Catalyzed Synthesis of Aromatic Esters Oscar Dalla-Santa

Total Page:16

File Type:pdf, Size:1020Kb

Catalyzed Synthesis of Aromatic Esters Oscar Dalla-Santa DEGREE PROJECT IN CHEMICAL ENGINEERING AND TECHNOLOGY, FIRST LEVEL STOCKHOLM, SWEDEN 2019 Catalyzed synthesis of aromatic esters Oscar Dalla-Santa KTH ROYAL INSTITUTE OF TECHNOLOGY KTH ENGINEERING SCIENCES IN CHEMISTRY, BIOTECHNOLOGY AND HEALTH DEGREE PROJECT Bachelor of Science in Chemical Engineering and Technology Title: Catalyzed synthesis of aromatic esters Swedish title: Katalyserad syntes av aromatiska estrar Keywords: Catalysis, metallocene, zirconium, zirconocene triflate, aromatic esterification, etherification, bis(cyclopentadienyl)zirconium(IV) bis(trifluoromethanesulfonate), electrophilic aromatic substitution, ester, ether Workplace: KTH, Royal Institute of Technology Department of organic chemistry Supervisor at the workplace: Helena Lundberg Supervisor at KTH: Kaye Stern Student: Oscar Dalla-Santa Date: 2019-07-01 Examiner: Kaye Stern Foreword I would like to thank Helena Lundberg for giving me the opportunity to do this scientific work at the department of organic chemistry at KTH. It has been a great learning experience and amongst the most enjoyable times I have had during my education. I would also like to thank Kaye Stern, my supervisor from the program, for always taking her time and being such a great support. I would also like to thank Giampiero Proietti and Björn Blomkvist for helping me find my way around the laboratory. Abstract In this project the possibilities of using a metallocene catalyst for an aromatic esterification has been studied. The purpose of this scientific work was to study and develop a method with less environmental impact than the conventional for producing aromatic esters, as well as to minimize the use of hazardous chemicals. This method was then to be optimized for synthesizing an aromatic ester. Benzyl alcohol and benzoic acid were used as model substrates throughout this project. They react to form the ester benzyl benzoate, a reaction that is slow. Several metallocene complexes were therefore tried as catalysts for this aromatic esterification. The reaction was also studied in different solvents and under different conditions, such as under inert atmosphere. High performance liquid chromatography (HPLC) was used to sample and study the results of these experiments, with the use of both an internal standard and reference standard. The catalyst that was found to work best for the esterification was zirconocene triflate. The choice of solvent also greatly affects the formation of ester, with hexane found to have the highest positive influence on the yield. We chose to use toluene instead, since it is less toxic and works for a wider variety of substrates than hexane. Using twice the amount of alcohol compared to the acid was also found to be very effective for increasing the yield. The addition of a small amount of water to the mixture under nitrogen gas showed a positive impact on the yield of benzyl benzoate. The esterification did not only form benzyl benzoate as a product but also formed dibenzyl ether and both 2-benzyl toluene and 4-benzyl toluene. These by-products are formed from the benzyl alcohol and they were identified with both 1H-NMR and 13C-NMR, as well as GC-MS. The optimized reaction conditions were to use twice the amount of alcohol in comparison to the acid, with 2 mol% of zirconocene triflate. Half an equivalent of water is also added to the mixture in this method. Toluene is used as solvent and the reaction is conducted at 80℃, resulting in a 74% yield of benzyl benzoate. Sammanfattning Möjligheten att använda en metallocen som katalysator i en aromatisk förestring har undersökts i detta projekt. Syftet med detta vetenskapliga arbete var att studera och utveckla en metod med mindre miljömässig