Reactions of Modified Silica Gel Surfaces with Organometallic Compounds: Enhancing Olefin Op Lymerization Catalysts" (1998)

Total Page:16

File Type:pdf, Size:1020Kb

Reactions of Modified Silica Gel Surfaces with Organometallic Compounds: Enhancing Olefin Op Lymerization Catalysts Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1998 Reactions of Modified iS lica Gel Surfaces with Organometallic Compounds: Enhancing Olefin Polymerization Catalysts Richard E. Diebel III Eastern Illinois University This research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program. Recommended Citation Diebel, Richard E. III, "Reactions of Modified Silica Gel Surfaces with Organometallic Compounds: Enhancing Olefin oP lymerization Catalysts" (1998). Masters Theses. 1740. https://thekeep.eiu.edu/theses/1740 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates (who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is receiving a number of request from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow these to be copied . PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university or the purpose of copying it for inclusion in that institution's library or research holdings. - Author's Signature Date I respectfully request Booth Library of Eastern Illinois University NOT allow my thesis to be reproduced because: Author's Signature Date lhesis4.form Reactions of Modified Silica gel Surfaces with Organometallic Compounds: Enhancing Olefin (TITLE) Polymerization Catalysts BY Richard E. Diebel III THESIS SUBMITIED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Chemistry IN THE GRADUATE SCHOOL, EASTERN ILUNOIS UNIVERSITY CHARLESTON. ILLINOIS 1998 YEAR I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE DATE ADVISER 12/<{(q f DATE 19iPARTMENT HEAD Reactions of Modified Silica Gel Surfaces with Organometallic Compounds: Enhancing Olefin Polymerization Catalysts By: Richard E. Diebel III Advisor: Dr. Jonathan P. Blitz Date Submitted: Sept. 14, 1998 Approved by the thesis committee: Dr. J~nathan P. Blit~ Date F I Dr. Carol A. Deag¥ne Date Dr. Mark E. McGuire Date rlat Reactions of Modified Silica Gel Surfaces with Organometallic Compounds: Enhancing Olefin Polymerization Catalysts Richard E. Diebel III ABSTRACT Pretreated silica gels with distinct silica surfaces containing either isolated silanols, vicinal silanols, siloxanes, or some combinations of the three, were reacted with several organometallic compounds to determine how each compound reacted with the different silica surface species. The organometallic compounds used were trimethylaluminum, triethylaluminum, diethylaluminum chloride, ethylaluminum dichloride, methylaluminoxane, dibutylmagnesium, and bis-cyclopentadienyl dimethyl zirconium. These reacted silica gels were analyzed usmg diffuse reflectance infrared Fourier transform spectroscopy and ICP-AES elemental analysis. CH/Metal ratios were calculated using specific peaks in the IR spectra to elucidate the surface bonded species. Elemental analysis was used to determine how much metal was bonded to each silica gel surface. Elemental analysis showed that under the conditions studied all of the compounds had reactivities with respect to the four silica gel surfaces following the order of bare silica > 600°C silica > HMDS silica > 600°C/HMDS silica. All of the compounds, with the exception of dimethylzirconocene (which only reacts appreciably with isolated silanols), react with both isolated and vicinal silanols, and appear to react significantly with the siloxane groups. Based on CH/Metal ratios, all compounds are believed to react with isolated silanols forming singly bonded surface structures. Most of the compounds also appear to form bridged surface species after reaction with vicinal silanols. EADC, however, is believed to react with each silanol in a hydrogen bonded silanol pair, yielding two dichloroaluminum surface groups. Most of the compounds also seem to react appreciably