster risk reduction Subregional and regional approaches for disaster resilience Note by the secretariat Summary As climate uncertainties grow, Asia and the Pacific faces an increasingly complex disaster riskscape. In the Asia-Pacific Disaster Report 2019: The Disaster Riskscape across Asia-Pacific – Pathways for Resilience, Inclusion and Empowerment, the Economic and Social Commission for Asia and the Pacific provided a comprehensive overview of the regional riskscape, identifying the region’s main hotspots and options for action. Based on the findings, the present document contains highlights of the changing geography of disasters together with the associated multi-hazard risk hotspots at the subregional level, namely, South-East Asia, South and South-West Asia, the Pacific small island developing States, North and Central Asia, and North and East Asia. For each subregion, the document provides specific solution-oriented resilience-building approaches. In this regard, the document contains information about the opportunities to build resilience provided by subregional and regional cooperation and a discussion of the secretariat’s responses under the aegis of the Asia-Pacific Disaster Resilience Network. The Commission may wish to review the present document and provide guidance for the future work of the secretariat. I. Introduction 1. The 2030 Agenda for Sustainable Development provides a blueprint for development, including ending poverty, fighting inequalities and tackling climate change. -
Climate, Tectonics, and the Morphology of the Andes
Climate, tectonics, and the morphology of the Andes David R. Montgomery Greg Balco Sean D. Willett Department of Geological Sciences, University of Washington, Seattle 98195-1310, USA ABSTRACT Large-scale topographic analyses show that hemisphere-scale climate variations are a ®rst-order control on the morphology of the Andes. Zonal atmospheric circulation in the Southern Hemisphere creates strong latitudinal precipitation gradients that, when incor- porated in a generalized index of erosion intensity, predict strong gradients in erosion rates both along and across the Andes. Cross-range asymmetry, width, hypsometry, and maximum elevation re¯ect gradients in both the erosion index and the relative dominance of ¯uvial, glacial, and tectonic processes, and show that major morphologic features cor- relate with climatic regimes. Latitudinal gradients in inferred crustal thickening and struc- tural shortening correspond to variations in predicted erosion potential, indicating that, like tectonics, nonuniform erosion due to large-scale climate patterns is a ®rst-order con- trol on the topographic evolution of the Andes. Keywords: geomorphology, erosion, tectonics, climate, Andes. INTRODUCTION we argue for the ®rst-order importance of earthquake cycle. Some studies have attribut- The presence or absence of mountain rang- large-scale climate zonations and resulting dif- ed local variations in structural, metamorphic, es at the global scale is determined by the lo- ferences in geomorphic processes to the mor- and geomorphic characteristics of the central cation and type of plate boundaries. Other fac- phology of mountain ranges. Andes to erosion (Gephart, 1994; Masek et al., tors become important in the evolution of 1994; Horton, 1999), but none has considered individual mountain systems.