påverkan än de konventionella metoderna för att producera aromatiska estrar, samt för att minimera användandet av farliga kemikalier. Bensylalkohol och bensoesyra har använts som modellsubstrat i detta projekt. De bildar tillsammans estern bensylbensoat genom en långsam reaktion. Flera metallocenkomplex prövades därför som katalysatorer till denna aromatiska förestring. Reaktionen studerades också i olika lösningsmedel och under olika betingelser, såsom under inert atmosfär. HPLC har använts för att ta prover och för att studera resultaten från dessa experiment, med användandet av både intern standard och referensstandard. Den katalysator som fungerade bäst för förestringen var zirkonocentriflat. Valet av lösningsmedel påverkar starkt bildningen av ester, varvid hexan visade sig att ha störst positiv inverkan på utbytet. Vi valde dock att använda toluen, eftersom det är mindre toxiskt och fungerar för fler substrat än hexan. Att använda dubbelt så mycket alkohol som syra, visade sig att vara väldigt effektivt för att få högre utbyte. Att addera en liten mängd vatten till reaktionsblandningen under kvävgas visade en positiv inverkan på utbytet av bensylbensoat. Det bildades inte bara bensylbensoat i förestringen utan även dibensyleter, samt både 2-bensyltoluen och 4-bensyltoluen. Dessa biprodukter bildas från bensylalkoholen och de identifierades med både 1H-NMR and 13C-NMR, samt GC-MS. De optimerade reaktionsbetingelserna är att använda dubbel mängd alkohol i förhållande till syra, med 2 mol% av zirkonocentriflat. I metoden tillsätts även en halv ekvivalent vatten till blandningen. Toluen används som lösningsmedel och reaktionen sker vid 80℃, med ett utbyte av bensylbensoat på 74%. Table of contents List of abbreviations 1 1. Introduction 2 1.1 Purpose 2 1.2 The aim of the project 2 1.3 Methodology 2 2. Theoretical framework 3 2.1 Organic esters 3 2.1.1 The esterification process 3 2.2 Metallocene catalysts 4 2.3 Green chemistry 5 2.4 Reaction Progress Kinetic Analysis 6 3. Results and discussion 7 3.1 Catalysts 7 3.2 Solvents 8 3.3 The effects of an inert atmosphere and water 8 3.4 Reaction kinetics 9 3.4.1 Reaction progress kinetic analysis 9 3.4.2 Kinetics for reactions with added water under nitrogen gas 13 3.5 Optimized reaction 15 3.6 Identifying the by-products of the esterification 16 3.7 Proposed catalytic mechanism 17 4. Conclusion 19 5. Experimental 20 5.1 Standard procedure 20 5.2 Testing different reaction conditions 21 5.2.1 Catalysts 21 5.2.1.1 Synthesizing the fluorinated complexes. 21 5.2.2 Solvents and temperature 22 5.2.3 Reactions under inert and added water 22 5.3 Kinetic studies 23 5.4 Optimization 23 5.5 Large scale reaction without benzoic acid 24 5.5.1 Separation and identification 24 References 25 Appendix 1. Mass spectra 30 Appendix 2. NMR spectra 27 List of abbreviations THF – Tetrahydrofuran zirconocene triflate – bis(cyclopentadienyl)zirconium(IV) bis(trifluoromethanesulfonate) HPLC – High performance liquid chromatography NMR – Nuclear magnetic resonance GC-MS – Gas chromatography-mass spectrometry Internal standard – abbreviated for the 4,4’-di-tert-butyl-biphenyl Cp – Cyclopentadienyl − OTf – triflate or trifluoromethanesulfonate (CF3SO3 ) − PFBS – Perfluorobutanesulfonate (C4F9SO3 ) − PFHS – Perfluorohexanesulfonate (C6F13SO3 ) 1 1. Introduction The focus of this project was to catalytically synthesize an aromatic ester in an environmentally friendly way. The results from this scientific work could, depending on the outcome, be used by Helena Lundberg in further research within environmentally friendly synthesis. Helena works as a researcher at the Division of Organic Chemistry at the Department of Chemistry at KTH, Royal Institute of Technology. 1.1 Purpose The overall purpose of this project was to study and develop a method for environmentally friendly organic synthesis of aromatic esters, in order to minimize the environmental impact of conventional methods as well as to reduce the use of hazardous chemicals. 