with siloxanes, resulting in siloxane bond cleavage. The theoretical CH/Metal ratios for each compound were calculated to follow the order of 600°C/HMDS silica > 600°C silica > bare silica > HMDS silica. There were some differences between the theoretical and experimental ratio orders but, in most cases they were comparable. ii ACKNOWLEDGEMENTS I would like to give heartfelt thanks to my lovely wife Michelle, for her endless love and support. She made it all worthwhile as well as possible. Special thanks also to my morn, dad, and brother. They instilled in me the values and tools necessary to succeed in life. May everyone be so lucky. Special thanks also to my mentor and friend, Dr. Jon Blitz, for sharing his knowledge and advice and putting up with my endless questions. His guidance during my research made me a better chemist. I would also like to express gratitude to the students and chemistry department faculty of Eastern Illinois University. They are the reason I chose EIU to pursue a chemistry degree. It was one of my better decisions and time well spent. Finally, I would like to thank the Petrochemical Research Fund and Equistar Inc. (special thanks to Craig Meverden) for their help in supporting this research. iii TABLE OF CONTENTS Abstract ................................................ ............................ i Acknowledgements ........................................................... .iii Table of Contents .............................. ... ... ... ... .................... iv List of Tables ................................................................... vi List of Figures ............................................................ ..... vii Chapter I: Introduction and Background ................................ 1 1.1 Introduction ............................................................. 1 1.2 The Silica Gel Surface ............................................... 1 1.3 Pretreatment of Silica Gels ........................... .............. 3 1.4 Infrared Analysis of the Silica Surface ......................... 5 1.5 Diffuse Reflectance Technique .................................... 6 1.6 Polymerization Catalysts .. .. .. .. ......... ... .................... 8 1.6. l Ziegler-Natta Catalysts ................................... 9 1.6.2 Metallocene Catalysts ................................... 10 Chapter II: Experimental Section .............................. ......... 12 2.1 Materials ............................................................... 12 2.2 Instrumentation ....................................................... 13 2.3 Synthesis ............ ................................................... 14 Chapter III: Results and Discussion .................................... 16 3.1 Dibutylmagnesium ................................................... 16 3 .1.1 CH/Mg Ratios for D ibutylmagnesium ................ 18 iv 3 .1.2 The Siloxane Reaction ..................... .............. 22 3 .2 Organoaluminum Compounds ..................................... 23 3.2.1 Trimethylaluminum ....................................... 25 3.2.2 TEAL, DEAC, and EADC ........................... .... 27 3.2.3 CH/Al Ratios for TEAL, DEAC, and EADC ....... 29 3 .2.4 Surface Species of the TMA/ Silica Reaction ...... 36 3 .3 Metallocene Dichlorides ................................. .. ....... 38 3.4 Dimethylzirconocene ...... ...... .................................... 38 Chapter IV: Conclusions ...... ............................................ .41 References ...................................................................... 43 v LIST OF TABLES Table 1 ...... .................. ... ...... ... .... ... ... ... .... Reaction Specifications Table 2 ...... ...... .................. .. .. .. .......... ........... Elemental Analysis Table 3 ..................... ............ ......... ... .... .. ...... .. ... CH/Metal Ratios Table 4 ... .................. .......... ... Elemental Analysis for Metallocenes vi LIST OF FIGURES Figure 1 ...... ... ............ ............................... Silica Surface Structures Figure 2 .................................................... Modified Silica Surfaces Figure 3 .................................... .. ... Dehydration vs. Dehydroxylation Figure 4 ...................................................................... Bare Silica Figure 5 ...... .............................................................. 600°C Silica Figure 6 ....................................... ............................ HMDS Silica Figure 7 .......................................................... 600°C/HMDS Silica Figure 8 ................................................. DBM Modified Bare Silica Figure 9 ............................................... DBM Modified 600°C Silica Figure 10 ............................................. DBM Modified HMDS Silica Figure 11. .................................. DBM Modified 600°C/HMDS Silica Figure 12 ................... ................... Titanium Tetrachloride Reactions Figure 13 ...................... ................ ...... Dibutylmagnesium Reactions Figure 14 .................................. TMA (Hexane)
Recommended publications
  • Part One Interchange of Monohapto- and Pentahaptocyclopentadienyl Rings in Early Transition Metal Metallocene Systems
    PART ONE INTERCHANGE OF MONOHAPTO- AND PENTAHAPTOCYCLOPENTADIENYL RINGS IN EARLY TRANSITION METAL METALLOCENE SYSTEMS PART TWO A NEW ROUTE TO PREPARING POLYMER-ATTACHED METALLOCENE DERIVATIVES PART THREE GYGLOPENTADIENYL LIGAND EXCHANGE REACTIONS IN SELECTED SYSTEMS Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY , JOHN GOO-SHUH LE ‘2," 5, 1977 .I:\‘.' . 4| 41 IfIIIIsE:_1~.e;!cI—:;*:. -;I. um . HI u-‘\‘ ———w‘ 9471“) dcifi'ségé'dfiéIIWNxI:.‘vzv‘5“: LIBRARY II. Ecliigan Stan) University This is to certify that the thesis entitled (1) INTEROHANOE OF MONOHAPTO- AND PENTAHAPTO CYCLORENTADIENYL RINGS IN SOME EARLY TRANSITION METAL METALLOCENE SYSTEMS (2) A NEw ROUTE TO PREPARING POLYMER-ATTACHED METALLOCENE DERIVATIVES (3) CYCLOPENTADIENYL BRggNQ1§¥CHANGE REACTIONS IN SELECTED SYSTEMS John Guo-shuh Lee has been accepted towards fulfillment of the requirements for Ph. D. CHEMISTRY degree m Major professor Date 5190’?) 0-7 639 ABSTRACT PART ONE INTERCHANGE OF MONOHAPTO- AND PENTAHAPTOCYCLOPENTADIENYL RINGS IN SOME EARLY TRANSITION METAL METALLOCENE SYSTEMS PART TWO A NEW ROUTE TO PREPARING POLYMER-ATTACHED METALLOCENE DERIVATIVES PART THREE CYCLOPENTADIENYL LIGAND EXCHANGE REACTIONS IN SELECTED SYSTEMS BY John Guo—shuh Lee PART ONE PMR and mass spectral analysis have been used to study the inter- change of pentahapto-bonded cyclopentadienyl rings with monohapto-bonded cyclopentadienyl rings in the compounds (CSHS)4M (M - Ti, Zr, Hf, Nb, Ta, Mo, and W) and (C5H5)3V or monohapto-bonded benzylcyclopentadienyl rings in the compounds (C6H5CH205H4)(CSHS)2MC1 (M - Ti, Zr, Hf, Nb, Ta, Mo, and W). As soon as the CpaM (or CpBMCI) species are generated (in- dicated by a color change), the exchange occurs and the equilibrium is established.
    [Show full text]
  • Syntheses, Crystal Structures and Enantioseparation 2
    ansa-Metallocene derivatives XXXIX 1 Biphenyl-bridged metallocene complexes of titanium, zirconium, and vanadium: syntheses, crystal structures and enantioseparation 2 Monika E. Huttenloch, Birgit Dorer, Ursula Rief, Marc-Heinrich Prosenc, Katrin Schmidt, Hans H. Brintzinger * Fakultiitfiir Chemie. UniL'ersitiit KOl1stanz. Each M737. D-78457 Konstanz. Germany Abstract Chiral, biphenyl-bridged metallocene complexes of general type biph(3,4-R2CsH2)2MCI2 (biph = 1,1'-biphenyldiyI) were synthesized and characterized. For the dimethyl-substituted titanocenes and zirconocenes (R CH 3; M Ti, Zr). preparations with increafed overall yields and an optical resolution method were developed. The bis(2-tetrahydroindenyI) complexes (R,R = (CH2)4; M = Ti, Zr) were obtained by an