Algebraic Methods for Biochemical Reaction Network Theory by Anne

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Methods for Biochemical Reaction Network Theory by Anne Algebraic methods for biochemical reaction network theory by Anne Joyce Shiu A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics and the Designated Emphasis in Computational and Genomic Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Bernd Sturmfels, Chair Professor Lior Pachter Professor Murat Arcak Spring 2010 Algebraic methods for biochemical reaction network theory Copyright 2010 by Anne Joyce Shiu 1 Abstract Algebraic methods for biochemical reaction network theory by Anne Joyce Shiu Doctor of Philosophy in Mathematics and the Designated Emphasis in Computational and Genomic Biology University of California, Berkeley Professor Bernd Sturmfels, Chair This dissertation develops the algebraic study of chemical reaction networks endowed with mass- action kinetics. These form a class of dynamical systems that have a wide range of applications in the physical and biological sciences. Early results in chemical reaction network theory relied on techniques from linear algebra, dynamical systems, and graph theory. More recently, motivated by problems in systems biology, other areas of mathematics have contributed to this subject. These branches of mathematics include control theory, homotopy theory, and matroid theory. As a complement to these varied perspectives, the approach of this dissertation is algebraic. Chapter 2 develops the basic theory of toric dynamical systems, which are those chemical reaction systems that have the property that for any chemical complex (a product or reactant), the amount produced of that complex at steady state is equal to the amount consumed by reactions. Toric dynamical systems are known as complex-balancing mass-action systems in the mathematical chemistry literature, where many of their properties have been established. Special cases of toric dynamical systems include all zero deficiency systems and all detailed-balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety. Furthermore, this variety intersects the interior of each invariant polyhedron (a polyhedron in which a trajectory of the dynamical system is confined) in a unique point. For any chemical reaction network, there is an associated moduli space that consists of those vectors of reaction rate constants for which the resulting dynamical system is a toric dynamical system. The main result states that this moduli space is a toric variety whose combinatorial structure we can characterize. To determine the steady states on the boundaries of invariant polyhedra, the concept of a siphon is important. Siphons in a chemical reaction system are subsets of the chemical species that have the potential of being absent in a steady state. The main result of Chapter 3 characterizes minimal siphons in terms of primary decomposition of binomial ideals. Further, we explore the underlying geometry, and we demonstrate the effective computation of siphons using computer algebra software. This leads to a new method for determining whether given initial concentrations allow for various boundary steady states; this classification arises from a chamber decomposition. Siphons determine which faces of an invariant polyhedron contain steady states, and a rel- evant question is whether any trajectories of a chemical reaction system approach such a boundary 2 steady state. The global attractor conjecture, which is the subject of Chapter 4, implies that no inte- rior trajectories approach boundary steady states in the case of toric dynamical systems. Our main result states that this conjecture holds when all of the siphons correspond to facets (codimension- one faces), vertices (zero-dimensional faces), or empty faces of the invariant polyhedron. As a corollary, the conjecture holds when the associated invariant polyhedra are two-dimensional. Chapter 5 pertains to the topic of multistationarity, which refers to the capacity of a biochemical reaction system to exhibit multiple steady states in one invariant polyhedron. Known results from chemical reaction network theory provide sufficient conditions for the existence of bista- bility, and on the other hand can rule out the possibility of multiple steady states. Understanding small networks is important because the existence of multiple steady