1.2 The aim of the project This project aimed to develop and optimize a method for synthesizing aromatic esters using an organometallic catalyst. This was done with respect to environmentally friendly organic synthesis. The kinetics for this catalyzed reaction were studied using High Performance Liquid Chromatography (HPLC), with the end-product also being analyzed with Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS). 1.3 Methodology The project started with a review of relevant scientific literature about aromatic esterification, metallocene catalysts and green chemistry. After gathering a decent amount of information about these subjects the experimental work begun. The first experiments were about testing different catalysts and then subsequentially moving forward by testing different solvents, temperatures and other conditions for the reaction. After developing an understanding for the reaction and the conditions that favor the catalyzed formation of ester, it was time to identify the products in the reaction mixture. This was done by separating the contents of the reaction mixture and analyzing the different compounds with 1H-NMR, 13C-NMR and GC-MS. The gained spectra were then compared with reference spectra to determine the compounds found. 2 2. Theoretical framework 2.1 Organic esters Esters are a group of organic compounds with the formula R1COOR2, as seen in Figure 1. They are usually derived from a carboxylic acid and an alcohol that has undergone a condensation, with the loss of water. Esters are commonly found in nature in the forms of fats, fatty oils, waxes and fruity fragrances. The ones with lower molecular weight are very volatile and often have pleasant scents. With increasing molecular weight, the volatility decreases and the esters start forming waxes or solids. Esters with longer carbon
Recommended publications
  • Part One Interchange of Monohapto- and Pentahaptocyclopentadienyl Rings in Early Transition Metal Metallocene Systems
    PART ONE INTERCHANGE OF MONOHAPTO- AND PENTAHAPTOCYCLOPENTADIENYL RINGS IN EARLY TRANSITION METAL METALLOCENE SYSTEMS PART TWO A NEW ROUTE TO PREPARING POLYMER-ATTACHED METALLOCENE DERIVATIVES PART THREE GYGLOPENTADIENYL LIGAND EXCHANGE REACTIONS IN SELECTED SYSTEMS Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY , JOHN GOO-SHUH LE ‘2," 5, 1977 .I:\‘.' . 4| 41 IfIIIIsE:_1~.e;!cI—:;*:. -;I. um . HI u-‘\‘ ———w‘ 9471“) dcifi'ségé'dfiéIIWNxI:.‘vzv‘5“: LIBRARY II. Ecliigan Stan) University This is to certify that the thesis entitled (1) INTEROHANOE OF MONOHAPTO- AND PENTAHAPTO CYCLORENTADIENYL RINGS IN SOME EARLY TRANSITION METAL METALLOCENE SYSTEMS (2) A NEw ROUTE TO PREPARING POLYMER-ATTACHED METALLOCENE DERIVATIVES (3) CYCLOPENTADIENYL BRggNQ1§¥CHANGE REACTIONS IN SELECTED SYSTEMS John Guo-shuh Lee has been accepted towards fulfillment of the requirements for Ph. D. CHEMISTRY degree m Major professor Date 5190’?) 0-7 639 ABSTRACT PART ONE INTERCHANGE OF MONOHAPTO- AND PENTAHAPTOCYCLOPENTADIENYL RINGS IN SOME EARLY TRANSITION METAL METALLOCENE SYSTEMS PART TWO A NEW ROUTE TO PREPARING POLYMER-ATTACHED METALLOCENE DERIVATIVES PART THREE CYCLOPENTADIENYL LIGAND EXCHANGE REACTIONS IN SELECTED SYSTEMS BY John Guo—shuh Lee PART ONE PMR and mass spectral analysis have been used to study the inter- change of pentahapto-bonded cyclopentadienyl rings with monohapto-bonded cyclopentadienyl rings in the compounds (CSHS)4M (M - Ti, Zr, Hf, Nb, Ta, Mo, and W) and (C5H5)3V or monohapto-bonded benzylcyclopentadienyl rings in the compounds (C6H5CH205H4)(CSHS)2MC1 (M - Ti, Zr, Hf, Nb, Ta, Mo, and W). As soon as the CpaM (or CpBMCI) species are generated (in- dicated by a color change), the exchange occurs and the equilibrium is established.