alternative synthetic route and characterized with regard to their crystal structures. Syntheses of the phenyl-substituted derivatives (R C 6 H 5; M Ti, Zr) and of a chiral, methyl-substituted vanadocene complex (R CH 3; M V) are also reported. Keywords: Titanium; Zirconium; Vanadium; Metallocene; Enantioseparation 1. Introduction Me2Si(2-SiMe14-IBuCsH)2-metallocenes of Y, Sc, Ti, and Zr [10]. Jordan and coworkers recently developed a Ever since meso and racemic ansa-titanocene iso­ powerful method for the syntheses of rac-C 2 H i l-inde­ mers were first characterized by Huttner and coworkers nyl)2 Zr(NMez)2 and rac-SiMe2(I -indenyI)2 Zr(NMe 2)2 [1], the formation of these diastereomers and their sepa­ in high yields, which is based on equilibration of rac ration has been a continuing challenge in metallocene and meso products by the amine eliminated in the chemistry (for a review see Ref.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,637,573 B2 Hlavinka Et Al
    US009637573B2 (12) United States Patent (10) Patent No.: US 9,637,573 B2 Hlavinka et al. (45) Date of Patent: *May 2, 2017 (54) POLYMER COMPOSITIONS AND METHODS (58) Field of Classification Search OF MAKING AND USING SAME CPC ................ C08F 210/16; C08F 2500/05; C08F 2500/07; C08L 2203/18 (71) Applicant: Chevron Phillips Chemical Company See application file for complete search history. LP, The Woodlands, TX (US) (56) References Cited (72) Inventors: Mark L. Hlavinka, Bartlesville, OK (US); Qing Yang, Bartlesville, OK U.S. PATENT DOCUMENTS (US); William B. Beaulieu, Tulsa, OK 3,161,629 A 12/1964 Gorsich (US); Paul J. Deslauriers, Owasso, OK 3,242,099 A 3/1966 Manyik et al. (US) (Continued) (73) Assignee: Chevron Phillips Chemical Company FOREIGN PATENT DOCUMENTS LP, The Woodlands, TX (US) CN 103.01.2196. A 4/2013 (*) Notice: Subject to any disclaimer, the term of this DE 1959322 A1 7, 1971 patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. This patent is Subject to a terminal dis OTHER PUBLICATIONS claimer. Alt, Helmut G. et al., “ansa-Metallocenkomplexe des Typs (C13H8-SiR2-C9H6 nR'n)ZrC12 (n=0, 1: R=Me, Ph. Alkenyl: (21) Appl. No.: 15/051,173 R=Alkyl, Alkenyl): Selbstimmobilisierende Katalysatorvorstufen für die Ethylenpolymerisation.” Journal of Organometallic Chem (22) Filed: Feb. 23, 2016 istry, 1998, pp. 229-253, vol. 562, Elsevier Science S.A. (65) Prior Publication Data (Continued) US 2016/O16829O A1 Jun. 16, 2016 Primary Examiner — Rip A Lee (74) Attorney, Agent, or Firm — Conley Rose, P.C.; Related U.S.
    [Show full text]
  • Organophosphorus Compounds Cat
    Tel: +7 (8312) 753772 Full Product List Fax: +7 (8312) 750799 January, 2013 www.dalchem.com Organophosphorus compounds Cat. # CAS # Product Name Structure Phospholane Ligands 0263450 147762-89-8 1,1'-Bis[(2R,5R)-2,5-diethyl-1-phospholanyl]ferrocene, 97% new R,R-Et-Ferrocelane 0263400 436863-50-2 1,1'-Bis[(2S,5S)-2,5-diethyl-1-phospholanyl]ferrocene, 98% new S,S-Et-Ferrocelane 0263300 540475-45-4 (+)-1,1'-Bis[(2R,5R)-2,5-dimethylphospholano]ferrocene, 97% new R,R-Me-Ferrocelane 0263350 162412-87-5 (-)-1,1'-Bis[(2S,5S)-2,5-dimethylphospholano]ferrocene, 98% new S,S-Me-Ferrocelane 0263500 849950-54-5 1,1'-Bis[(2R,5R)-2,5-di-i-propyl-1-phospholanyl]ferrocene, 98% new 0157669 136705-64-1 (-)-1,2-Bis-[(2R,5R)-2,5-diethylphospholano]benzene, 97% new R,R-Et-Duphos 0157670 136779-28-7 (+)-1,2-Bis-[(2S,5S)-2,5-diethylphospholano]benzene, 98% new S,S-Et-Duphos 0157657 147253-67-6 (-)-1,2-Bis-[(2R,5R)-2,5-dimethylphospholano]benzene, 98% new R,R-Me-Duphos 0157658 136735-95-0 (+)-1,2-Bis-[(2S,5S)-2,5-dimethylphospholano]benzene, 98% new S,S-Me-Duphos 0157672 136779-27-6 (-)-1,2-Bis[(2S,5S)-2,5-diethylphospholano]ethane, 97% new S,S-Et-BPE 0157671 136705-62-9 (+)-1,2-Bis[(2R,5R)-2,5-diethylphospholano]ethane, 98% new R,R-Et-BPE 0157663 129648-07-3 (+)-1,2-Bis[(2R,5R)-2,5-dimethylphospholano]ethane, 97% new R,R-Me-BPE 0157664 136779-26-5 (-)-1,2-Bis[(2S,5S)-2,5-dimethylphospholano]ethane, 97% new S,S-Me-BPE Binaphthyl Phosphine Ligands 0155250 137219-86-4 (R)-(+)-2,2'-Bis(di-(3,5-dimethylphenyl)phosphino)-1,1'-binaphthyl, 98% (R)-Xylyl-BINAP 0155300