states in a subnetwork of a biochemical model sometimes can be lifted to establish multistationarity in the larger network. The main result establishes the smallest reversible, mass-preserving network that admits bistability and determines the semi-algebraic set of parameters for which more than one steady state exists. Chapter 6 focuses on mathematical methods for predicting gene expression from regulatory sequence. The chemical reactions that underlie transcriptional regulation include the bindings of transcription factors to cis-regulatory sequences of genes. For each such sequence, many possible combinations of transcription factors can bind to the sequence. Accordingly, thermodynamic models give quantitative predictions of gene expression levels that are weighted averages over the set of all possible binding configurations. This chapter describes the implementation of such a model in the context of early embryonic development in Drosophila melanogaster. i To my family. ii Contents List of Figures v List of Tables vi 1 Introduction 1 1.1 From molecular biology to systems biology . ............ 1 1.2 Overview of main results in this dissertation . .............. 2 1.3 Chemical reaction network theory . .......... 3 1.3.1 Chemicalreactionsystems. ...... 4 1.3.2 Rateformationfunctions . ..... 6 1.3.3 Steady states and invariant polyhedra . ......... 7 1.3.4 The deficiency of a chemical reaction network . .......... 7 1.3.5 Ideals, varieties, and primary decomposition . ............. 8 1.3.6 Connection to polyhedral geometry . ........ 8 1.4 Examplesofreactionnetworks . ........ 9 2 Toric dynamical systems 12 2.1 Introduction to toric dynamical systems . ............ 12 2.2 Ideals, varieties, and chemistry . ........... 14 2.2.1 The Matrix-Tree Theorem and the toric balancing ideal ............ 16 2.2.2 Mainresults................................... 20 2.3 The Global Attractor Conjecture . ......... 22 2.4 Connections to deficiency theory . ......... 24 2.4.1 Deficiencytheorems ............................. 24 2.4.2 Stochastic complex-balancing chemical systems . ............. 25 2.5 Biological applications . ......... 25 2.6 Detailed-balancing systems . ......... 28 3 Siphons and primary decomposition 30 3.1 Introductiontosiphons . ....... 30 3.2 Reaction networks, siphons, and steady states . .............. 32 3.3 Binomial ideals and monomial ideals . .......... 34 3.4 Computingsiphonsinpractice . ........ 39 iii 3.5 Siphonsandpersistence . ....... 44 4 The global attractor conjecture 45 4.1 Introduction.................................... ..... 45 4.2 Boundary steady states, persistence, and siphons . ............... 46 4.3 Historyoftheconjecture. ........ 48 4.4 Preliminaryresults .............................. ....... 50 4.5 Results for detailed-balancing systems . ............. 51 4.6 Mainresults..................................... 54 4.6.1 Result concerning vertices of invariant polyhedra . .............. 54 4.6.2 Result concerning facets of invariant polyhedra . ............. 55 4.6.3 Connection to dynamically non-emptiable siphons . ............ 58 4.7 Applications to the global attractor conjecture . ............... 61 4.8 Examples ........................................ 62 5 The smallest multistationary mass-preserving chemical reaction network 65 5.1 Introduction to multistationarity . ............ 65 5.2 The smallest multistationary network . ........... 66 5.3 Parametrizing multistationarity . ............ 70 5.4 Multistationary subnetworks of the Square network . ............... 73 5.5 Connection to known biochemical networks . ........... 75 6 Predicting gene expression from regulatory sequence 77 6.1 Introduction.................................... ..... 77 6.2 The gene expression function of Segal et al. ....................... 78 6.2.1 Configurationmodels . .. .. .. .. .. .. .. .. 78 6.2.2 Configuration probabilities and expression level prediction . 79 6.2.3 Parameters .................................... 82 6.2.4 Clarifying notes on the Segal et al. gene expression function . 82 6.3 Computingthegeneexpressionfunction . ........... 84 6.3.1 Dynamicprogramming. 84 6.3.2 Head state Markov chain . 88 6.3.3 Logcoordinates................................ 91 6.3.4 Maximum-weight configurations . ...... 92 6.4 Computing the number of configurations . .......... 92 7 Further directions 95 7.1 Basic chemical reaction network theory questions . ............... 