    [Show full text]
  • Syntheses, Crystal Structures and Enantioseparation 2
    ansa-Metallocene derivatives XXXIX 1 Biphenyl-bridged metallocene complexes of titanium, zirconium, and vanadium: syntheses, crystal structures and enantioseparation 2 Monika E. Huttenloch, Birgit Dorer, Ursula Rief, Marc-Heinrich Prosenc, Katrin Schmidt, Hans H. Brintzinger * Fakultiitfiir Chemie. UniL'ersitiit KOl1stanz. Each M737. D-78457 Konstanz. Germany Abstract Chiral, biphenyl-bridged metallocene complexes of general type biph(3,4-R2CsH2)2MCI2 (biph = 1,1'-biphenyldiyI) were synthesized and characterized. For the dimethyl-substituted titanocenes and zirconocenes (R CH 3; M Ti, Zr). preparations with increafed overall yields and an optical resolution method were developed. The bis(2-tetrahydroindenyI) complexes (R,R = (CH2)4; M = Ti, Zr) were obtained by an alternative synthetic route and characterized with regard to their crystal structures. Syntheses of the phenyl-substituted derivatives (R C 6 H 5; M Ti, Zr) and of a chiral, methyl-substituted vanadocene complex (R CH 3; M V) are also reported. Keywords: Titanium; Zirconium; Vanadium; Metallocene; Enantioseparation 1. Introduction Me2Si(2-SiMe14-IBuCsH)2-metallocenes of Y, Sc, Ti, and Zr [10]. Jordan and coworkers recently developed a Ever since meso and racemic ansa-titanocene iso­ powerful method for the syntheses of rac-C 2 H i l-inde­ mers were first characterized by Huttner and coworkers nyl)2 Zr(NMez)2 and rac-SiMe2(I -indenyI)2 Zr(NMe 2)2 [1], the formation of these diastereomers and their sepa­ in high yields, which is based on equilibration of rac ration has been a continuing challenge in metallocene and meso products by the amine eliminated in the chemistry (for a review see Ref.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,637,573 B2 Hlavinka Et Al
    US009637573B2 (12) United States Patent (10) Patent No.: US 9,637,573 B2 Hlavinka et al. (45) Date of Patent: *May 2, 2017 (54) POLYMER COMPOSITIONS AND METHODS (58) Field of Classification Search OF MAKING AND USING SAME CPC ................ C08F 210/16; C08F 2500/05; C08F 2500/07; C08L 2203/18 (71) Applicant: Chevron Phillips Chemical Company See application file for complete search history. LP, The Woodlands, TX (US) (56) References Cited (72) Inventors: Mark L. Hlavinka, Bartlesville, OK (US); Qing Yang, Bartlesville, OK U.S. PATENT DOCUMENTS (US); William B. Beaulieu, Tulsa, OK 3,161,629 A 12/1964 Gorsich (US); Paul J. Deslauriers, Owasso, OK 3,242,099 A 3/1966 Manyik et al. (US) (Continued) (73) Assignee: Chevron Phillips Chemical Company FOREIGN PATENT DOCUMENTS LP, The Woodlands, TX (US) CN 103.01.2196. A 4/2013 (*) Notice: Subject to any disclaimer, the term of this DE 1959322 A1 7, 1971 patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. This patent is Subject to a terminal dis OTHER PUBLICATIONS claimer. Alt, Helmut G. et al., “ansa-Metallocenkomplexe des Typs (C13H8-SiR2-C9H6 nR'n)ZrC12 (n=0, 1: R=Me, Ph. Alkenyl: (21) Appl. No.: 15/051,173 R=Alkyl, Alkenyl): Selbstimmobilisierende Katalysatorvorstufen für die Ethylenpolymerisation.” Journal of Organometallic Chem (22) Filed: Feb. 23, 2016 istry, 1998, pp. 229-253, vol. 562, Elsevier Science S.A. (65) Prior Publication Data (Continued) US 2016/O16829O A1 Jun. 16, 2016 Primary Examiner — Rip A Lee (74) Attorney, Agent, or Firm — Conley Rose, P.C.; Related U.S.