    [Show full text]
  • List of Publications by Ei-Ichi Negishi
    HETEROCYCLES, Vol. 86, No. 1, 2012 11 HETEROCYCLES, Vol. 86, No. 1, 2012, pp. 11 - 67. © 2012 The Japan Institute of Heterocyclic Chemistry DOI: 10.3987/COM-12-S(N)Publications LIST OF PUBLICATIONS BY EI-ICHI NEGISHI December, 2011 1. Basic Cleavages of Arylsulfonamides. E. Negishi and A. R. Day, J. Org. Chem., 1965, 30, 43-48. 2. The Carbonylation of Thexyldialkylboranes. A New General Synthesis of Ketones. H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1967, 89, 5285-5287. 3. Carbonylation of the Organoboranes from the Cyclic Hydroboration of Dienes with Thexylborane. A Simple Procedure the Conversion of Dienes into Cyclic Ketones. H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1967, 89, 5477-5478. 4. Carbonylation of Perhydro-9b-boraphenalene to Form Perhydro-9b-phenalenol. A New General Synthesis of Polycyclic Derivatives. H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1967, 89, 5478-5480. 5. A General Stereospecific Annelation for the Synthesis of trans-Fused Polycyclic Ketones via Hydroboration-Carbonylation H. C. Brown and E. Negishi, Chem. Commun., 1968, 594-595. 6. Conversion of Linear Trienes into Bicyclic Boranes via Hydroboration-Isomerization and Their Carbonylation. A Simple Synthesis of Angularly Substituted Bicyclic Alcohols H. C. Brown and E. Negishi, J. Am. Chem. Soc., 1969, 91, 1224-1226. 7. Reaction of Cyclic Organoboranes from Dienes with Methyl Vinyl Ketone. A Convenient Synthesis of !-Hydroxy-ketones from Dienes via Hydroboration. A. Suzuki, S. Nozawa M. Itoh, H. C. Brown, E. Negishi, and S. K. Gupta, Chem. Commun., 1969, 1009-1010. 8. Organoboranes. IX. Structure of the Organoboranes Formed in the Reaction of 1,3-Butadiene and � 12 HETEROCYCLES, Vol.
    [Show full text]
  • Willcox, Darren (2014) Novel Organoalanes in Organic Synthesis
    Novel Organoalanes in Organic Synthesis and Mechanistic Insight in Conjugate Addition DARREN WILLCOX, MSci Thesis submitted to the University of Nottingham for the degree of doctor of Philosophy March 2014 Abstract This thesis describes the development of novel aluminium hydrides (HAlCl2•Ln) and organoalanes (Cl2AlCH=CHR and ClMeAlCH=CHR) for organic synthesis, as well as exploring the mechanism by which copper-catalysed conjugate addition proceed with diethylzinc and triethylaluminium. In Chapter 1, the mechanism of copper-catalysed conjugate addition of diethylzinc to cyclohexenone and nickel- catalysed 1,2-addition of trimethylaluminium to benzaldehyde has been studied. The kinetic behaviour of the systems allows insight into which metal to ligand ratio provides the fastest rest state structure of the catalyst to enter the rate determining step. The ligand order in these reactions (derived from these ligand optimisation plots) provides information about the molecularity within the transition state. In Chapter 2, the synthesis of somewhat air-stabilised aluminium hydrides and their subsequent use in palladium- catalysed cross-coupling is described. Stabilised aluminium t i hydrides of the type HAlCl2•Ln, [HAl(O Bu)2] and [HAl(N Bu2)]2 were synthesised. The hydroalumination of terminal alkynes was optimal using bis(pentamethylcyclopentdienyl) zirconocene dichloride, resulting in a highly regio- and stereo- 2 chemical synthesis of alkenylalanes which undergo highly efficient palladium-catalysed cross-coupling with a wide range of sp2-electrophiles. Chapter 3, describes conjugate addition chemistry of ClXAlCH=CHR (X = Cl or Me) under phosphoramidite/ copper(I) conditions (X = Me). Highly enantioselective additions to cyclohexenones (89-98+% ee) were attained. A highly efficient racemic addition of the alkenylalanes (X = Cl) to alkylidene malonates occurs without catalysis.