95 7.2 Existence of positive steady states . ........... 95 7.3 Homotopy methods for multiple steady states . ............ 96 7.4 Thermodynamic feasibility of toric dynamical systems . ................ 96 7.5 Boundary steady states without repelling neighborhoods................ 96 iv Bibliography 97 v List of Figures 3.1 The chamber decomposition of the cone Q for the network in Example 3.1.1. The cone is spanned by the columns of the matrix A in (3.3). Each of the three maximal chambers Ω(1), Ω(2), and Ω(3) contains a picture of the corresponding 3-dimensional polyhedron Pc(0) . The vertices of each polyhedron are labeled by their supports. The star “⋆” indicates the unique vertex steady state, which arises from one of the two relevant siphons
Recommended publications
  • Computations in Algebraic Geometry with Macaulay 2
    Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
    [Show full text]
  • Math Matters
    MATH MATTERS CORNELL UNIVERSITY JANUARY 2020 Letter From The Chair Ravi Ramakrishna ’88 s is the case every year, our beginning of their first year with Department (along with all others studentsA and faculty are participat- their advisor, in the College) recently reclassi- ing a rich tapestry of mathematical and then as fied all its courses under the new events and scholarship. From needed. This system, with two falling under running conferences and summer often meant the Statistics and Data Science schools to supervising undergradu- never. The new (SDS) heading and the rest under ate research to (of course) proving model has a the Symbolic and Mathematical wonderful theorems, Cornell math- group of 10 first Reasoning (SMR) heading. We are ematicians at all levels are doing semester stu- curious to see how the new clas- great things. dents meeting sifications and requirements will Ravi Ramakrishna As you will read throughout with their advisor affect our enrollments, especially this issue of Math Matters, they once a week for 9 weeks. The at the first-year and sophomore are also being recognized for their intent is to orient students to the levels. outstanding accomplishments. College and break down the barri- Speaking of enrollments, we Our faculty have in the last year ers between faculty and students. will this year graduate about 95 won two College-wide teaching 2019 was the first year where the math majors. We now have the awards, three National Science seminar served all incoming A&S fifth most majors in the College. Foundation CAREER awards, a students and seven Math faculty Our enrollments at junior and Sloan Fellowship, two Simons participated.
    [Show full text]
  • NEW TRENDS in SYZYGIES: 18W5133
    NEW TRENDS IN SYZYGIES: 18w5133 Giulio Caviglia (Purdue University, Jason McCullough (Iowa State University) June 24, 2018 – June 29, 2018 1 Overview of the Field Since the pioneering work of David Hilbert in the 1890s, syzygies have been a central area of research in commutative algebra. The idea is to approximate arbitrary modules by free modules. Let R be a Noetherian, commutative ring and let M be a finitely generated R-module. A free resolution is an exact sequence of free ∼ R-modules ···! Fi+1 ! Fi !··· F0 such that H0(F•) = M. Elements of Fi are called ith syzygies of M. When R is local or graded, we can choose a minimal free resolution of M, meaning that a basis for Fi is mapped onto a minimal set of generators of Ker(Fi−1 ! Fi−2). In this case, we get uniqueness of minimal free resolutions up to isomorphism of complexes. Therefore, invariants defined by minimal free resolutions yield invariants of the module being resolved. In most cases, minimal resolutions are infinite, but over regular rings, like polynomial and power series rings, all finitely generated modules have finite minimal free resolutions. Beyond the study of invariants of modules, syzygies have connections to algebraic geometry, algebraic topology, and combinatorics. Statements like the Total Rank Conjecture connect algebraic topology with free resolutions. Bounds on Castelnuovo-Mumford regularity and projective dimension, as with the Eisenbud- Goto Conjecture and Stillman’s Conjecture, have implications for the computational complexity of Grobner¨ bases and computational algebra systems. Green’s Conjecture provides a link between graded free resolutions and the geometry of canonical curves.