    [Show full text]
  • Organophosphorus Compounds Cat
    Tel: +7 (8312) 753772 Full Product List Fax: +7 (8312) 750799 January, 2013 www.dalchem.com Organophosphorus compounds Cat. # CAS # Product Name Structure Phospholane Ligands 0263450 147762-89-8 1,1'-Bis[(2R,5R)-2,5-diethyl-1-phospholanyl]ferrocene, 97% new R,R-Et-Ferrocelane 0263400 436863-50-2 1,1'-Bis[(2S,5S)-2,5-diethyl-1-phospholanyl]ferrocene, 98% new S,S-Et-Ferrocelane 0263300 540475-45-4 (+)-1,1'-Bis[(2R,5R)-2,5-dimethylphospholano]ferrocene, 97% new R,R-Me-Ferrocelane 0263350 162412-87-5 (-)-1,1'-Bis[(2S,5S)-2,5-dimethylphospholano]ferrocene, 98% new S,S-Me-Ferrocelane 0263500 849950-54-5 1,1'-Bis[(2R,5R)-2,5-di-i-propyl-1-phospholanyl]ferrocene, 98% new 0157669 136705-64-1 (-)-1,2-Bis-[(2R,5R)-2,5-diethylphospholano]benzene, 97% new R,R-Et-Duphos 0157670 136779-28-7 (+)-1,2-Bis-[(2S,5S)-2,5-diethylphospholano]benzene, 98% new S,S-Et-Duphos 0157657 147253-67-6 (-)-1,2-Bis-[(2R,5R)-2,5-dimethylphospholano]benzene, 98% new R,R-Me-Duphos 0157658 136735-95-0 (+)-1,2-Bis-[(2S,5S)-2,5-dimethylphospholano]benzene, 98% new S,S-Me-Duphos 0157672 136779-27-6 (-)-1,2-Bis[(2S,5S)-2,5-diethylphospholano]ethane, 97% new S,S-Et-BPE 0157671 136705-62-9 (+)-1,2-Bis[(2R,5R)-2,5-diethylphospholano]ethane, 98% new R,R-Et-BPE 0157663 129648-07-3 (+)-1,2-Bis[(2R,5R)-2,5-dimethylphospholano]ethane, 97% new R,R-Me-BPE 0157664 136779-26-5 (-)-1,2-Bis[(2S,5S)-2,5-dimethylphospholano]ethane, 97% new S,S-Me-BPE Binaphthyl Phosphine Ligands 0155250 137219-86-4 (R)-(+)-2,2'-Bis(di-(3,5-dimethylphenyl)phosphino)-1,1'-binaphthyl, 98% (R)-Xylyl-BINAP 0155300
    [Show full text]
  • List of Publications by Ei-Ichi Negishi
    HETEROCYCLES, Vol. 86, No. 1, 2012 11 HETEROCYCLES, Vol. 86, No. 1, 2012, pp. 11 - 67. © 2012 The Japan Institute of Heterocyclic Chemistry DOI: 10.3987/COM-12-S(N)Publications LIST OF PUBLICATIONS BY EI-ICHI NEGISHI December, 2011 1. Basic Cleavages of Arylsulfonamides. E. Negishi and A. R. Day, J. Org. Chem., 1965, 30, 43-48. 2. The Carbonylation of Thexyldialkylboranes. A New General Synthesis of Ketones. H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1967, 89, 5285-5287. 3. Carbonylation of the Organoboranes from the Cyclic Hydroboration of Dienes with Thexylborane. A Simple Procedure the Conversion of Dienes into Cyclic Ketones. H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1967, 89, 5477-5478. 4. Carbonylation of Perhydro-9b-boraphenalene to Form Perhydro-9b-phenalenol. A New General Synthesis of Polycyclic Derivatives. H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1967, 89, 5478-5480. 5. A General Stereospecific Annelation for the Synthesis of trans-Fused Polycyclic Ketones via Hydroboration-Carbonylation H. C. Brown and E. Negishi, Chem. Commun., 1968, 594-595. 6. Conversion of Linear Trienes into Bicyclic Boranes via Hydroboration-Isomerization and Their Carbonylation. A Simple Synthesis of Angularly Substituted Bicyclic Alcohols H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1969, 91, 1224-1226. 7. Reaction of Cyclic Organoboranes from Dienes with Methyl Vinyl Ketone. A Convenient Synthesis of !-Hydroxy-ketones from Dienes via Hydroboration. A. Suzuki, S. Nozawa M. Itoh, H. C. Brown, E. Negishi, and S. K. Gupta, Chem. Commun., 1969, 1009-1010. 8. Organoboranes. IX. Structure of the Organoboranes Formed in the Reaction of 1,3-Butadiene and � 12 HETEROCYCLES, Vol.