    [Show full text]
  • Part Two Photochemical Reactions of Bis(Cyclopentadienyl)
    PART ONE PHOTOLYTIC CYCLOPENTADIENYL LIGAND EXCHANGE BETWEEN BIS (CYCLOPENTADIENYL) ZIRCONIUM DICHLORIDE AND ‘ITS ANALOG SYSTEM PART TWO PHOTOCHEMICAL REACTIONS OF BIS (CYCLOPENTADIENYL) DIPHENYL TITANIUM (N) Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY MIEN HSIAO PENG 1976 ABSTRACT PART ONE PHOTOLYTIC CYCLOPENTADIENYL LIGAND EXCHANGE BETWEEN BIS(CYCLOPENTADIENYL)ZIRCONIUM DICHLORIDE AND ITS ANALOG SYSTEMS PART TWO ‘ PHOTOCHEMICAL REACTIONS OF BIS(CYCLOPENTADIENYL)DIPHENYL TITANIUM(IV) By Mien Hsiao Peng PART ONE Irradiation of the mixture of zirconocene dichloride and (0-10)- zirconocene dichloride in benzene solution leads to the exchange of cyclopentadienyl ligands under conditions of constant incident light intensity. A 450 watt meadium pressure mercury-vapor lamp, Hanovia #679 A 0360, was used as the light source which emitted 313 nm light by through the filter solution cells. The lamp and filter cells were mounted inside a merry-go-round rotator. The photolytic formation of (D-S)-zirconocene dichloride was detected by mass spectrometry. A quantum yield for the ligand exchange of 0.02l mol/Ei was calculated by using the McKay analysis based on mass spectrographic data within suitable irradiation time. The equilibrium constant was 2.8. Zirconocene dichloride was found to exchange cyclopentadienyl ligand photolytically with bis(methylcyclopentadienyl)zirconium di- chloride with the constant for approach to equilibrium 2.3. PART TWO Photolysis of diphenyl titanocene, resulting in loss of phenyl ligands. is a generally useful approach to the generation of coordi- natively unsaturated complex species. The low temperature nuclear magnetic resonance method was employed to investigate the transient titanocene. The course of photoreaction was followed by using the electron paramagnetic resonance method at low temperature and room temperature.
    [Show full text]
  • Organotitanium-Aluminum Promoted Carbometalations of Alkynols: Substituent Effects
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2008 Organotitanium-Aluminum Promoted Carbometalations of Alkynols: Substituent Effects Nikola A. Nikolic College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Inorganic Chemistry Commons, and the Organic Chemistry Commons Recommended Citation Nikolic, Nikola A., "Organotitanium-Aluminum Promoted Carbometalations of Alkynols: Substituent Effects" (2008). Dissertations, Theses, and Masters Projects. Paper 1539626876. https://dx.doi.org/doi:10.21220/s2-jn77-gm95 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ORGANOTITANIUM-ALUMINUM PROMOTED CARBOMETALATIONS OF ALKYNOLS: SUBSTITUENT EFFECTS Nikola A. Nikolic Princeton, New Jersey Bachelor of Science, College of William and Mary in Virginia, 1986 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Department of Chemistry The College of William and Mary May 2008 APPROVAL PAGE This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Nikola A. Nikolic Approved by the Committee, January 2008 Committee Chair Professor David W. Thompson College of William and Mary Professor ©riristophrer JVAbelt College of William Mary Professor Randolph A. Coleman College of William and Mary TABLE OF CONTENTS DEDICATION...:................................................................... v ACKNOWLEGDEMENTS. .......... vi LIST OF TABLES..................................................................................................vii LIST OF FIGURES.......................................................
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fix)m the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fiice, while others may be fix>m any type of conqxuter printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affisct reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., nuqrs, drawings, charts) are reproduced by sectioning the original, b%inning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the origiiuil manuscript have been reproduced xerographically in this copy. Ifigher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations spearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE SYNTHESIS OF GROUP IV METALLOCENE DICHLORIDES WITH VARIABLE STERICS, CONFORMATIONAL MOBILITY AND GEOMETRIC SHAPES A Dissataüon SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY By DAVID COMBS Norman, Oklahoma 1997 UMI Number: 9817711 UMI Microfonn 9817711 Copyright 1998, by UMI Company.