    [Show full text]
  • Revised August 2014 DAVID EISENBUD VITA Born April 8, 1947
    Revised August 2014 DAVID EISENBUD VITA Born April 8, 1947, New York City US Citizen Married, with two children EDUCATION B. S. University of Chicago 1966 M. S. University of Chicago 1967 Ph. D. University of Chicago 1970 Advisors: Saunders MacLane, J. C. Robson Thesis: Torsion Modules over Dedekind Prime Rings POSITIONS HELD Lecturer, Brandeis University 1970{72 Assistant Professor, Brandeis University 1972{73 Sloan Foundation Fellow 1973{75 Visiting scholar, Harvard University 1973{74 Fellow, I. H. E. S. (Bures-Sur-Yvette) 1974{75 Associate Professor, Brandeis University 1976{80 Visiting Researcher, University of Bonn (SFB 40) 1979{80 Professor, Brandeis University 1980{1998 Research Professor, Mathematical Sciences Research Institute, Berkeley 1986{87 Visiting Professor, Harvard University 1987{88 and Fall 1994 Chercheur Associ´e`al'Institut Henri Poincar´e(CNRS), Paris, Spring 1995. Professor, University of California at Berkeley, 1997{ Director, Mathematical Sciences Research Institute, 1997{ 2007 Director for Mathematics and the Physical Sciences, Simons Foundation, 2010{2012 HONORS, PRIZES Elected Fellow of the American Academy of Arts and Sciences, 2006 Leroy P. Steele Prize for Exposition, American Mathematical Society, 2010 CURRENT RESEARCH INTERESTS Algebraic Geometry Commutative Algebra Computational Methods 1 OTHER LONG-TERM MATHEMATICAL INTERESTS • Noncommutative Rings • Singularity Theory • Knot Theory and Topology 2 Professional Activities American Mathematical Society Council 1978{1982 (as member of the editorial board
    [Show full text]
  • Download a PDF of the Program
    Department of Mathematics 2021 Awards Tonight’s Program Welcome + Opening Remarks Professor Jeremy Tyson Chair, Department of Mathematics Land-Grant Statement + College of LAS Remarks Professor Matt Ando Associate Dean for Life and Physical Sciences, College of LAS Alumni Award Recognition + Remarks Steven Armstrong (BS ’92) 2020 Actuarial Science Program Alumnus of the Year Undergraduate Awards Professor Randy McCarthy Director of Undergraduate Studies Alumni Award Recognition + Remarks Danyel Graves Larsen (BA ’04) 2021 Alumni Humanitarian Award Illinois Geometry Lab Awards Professor Philipp Hieronymi Director of Illinois Geometry Lab Graduate Awards Professor Lee DeVille Director of Graduate Studies Alumni Award Recognition + Remarks Michael Stillman (BA ’78) 2021 Outstanding Achievement Award Faculty + Staff Awards Professor Jeremy Tyson Alumni Award Recognition + Remarks Judy Leavitt Walker (MS ’92, Ph.D. ’96) 2021 Outstanding Achievement Award Closing Remarks Professor Jeremy Tyson Undergraduate Awards H. Roy Brahana Prize Salma Wanna Memorial Award The H. Roy Brahana Prize is named for a distinguished The Salma Wanna Memorial Award honors the member of our mathematics faculty and recognizes memory of Salma Wanna, who received her PhD the student with “the most exceptional undergraduate from the University of Illinois in 1976. It is given for mathematics career.” “exceptional performance in mathematics to the Presented with honor to David Brewster, a senior most outstanding continuing student.” mathematics major. Presented with honor to Ariel Lerman, a sophomore mathematics major. Ariel received the Elsie Thomas Most Outstanding Major Awards Fraser Award in 2020 and was recently named a Barry In 1996, the department established the Major Awards M. Goldwater Scholar. He enjoys playing the cello, to recognize the most outstanding undergraduate creative writing and gaming.