    [Show full text]
  • Willcox, Darren (2014) Novel Organoalanes in Organic Synthesis
    Novel Organoalanes in Organic Synthesis and Mechanistic Insight in Conjugate Addition DARREN WILLCOX, MSci Thesis submitted to the University of Nottingham for the degree of doctor of Philosophy March 2014 Abstract This thesis describes the development of novel aluminium hydrides (HAlCl2•Ln) and organoalanes (Cl2AlCH=CHR and ClMeAlCH=CHR) for organic synthesis, as well as exploring the mechanism by which copper-catalysed conjugate addition proceed with diethylzinc and triethylaluminium. In Chapter 1, the mechanism of copper-catalysed conjugate addition of diethylzinc to cyclohexenone and nickel- catalysed 1,2-addition of trimethylaluminium to benzaldehyde has been studied. The kinetic behaviour of the systems allows insight into which metal to ligand ratio provides the fastest rest state structure of the catalyst to enter the rate determining step. The ligand order in these reactions (derived from these ligand optimisation plots) provides information about the molecularity within the transition state. In Chapter 2, the synthesis of somewhat air-stabilised aluminium hydrides and their subsequent use in palladium- catalysed cross-coupling is described. Stabilised aluminium t i hydrides of the type HAlCl2•Ln, [HAl(O Bu)2] and [HAl(N Bu2)]2 were synthesised. The hydroalumination of terminal alkynes was optimal using bis(pentamethylcyclopentdienyl) zirconocene dichloride, resulting in a highly regio- and stereo- 2 chemical synthesis of alkenylalanes which undergo highly efficient palladium-catalysed cross-coupling with a wide range of sp2-electrophiles. Chapter 3, describes conjugate addition chemistry of ClXAlCH=CHR (X = Cl or Me) under phosphoramidite/ copper(I) conditions (X = Me). Highly enantioselective additions to cyclohexenones (89-98+% ee) were attained. A highly efficient racemic addition of the alkenylalanes (X = Cl) to alkylidene malonates occurs without catalysis.
    [Show full text]
  • Part Two Photochemical Reactions of Bis(Cyclopentadienyl)
    PART ONE PHOTOLYTIC CYCLOPENTADIENYL LIGAND EXCHANGE BETWEEN BIS (CYCLOPENTADIENYL) ZIRCONIUM DICHLORIDE AND ‘ITS ANALOG SYSTEM PART TWO PHOTOCHEMICAL REACTIONS OF BIS (CYCLOPENTADIENYL) DIPHENYL TITANIUM (N) Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY MIEN HSIAO PENG 1976 ABSTRACT PART ONE PHOTOLYTIC CYCLOPENTADIENYL LIGAND EXCHANGE BETWEEN BIS(CYCLOPENTADIENYL)ZIRCONIUM DICHLORIDE AND ITS ANALOG SYSTEMS PART TWO ‘ PHOTOCHEMICAL REACTIONS OF BIS(CYCLOPENTADIENYL)DIPHENYL TITANIUM(IV) By Mien Hsiao Peng PART ONE Irradiation of the mixture of zirconocene dichloride and (0-10)- zirconocene dichloride in benzene solution leads to the exchange of cyclopentadienyl ligands under conditions of constant incident light intensity. A 450 watt meadium pressure mercury-vapor lamp, Hanovia #679 A 0360, was used as the light source which emitted 313 nm light by through the filter solution cells. The lamp and filter cells were mounted inside a merry-go-round rotator. The photolytic formation of (D-S)-zirconocene dichloride was detected by mass spectrometry. A quantum yield for the ligand exchange of 0.02l mol/Ei was calculated by using the McKay analysis based on mass spectrographic data within suitable irradiation time. The equilibrium constant was 2.8. Zirconocene dichloride was found to exchange cyclopentadienyl ligand photolytically with bis(methylcyclopentadienyl)zirconium di- chloride with the constant for approach to equilibrium 2.3. PART TWO Photolysis of diphenyl titanocene, resulting in loss of phenyl ligands. is a generally useful approach to the generation of coordi- natively unsaturated complex species. The low temperature nuclear magnetic resonance method was employed to investigate the transient titanocene. The course of photoreaction was followed by using the electron paramagnetic resonance method at low temperature and room temperature.