    [Show full text]
  • Aluminium Hydrides and Borohydrides
    ALUMINIUM HYDRIDES AND BOROHYDRIDES www.acros.com Contents 1 - Introduction . 1 2 - Synthesis and Properties . 2 3 - Chemistry . 5 3.1 Alkylaluminium compounds as Ziegler-Natta co-catalysts . 5 3.2 Complex aluminium hydrides and borohydrides as reducing agents . 7 3.3 The parent compounds lithium aluminium hydride and sodium borohydride . 8 3.3.1. Lithium aluminium hydride. 8 3.3.2. Sodium borohydride and Sodium borodeuteride . 12 3.4 Tuning of the reactivity by different substituents: Derivatives with different sterical and electronical properties . 16 3.5 Modified borohydrides . 17 3.5.1. Lithium borohydride . 17 3.5.2. Potassium borohydride . 18 3.5.3. Tetraalkylammonium- and tetraalkylphosphonium borohydrides . 18 3.5.4. Calcium borohydride . 19 3.5.5. Sodium cyanoborohydride . 19 3.5.6. Sodium triacetoxyborohydride . 22 3.5.7. Tetramethylammonium triacetoxyborohydride (NEW: AO 39285) . 23 3.6 Alkoholate modified aluminium hydrides . 25 3.6.1. Lithium triethoxyaluminium hydride . 25 3.6.2. Lithium tri-tert-butoxyaluminohydride . 25 3.6.3 Sodium bis(2-methoxyethoxy)aluminiumhydride (“SMEAH”) . 25 3.7 Alkylsubstituted borohydrides . 26 3.7.1. Triethylborohydrides . 26 3.7.2. Tri sec-butylborohydrides and trisamylborohydrides . 29 3.7.3. Lithium trisamylborohydride . 30 3.8. Alkylsubstituted aluminiumhydrides . 30 Index . 36 1 - Introduction The importance of organo-boron and organo-aluminium compounds for science and technology has resulted in three Nobel-prizes for Herbert C. Brown for his work on hydroboration1, for Giulio 1Natta
    [Show full text]
  • [Alpha] Farnesene
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. i THE OXIDATION OF a-FARNESENE A thesis presentedin partial fulfilmentof therequirements for thedegree of DOCTOR OFPHILOS OPHY IN CHEMISTRY at Massey University JulieAnn Spicer December 1994 n ACKNOWLEDGEMENTS First and foremost, I would like to thank my supervisors; MargaretBrimble, for her Dr. expertise and enthusiasm, Daryl Rowan, for his wealth of ideas and encouragement, Dr� and Professor Andrew Brodie, both for taking me on at what was a difficult stage and his help in subsequent months. Thanks to Dr. John Shaw and Peter Reay of the Horticulture and Food Research Dr. Institute, for providing the funding.which enabled this work to be carried out and to the staffof the institute who carried out the apple work; also to Mr. Simon Fielder who has always been extremely helpful, both with ideas and material, especially when I was just gettingstarted. 3 Thanks must also go to Mr. John Hastie for the lH and 1 C nmr work, Dr. Ken Jolley for help with some of the 2-D and HerbertWong of Industrial Research Limited nmr Dr. for the 19F nmr. Mass spectral analysis was carried out by Mr. John Alien and Mr. MartinHunt of HortResearch. I would also like to thank my good friend Michael Edmonds for his support and encouragement when things got difficult; life would have been much tougher without him.Lastly, I would like to thank my parents for helping me to believe that if I tried hard enough, I could achieve anything that I set my mind to.
    [Show full text]
  • Determination and Evaluation of Electrical Properties Of
    DETERMINATION AND EVALUATION OF ELECTRICAL PROPERTIES OF METAL-CONTAINING CONDENSATION POLYMERS by Amitabh J. Battin A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL August 2009 Copyright by Amitabh Battin 2009 ii ACKNOWLEDGEMENTS I would sincerely like to express my appreciation and gratitude to my dissertation advisor Dr. Ramaswamy Narayanan for his constructive criticism, support and guidance which created a positive impact on my scientific career. As my mentor, he always encouraged me to think like a research scientist and helped me in moving forward in my life. I would like to express special thanks to my committee members (Dr. Charles Carraher, Dr. Cyril Párkányi and Dr. Guodong Sui) for investing their valuable time and efforts, support and guiding my through my doctoral program. I thank my colleagues, faculty and staff from the chemistry department for their utmost support and assistance. My special acknowledgments to Dr. Jayarama Perumareddi, Dr. Patricia Snyder and Dr. Predrag Cudic for their valuable input in my research projects. I am thankful to the professors from the physics department Dr. Fernando Medina and Dr. Andy Lau for their advice and guidance in my research projects. My special appreciation to Dr. Rajendra Gupta, Dr. Abhijit Pandya, President Brogan and all the administration of Florida Atlantic University for their assistance and support. iv ABSTRACT Author : Amitabh Battin Title: Determination and Evaluation of Electrical Properties of Metal-Containing Condensation polymers Institution: Florida Atlantic University Dissertation Advisor: Dr.
    [Show full text]