    [Show full text]
  • Math Times, Summer 2021
    SUMMER 2021 DEPARTMENT OF MATHEMATICS MATH TIMES NEWSLETTER U of I partners with other universities to form math and statistics institute National Science Foundation awards $15.5 million for partnership of four Illinois universities The National Science Foundation (NSF) has awarded $15.5 million to four universities in Illinois, including the University of Illinois Urbana-Champaign, to create an institute to bring powerful mathematical ideas to bear on key contemporary scientific and technological challenges. Researchers at the new Institute for Mathematical and Statistical Innovation (IMSI), to be hosted by the University of Chicago, will People gather to hear the Altgeld Chimes ringers play a special Juneteenth concert titled build a platform that accelerates the “Amplify Their Voices: A Celebration of BIPOC Musicians.” | Fred Zwicky, UI Public Affairs translation of applied mathematical and statistical techniques into “The IMSI project is a powerful investment by the solutions for urgent scientific and societal problems. National Science Foundation in four great universities Many of these problems arise naturally in a range of fields and in the state of Illinois,” said Matt Ando, associate dean already being studied across the four partner institutions, for life and physical sciences at the College of LAS, who including climate change, health care, quantum played a key role in forming the institute. “It puts the state information theory, artificial intelligence, data science, and these universities in a position of national leadership economics, and materials science. in bringing mathematical and statistical research to In addition to the University of Illinois Urbana- bear on pressing societal challenges and in training the Champaign, IMSI will include a collaborative group of next generation of mathematicians and statisticians to mathematicians and statisticians from the University of collaborate with their colleagues across the academy and Chicago, Northwestern University, and the University in business, industry, and government.” of Illinois at Chicago.
    [Show full text]
  • Algebraic Geometry of Bayesian Networks
    Algebraic Geometry of Bayesian Networks Luis David Garcia{Puente Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Reinhard Laubenbacher, Chair Ezra Brown Daniel Farkas Edward Green Mark Shimozono April 01, 2004 Blacksburg, Virginia Keywords: Algebraic Geometry, Bayesian Networks, Computational Algebra, Statistics Algebraic Geometry of Bayesian Networks Luis David Garcia{Puente (ABSTRACT) We develop the necessary theory in algebraic geometry to place Bayesian networks into the realm of algebraic statistics. This allows us to create an algebraic geometry{statistics dictio- nary. In particular, we study the algebraic varieties defined by the conditional independence statements of Bayesian networks. A complete algebraic classification, in terms of primary decomposition of polynomial ideals, is given for Bayesian networks on at most five random variables. Hidden variables are related to the geometry of higher secant varieties. Moreover, a complete algebraic classification, in terms of generating sets of polynomial ideals, is given for Bayesian networks on at most three random variables and one hidden variable. The relevance of these results for model selection is discussed. Partially supported by the CARGO program of the National Science Foundation (DMS- 0138323). Dedication To God. To my wife Rebecca for all her love and support. To my baby daughter Claudia Isabel. To my parents Isabel and Luis David. iii Acknowledgments First, I want to thank my advisor Reinhard Laubenbacher for all his support in these last five years of my life. Reinhard has taught me many things inside and outside of the mathematics world.