    [Show full text]
  • Organotitanium-Aluminum Promoted Carbometalations of Alkynols: Substituent Effects
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2008 Organotitanium-Aluminum Promoted Carbometalations of Alkynols: Substituent Effects Nikola A. Nikolic College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Inorganic Chemistry Commons, and the Organic Chemistry Commons Recommended Citation Nikolic, Nikola A., "Organotitanium-Aluminum Promoted Carbometalations of Alkynols: Substituent Effects" (2008). Dissertations, Theses, and Masters Projects. Paper 1539626876. https://dx.doi.org/doi:10.21220/s2-jn77-gm95 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ORGANOTITANIUM-ALUMINUM PROMOTED CARBOMETALATIONS OF ALKYNOLS: SUBSTITUENT EFFECTS Nikola A. Nikolic Princeton, New Jersey Bachelor of Science, College of William and Mary in Virginia, 1986 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Department of Chemistry The College of William and Mary May 2008 APPROVAL PAGE This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Nikola A. Nikolic Approved by the Committee, January 2008 Committee Chair Professor David W. Thompson College of William and Mary Professor ©riristophrer JVAbelt College of William Mary Professor Randolph A. Coleman College of William and Mary TABLE OF CONTENTS DEDICATION...:................................................................... v ACKNOWLEGDEMENTS. .......... vi LIST OF TABLES..................................................................................................vii LIST OF FIGURES.......................................................
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fix)m the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fiice, while others may be fix>m any type of conqxuter printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affisct reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., nuqrs, drawings, charts) are reproduced by sectioning the original, b%inning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the origiiuil manuscript have been reproduced xerographically in this copy. Ifigher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations spearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE SYNTHESIS OF GROUP IV METALLOCENE DICHLORIDES WITH VARIABLE STERICS, CONFORMATIONAL MOBILITY AND GEOMETRIC SHAPES A Dissataüon SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY By DAVID COMBS Norman, Oklahoma 1997 UMI Number: 9817711 UMI Microfonn 9817711 Copyright 1998, by UMI Company.