    [Show full text]
  • 2021 2008 • Teichmüller Theory and Low-Dimensional Topology, June
    Summer Conferences, 2008 – 2021 2008 • Teichmüller Theory and Low-Dimensional Topology, June 14–20, 2008. Organizers: Francis Bonahon, University of Southern California; Howard Masur, University of Illinois at Chicago; Abigail Thompson, University of California at Davis; and Genevieve Walsh, Tufts University. • Scientific Computing and Advanced Computation, June 21–27, 2008. Organizers: John Bell, Lawrence Berkeley National Laboratory; Randall LeVeque, University of Washington; Juan Meza, Lawrence Berkeley National Laboratory. • Computational Algebra and Convexity, June 21–27, 2008. Organizers: Henry Schenck, University of Illinois at Urbana-Champaign; Michael Stillman, Cornell University; Jan Verschelde, University of Illinois at Chicago. 2009 • Mathematical Challenges of Relativity, June 13-19, 2009. Organizers: Mihalis Dafermos, University of Cambridge; Alexandru Ionescu, University of Wisconsin, Madison; Sergiu Klainerman, Princeton University; Richard Schoen, Stanford University. • Inverse Problems, June 20-26, 2009. Organizers: Guillaume Bal, Columbia University; Allan Greenleaf, University of Rochester; Todd Quinto, Tufts University; Gunther Uhlmann, University of Washington • Modern Markov Chains and their Statistical Applications, June 27-July 3, 2009. Organizers: Persi Diaconis, Stanford University; Jim Hobert, University of Florida; Susan Holmes, Stanford University • Harmonic Analysis, June 27- July 3, 2009. Organizers: Ciprian Demeter, Indiana University; Michael Lacey, Georgia Institute of Technology; Christoph Thiele, University
    [Show full text]
  • Bly Outnumber Inclusions - Email Bibtex Entries of the Most Egregious to [email protected] to Join the Long List of Contributors
    BIBLIOGRAPHY ON HILBERT SCHEMES This is a partial bibliography on Hilbert schemes. Omissions proba- bly outnumber inclusions - email bibtex entries of the most egregious to [email protected] to join the long list of contributors. References [1] Samir A¨ıtAmrane. Sur le sch´emade Hilbert des courbes de degr´e d et genre 3 (d − 3)(d − 4)=2 de Pk. C. R. Acad. Sci. Paris S´er. I Math., 326(7):851{856, 1998. [2] Samir Ait Amrane. Sur le sch´emade Hilbert des courbes gauches de degr´e d et genre g = (d−3)(d−4)=2. Ann. Inst. Fourier (Grenoble), 50(6):1671{1707 (2001), 2000. [3] M. Artin. Deformations of singularities. Tata institute of fundamental re- search Bombay. [4] M. Azaola and F. Santos. The graph of triangulations of a point configuration with d + 4 vertices is 3-connected. Discrete Comput. Geom., 23(4):489{536, 2000. [5] Edoardo Ballico, Giorgio Bolondi, and Juan Carlos Migliore. The Lazarsfeld- Rao problem for liaison classes of two-codimensional subschemes of Pn. Amer. J. Math., 113(1):117{128, 1991. [6] Dave Bayer. The division algorithm and the Hilbert scheme. PhD thesis, Har- vard University, 1982. [7] Valentina Beorchia. On the arithmetic genus of locally Cohen-Macaulay space curves. Internat. J. Math., 6(4):491{502, 1995. [8] Valentina Beorchia. Bounds for the genus of space curves. Math. Nachr., 184:59{71, 1997. [9] Erik Carlsson. Vertex operators, grassmannians, and hilbert schemes, 2009. [10] Dustin Cartwright and Bernd Sturmfels. The Hilbert scheme of the diagonal in a product of projective spaces.
    [Show full text]
  • 2015 Class of the Fellows of the AMS
    2015 Class of the Fellows of the AMS Sixty-three mathematical scientists from around the world have been named Fellows of the American Mathematical Society (AMS) for 2015, the program’s second year. The Fellows of the American Mathematical Society program recognizes members who have made outstanding contributions to the creation, exposition, advancement, communication, and utilization of mathematics. Among the goals of the program are to create an enlarged class of mathematicians recognized by their peers as distinguished for their contributions to the profession and to honor excellence. The 2015 class of Fellows was honored at a dessert reception held during the Joint Mathematics Meetings in San Antonio, TX. Names of the individuals who are in this year’s class, their institutions, and citations appear below. The nomination period for Fellows is open each year from February 1 to March 31. For additional information about the Fellows program, as well as instructions for making nominations, visit the web page www.ams.org/ profession/ams-fellows. Alfonso Castro, Harvey Mudd College For contributions to nonlinear analysis and elliptic partial differ- ential equations as well as for service to individual departments and the larger community. Xiuxiong Chen, Stony Brook University For contributions to differential geometry, particularly the theory of extremal Kahler metrics. Nikolai Chernov,* University of Alabama at Birmingham For contributions to dynamical systems and statistical mechanics. Henry Cohn, Microsoft Research For contributions to discrete mathematics, including applications to computer science and physics. Marc Culler, University of Illinois at Chicago For contributions to geometry and topology of 3-manifolds, AMS Immediate Past President David Vogan addresses geometric group theory, and the development of software for the Fellows at JMM 2015.