    [Show full text]
  • Aluminium Hydrides and Borohydrides
    ALUMINIUM HYDRIDES AND BOROHYDRIDES www.acros.com Contents 1 - Introduction . 1 2 - Synthesis and Properties . 2 3 - Chemistry . 5 3.1 Alkylaluminium compounds as Ziegler-Natta co-catalysts . 5 3.2 Complex aluminium hydrides and borohydrides as reducing agents . 7 3.3 The parent compounds lithium aluminium hydride and sodium borohydride . 8 3.3.1. Lithium aluminium hydride. 8 3.3.2. Sodium borohydride and Sodium borodeuteride . 12 3.4 Tuning of the reactivity by different substituents: Derivatives with different sterical and electronical properties . 16 3.5 Modified borohydrides . 17 3.5.1. Lithium borohydride . 17 3.5.2. Potassium borohydride . 18 3.5.3. Tetraalkylammonium- and tetraalkylphosphonium borohydrides . 18 3.5.4. Calcium borohydride . 19 3.5.5. Sodium cyanoborohydride . 19 3.5.6. Sodium triacetoxyborohydride . 22 3.5.7. Tetramethylammonium triacetoxyborohydride (NEW: AO 39285) . 23 3.6 Alkoholate modified aluminium hydrides . 25 3.6.1. Lithium triethoxyaluminium hydride . 25 3.6.2. Lithium tri-tert-butoxyaluminohydride . 25 3.6.3 Sodium bis(2-methoxyethoxy)aluminiumhydride (“SMEAH”) . 25 3.7 Alkylsubstituted borohydrides . 26 3.7.1. Triethylborohydrides . 26 3.7.2. Tri sec-butylborohydrides and trisamylborohydrides . 29 3.7.3. Lithium trisamylborohydride . 30 3.8. Alkylsubstituted aluminiumhydrides . 30 Index . 36 1 - Introduction The importance of organo-boron and organo-aluminium compounds for science and technology has resulted in three Nobel-prizes for Herbert C. Brown for his work on hydroboration1, for Giulio 1Natta
    [Show full text]
  • [Alpha] Farnesene
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. i THE OXIDATION OF a-FARNESENE A thesis presentedin partial fulfilmentof therequirements for thedegree of DOCTOR OFPHILOS OPHY IN CHEMISTRY at Massey University JulieAnn Spicer December 1994 n ACKNOWLEDGEMENTS First and foremost, I would like to thank my supervisors; MargaretBrimble, for her Dr. expertise and enthusiasm, Daryl Rowan, for his wealth of ideas and encouragement, Dr� and Professor Andrew Brodie, both for taking me on at what was a difficult stage and his help in subsequent months. Thanks to Dr. John Shaw and Peter Reay of the Horticulture and Food Research Dr. Institute, for providing the funding.which enabled this work to be carried out and to the staffof the institute who carried out the apple work; also to Mr. Simon Fielder who has always been extremely helpful, both with ideas and material, especially when I was just gettingstarted. 3 Thanks must also go to Mr. John Hastie for the lH and 1 C nmr work, Dr. Ken Jolley for help with some of the 2-D and HerbertWong of Industrial Research Limited nmr Dr. for the 19F nmr. Mass spectral analysis was carried out by Mr. John Alien and Mr. MartinHunt of HortResearch. I would also like to thank my good friend Michael Edmonds for his support and encouragement when things got difficult; life would have been much tougher without him.Lastly, I would like to thank my parents for helping me to believe that if I tried hard enough, I could achieve anything that I set my mind to.
    [Show full text]
  • Determination and Evaluation of Electrical Properties Of
    DETERMINATION AND EVALUATION OF ELECTRICAL PROPERTIES OF METAL-CONTAINING CONDENSATION POLYMERS by Amitabh J. Battin A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL August 2009 Copyright by Amitabh Battin 2009 ii ACKNOWLEDGEMENTS I would sincerely like to express my appreciation and gratitude to my dissertation advisor Dr. Ramaswamy Narayanan for his constructive criticism, support and guidance which created a positive impact on my scientific career. As my mentor, he always encouraged me to think like a research scientist and helped me in moving forward in my life. I would like to express special thanks to my committee members (Dr. Charles Carraher, Dr. Cyril Párkányi and Dr. Guodong Sui) for investing their valuable time and efforts, support and guiding my through my doctoral program. I thank my colleagues, faculty and staff from the chemistry department for their utmost support and assistance. My special acknowledgments to Dr. Jayarama Perumareddi, Dr. Patricia Snyder and Dr. Predrag Cudic for their valuable input in my research projects. I am thankful to the professors from the physics department Dr. Fernando Medina and Dr. Andy Lau for their advice and guidance in my research projects. My special appreciation to Dr. Rajendra Gupta, Dr. Abhijit Pandya, President Brogan and all the administration of Florida Atlantic University for their assistance and support. iv ABSTRACT Author : Amitabh Battin Title: Determination and Evaluation of Electrical Properties of Metal-Containing Condensation polymers Institution: Florida Atlantic University Dissertation Advisor: Dr.
    [Show full text]