    [Show full text]
  • Algebraic Combinatorics for Computational Biology by Nicholas
    Algebraic combinatorics for computational biology by Nicholas Karl Eriksson B.S. (Massachusetts Institute of Technology) 2001 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics and the Designated Emphasis in Computational and Genomic Biology in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA, BERKELEY Committee in charge: Professor Bernd Sturmfels, Chair Professor Lior Pachter Professor Elchanan Mossel Spring 2006 The dissertation of Nicholas Karl Eriksson is approved: Chair Date Date Date University of California, Berkeley Spring 2006 Algebraic combinatorics for computational biology Copyright 2006 by Nicholas Karl Eriksson 1 Abstract Algebraic combinatorics for computational biology by Nicholas Karl Eriksson Doctor of Philosophy in Mathematics University of California, Berkeley Professor Bernd Sturmfels, Chair Algebraic statistics is the study of the algebraic varieties that correspond to discrete statistical models. Such statistical models are used throughout computational biology, for example to describe the evolution of DNA sequences. This perspective on statistics allows us to bring mathematical techniques to bear and also provides a source of new problems in mathematics. The central focus of this thesis is the use of the language of algebraic statistics to translate between biological and statistical problems and algebraic and combinato- rial mathematics. The wide range of biological and statistical problems addressed in this work come from phylogenetics, comparative genomics, virology, and the analysis of ranked data. While these problems are varied, the mathematical techniques used in this work share common roots in the field of combinatorial commutative algebra. The main mathematical theme is the use of ideals which correspond to combinatorial objects such as magic squares, trees, or posets.
    [Show full text]
  • Curriculum Vitae Dave Bayer Department of Mathematics 560 Riverside Drive 15H Barnard College New York, NY 10027 Columbia Univer
    Curriculum Vitae Dave Bayer Department of Mathematics 560 Riverside Drive 15H Barnard College New York, NY 10027 Columbia University (212) 864-4235 2990 Broadway MC 4418 New York, NY 10027-6902 Dave Bayer <[email protected]> (212) 854-2643 www.math.columbia.edu/~bayer A linked vita is available online at www.math.columbia.edu/~bayer/vita.html Born November 29, 1955, Rochester, New York. United States citizen. Education B.A. with Highest Honors, Swarthmore College, June 1977. Ph.D., Harvard University, June 1982. Thesis advisor: Heisuke Hironaka. Positions Teaching Fellow, Harvard University, 1978-82. Ritt Assistant Professor, Columbia University, 1982-90. Visiting Assistant Professor, Barnard College, 1987-88. Visiting Lecturer on Mathematics, Harvard University, 1988-89. Associate Professor, Barnard College, 1990-1995. Member, Mathematical Sciences Research Institute, 1995-1996, 2002-2003. Math Consultant, A Beautiful Mind (feature film), 2001. Professor, Barnard College, 1995-present. Software Macaulay: A system for computation in algebraic geometry and commutative algebra, with M. Stillman. Source and object code available for Unix and Macintosh computers. www.math.columbia.edu/~bayer/Macaulay.html Patents Method and apparatus for optimizing system operational parameters, with N. Karmarkar and J. Lagarias, United States patent 4,744,027, May 10, 1988. 1 Publications 1. The division algorithm and the Hilbert scheme, Ph.D. Thesis, Harvard University, June 1982. www.math.columbia.edu/~bayer/thesis/thesis.html 2. Quantum statistics for distinguishable particles, with J. Tersoff, Phys. Rev. Lett. 50 (1983), no. 8, 553–554. 3. The design of Macaulay: a system for computing in algebraic geometry and commutative algebra Source, with M.
    [Show full text]